
Accidental Turntables: Learning 3D Pose by Watching Objects Turn

Zezhou Cheng1 Matheus Gadelha2 Subhransu Maji1
1University of Massachusetts, Amherst 2Adobe Research
{zezhoucheng, smaji}@cs.umass.edu gadelha@adobe.com

Abstract

We propose a technique for learning single-view 3D ob-
ject pose estimation models by utilizing a new source of data
— in-the-wild videos where objects turn. Such videos are
prevalent in practice (e.g. cars in roundabouts, airplanes
near runways) and easy to collect. We show that classical
structure-from-motion algorithms, coupled with the recent
advances in instance detection and feature matching, pro-
vides surprisingly accurate relative 3D pose estimation on
such videos. We propose a multi-stage training scheme that
first learns a canonical pose across a collection of videos
and then supervises a model for single-view pose estima-
tion. The proposed technique achieves competitive perfor-
mance with respect to existing state-of-the-art on standard
benchmarks for 3D pose estimation, without requiring any
pose labels during training. We also contribute an Acci-
dental Turntables Dataset, containing a challenging set of
41,212 images of cars in cluttered backgrounds, motion blur
and illumination changes that serves as a benchmark for 3D
pose estimation.

1. Introduction
Understanding object pose, and its structure is a central

computer vision problem. Many images have been man-
ually annotated with pose information in multiple datasets
containing various types of objects. Still, this manual anno-
tation process is labor-intensive and prone to unavoidable
human annotation errors. On the other hand, mechanical
devices that precisely change an object pose are widely uti-
lized when performing high-precision 3D scanning. They
allow a particular object to have its pose modified in a con-
trolled manner while capturing its appearance through a va-
riety of image sensors. One of the simplest devices of this
kind is a turntable – a rotating platform that slowly changes
the pose of an object through an electric motor (Fig. 1a).
Unfortunately, despite its simplicity, turntables are not very
practical. They need to be as large as the object at hand, e.g.,
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Figure 1. Classic turntable vs. accidental turntable. (a) Classic
turntables rotate and scan objects in a controlled environment for
estimating their 3D pose and shape. (b) A turning object in a video
leads to an accidental turntable. Structure-from-motion, coupled
with object detection [15] and feature matching [29], provides sur-
prisingly accurate relative 3D pose estimation (top) and 3D re-
construction (bottom) — the red pyramids indicate the estimated
relative poses of video frames. We utilize a collection of such
videos to train and evaluate models for single-frame 3D pose es-
timation in realistic settings. See more accidental turntables here:
https://www.youtube.com/watch?v=8rFNRri8-TI

setting up turntables for cars or airplanes would require a lot
of work.

Fortunately, we don’t need to place those objects in ac-
tual turntables. Many are already performing similar mo-
tion on their own (Fig. 1b) — cars moving along round-
abouts, airplanes landing and parking, ships maneuvering
across canals, and so on. In the real world, video recordings
of objects performing these types of motions depict them
in uncontrolled environments; i.e. cluttered background,
occluders, changes in illuminations, motion blur, unpre-
dictable pose changes and many other nuisance factors.
Thanks to many recent advances in computer vision, we
show that we are able to bypass many of those nuisance
factors and apply Structure from Motion (SfM) to reliably
and precisely recover relative pose estimation from videos
of real objects (Fig. 1b). We call these types of videos Acci-
dental Turntables – objects presenting motion patterns that
allow us to observe them from (almost) all possible angles.
We demonstrate that these videos, after suitable automatic
pre-processing (Sec. 3), are an excellent source of supervi-
sion for pose estimation models and, perhaps more impor-
tantly, can be mined from the internet, enabling the creation
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of bigger and more diverse datasets.
However, using the supervision from SfM does not al-

low us to directly perform pose estimation with respect to
a canonical object frame. To this end, we propose to learn
a relative pose estimation model and show that its training
leads to the emergence of a canonical object pose (§ 4.1). In
a second stage, we propose a calibration and training pro-
cedure (§ 4.2) that allows pose estimation in a canonical
frame (§ 4.3). We show that models trained in this fash-
ion only using our newly collected dataset from real videos
significantly outperforms other models trained on SfM and
performs on par with existing unsupervised approaches on
standard benchmarks, e.g., the Frieburg and ImageNet cars
datasets.

We summarize our contributions as follows. 1) a pro-
cedure for automatically processing accidental turntable
videos and annotating its frames with relative pose transfor-
mations; 2) a multi-stage training scheme that allows train-
ing accurate pose estimation models with respect to arbi-
trary canonical frames; and 3) a new dataset with 41,212
real images of cars from turntable videos with their corre-
sponding pose annotation.

2. Related Work
Datasets for pose estimation. A number of datasets pro-
vide 3D pose annotations for objects in the wild [1, 11, 35,
37,43,44] or in controlled environments [10,16,40,41,45].
These datasets have been widely used for training super-
vised pose estimation models [13, 18, 21, 39]. However,
manually annotating 3D pose is very tedious and thus not
scalable. Unsupervised pose estimation models [22, 24, 25,
34] learn to predict 3D pose without any human annota-
tions. Videos [26, 34] that capture multiple views of ob-
jects have been the main source of training data in prior
works [22, 25, 34]. However, to acquire such videos, a per-
son needs to hold a camera and slowly moves around a static
object. This is a time-consuming procedure, especially for
large-size objects (e.g. cars, airplanes), and has limits the
size of existing video datasets. For example, the Freiburg
Cars dataset [34] consists of 52 car videos and EPFL car
dataset [26] only provides 20 cars. Such limited data may
further constrain the performance of prior methods. In this
work, we identify a new source of data for unsupervised
pose estimation – videos where objects turn. The turning
of objects (e.g., vehicles) is such a natural phenomenon in
daily life that these videos are quite easy to collect. We
build a new dataset consisting of 313 car videos with a total
of 141,784 frames. Our 3D pose annotations are generated
by SfM [30, 32] enhanced by recent progress in object de-
tection [15] and feature matching [29].

Supervised pose estimation. With groundtruth 3D pose
annotations, supervised pose estimation works have been

focusing on developing novel representations of 3D
pose [18, 23, 49], learning objectives [18, 39, 46, 47], or net-
work architectures [7, 8]. The difficulty in annotating 3D
pose results in the scarcity of pose annotations. This is-
sue is partially relieved by augmenting the existing datasets
with synthetic data [36]. The integration of pose estima-
tion and object detection has been explored in the task of
3D object detection [6, 11]. Our models are built upon the
prior supervised learning methods [46, 47, 49], but we use
pose annotations automatically generated by SfM, instead
of human annotations.

Unsupervised pose estimation. Unsupervised pose esti-
mation models learn 3D object pose without any human
annotations. Prior works are either based on analysis-
by-synthesis [22, 24] or SfM [25, 34]. The analysis-by-
synthesis frameworks train a pose estimation model via
reconstructing the input images in a pose-aware manner.
The SfM-based methods start by estimating the pose la-
bels with SfM on videos that capture 360◦ views of static
objects. However, SfM only provides relative pose esti-
mations among video frames. The absolute pose estima-
tions from SfM are not consistent across videos (i.e. ob-
jects in a same pose from two videos may have quite dif-
ferent absolute pose representations). To tackle this issue,
Sedaghat et al. [34] calibrate the SfM pose estimations via
aligning 3D reconstructions of objects; Novotny et al. [25]
train a model to estimate the relative pose and observe that
canonical poses emerge in the models trained in this man-
ner. Similar to Novotny et al. [25], we train a model to
estimate the relative pose from SfM (Sec. 4.1). Differently,
we find that such training strategy is not sufficient to learn
a high-quality pose predictor. We instead use the model
trained in this way as a tool to calibrate the SfM estimations
across videos (Sec. 4.2), followed by training a novel pose
estimator on the calibrated pose annotations (Sec. 4.3).

Accidental data in computer vision. Researchers have
discovered interesting phenomena that occur accidentally
but turns out to be useful for computer vision tasks in the lit-
erature. Torralba et al. [38] demonstrate that outdoor scenes
can be recovered from accidental pinhole images. Li et
al. [17] train a depth estimator on a collection of Internet
videos of people imitating mannequins, i.e. freezing in di-
verse pose. The depth information are obtained from SfM
and multi-view stereo algorithms. Similar to Li et al. [17],
we train a pose estimation model on a collection of Internet
videos and the 3D pose annotations are automatically gen-
erated from SfM. Unlike people imitating mannequins, we
only require the object turns in the video, which is a quite
natural behavior in practice (e.g., car moving along round-
abouts).
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Figure 2. Samples from accidental turntable dataset. The ac-
cidental turntables are prevalent in practice. For instance, a car
donuts (1st row), a car moves along a roundabout (2nd and 3rd
row), or a car does not turn but passes by a camera (4th row). All
car instances exhibit at least 180◦ azimuth changes relative to the
camera.

3. Accidental Turntable Dataset

In this section, we provide the details of our data collec-
tion and the generation of 3D pose annotations with SfM
algorithms on our dataset. We name the collected video
dataset as Accidental Turntable Dataset, highlighting it
connections to classic turntables (Fig. 1).

Data source. The main criterion of our data collection is
that the object turns in the video. Such videos are abundant
on the Internet and quite easy to acquire. In this work, we
focus on the car category which is one of the most common
moving objects in the wild (at least in America). We leave
the extension to other categories (e.g., airplanes and boats)
in our future work, but include some examples of the recon-
structions at the end of the paper. We collect 313 car video
clips from YouTube containing in total of 141,784 frames.
Each video consists of a single moving car instance which
exhibits multiple views in motion. Fig. 2 provides video
samples from our dataset. We provide a full list of YouTube
links to the collected videos in Appendix A.

Challenges. Even though our dataset consists of large
number of car videos serving as a new source training data
for machine learning models, in-the-wild videos pose tech-
nical challenges for automatic extraction of 3D pose us-
ing SfM. For example, to exploit the classical SfM algo-
rithms to estimate the object pose, object segmentation is re-
quired to remove the background; Motion blur and texture-
free object surfaces necessitate robust interest points detec-
tion; Discriminative feature description and robust feature
matching are needed to avoid the ambiguity of pose estima-
tion on symmetric objects (e.g., cars).

Pose estimation with SfM. To tackle the above-
mentioned challenges, we use the MaskRCNN [15] pre-
trained on MS-COCO dataset [19] to remove the back-
ground clutter. We find that the MaskRCNN provides

highly accurate object detection and segmentation on in-
the-wild car videos. We use SfM algorithms implemented
by COLMAP [30,32] with SuperPoint [5] as the feature ex-
tractor and SuperGLUE [29] as the feature matcher to esti-
mate the object pose on cropped object images. We sequen-
tially match the next 10 frames per video frame, instead of
exhaustive matching every pair of frames in a video. The
sequential matching reduces the ambiguity in matching re-
peated patterns (e.g. left and right wheel of a car). SfM, cou-
pled with MaskRCNN, SuperPoint, and SuperGLUE, pro-
vides surprisingly accurate pose estimation, in comparison
with classical SIFT [20] and nearest neighbor matching. We
provide detailed study on the effect of feature extraction and
matching on SfM in Sec. 5.2.

Statistics. Our dataset consists of 313 car videos with
141,784 frames in total. SfM automatically samples frames
with sufficient large relative pose change and reliable fea-
ture matching. Adjacent frames in a video usually have tiny
difference in pose, thus most of frames are filtered out by
SfM. We end up collecting 41,212 frames with SfM pose
estimations. Our dataset covers cars with diverse shapes,
colors, textures, and poses (see examples in Fig. 2).

4. Methodology

This section introduces our framework for learning 3D
object pose from the proposed accidental turntable dataset.
Fig. 3 illustrates an overview of the proposed framework.
SfM estimates the relative pose of objects with respect to
the object in the first frame per video, followed by optimiz-
ing the pose parameters with the bundle adjustment. How-
ever, the object pose in the first frame may vary dramati-
cally across videos. It is thus meaningless to train a model
directly on the absolute pose labels from SfM. Instead, we
start by training a model to estimate the relative pose of
frame pairs (Fig. 3 left). We observe that a canonical pose
emerges in our pose estimation model train in this way (see
Sec. 5.2). This provides us a tool to calibrate the pose esti-
mation from SfM to a canonical frame (Fig. 3 middle). In
the second stage, we train a pose estimation model directly
on the calibrated absolute pose annotations similar to stan-
dard supervised learning methods [36,39,46] (Fig. 3 right).
We denote our model trained in the first stage as f(x) and
the model in the second stage as g(x), where x is the in-
put image. Our accidental turntable dataset is denoted by
{(xi, Ri)}, where R ∈ SO(3) is the SfM pose estimation.

4.1. Relative pose estimation

In this stage, we train a single-view pose estimation net-
work f(x) to predict the relative pose between pairs of
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Figure 3. Approach overview. Left: a pose estimation model
f(x) is trained to predict the relative pose of image pairs (de-
noted by ∆Rij). Middle: the emergence of canonical pose in
f(x) enables us to calibrate the pose estimations from SfM to a
uniform frame. The model f(x) is frozen in the pose calibration
step. Right: after the pose calibration, a pose estimation model
g(x) is trained on the absolute pose annotations.

video frames. The loss function is defined as,

Lrelative =

N∑
(i,j)

dist(RiRTj , R̂iR̂
T
j ) with R̂i = f(xi)

(1)

where dist(·, ·) is a distance function between two rotation
matrices (e.g. L2 or geodesic distance). R̂i is a 3 × 3 rota-
tion matrix predicted from the model f(xi) on the input xi.
The frame pair xi and xj are sampled from a same video. N
is the total number of frame pairs sampled from our video
dataset. ∆Rij = RiR

T
j is the relative rotation matrix that

transforms the pose of the frame xj to xi. We use the 6D
continuous rotation representation [49] as intermediate out-
put of our model f(x), from which the 3 × 3 rotation ma-
trices R̂ are recovered by the Gram-Schmidt orthogonaliza-
tion [49]. Our first training stage is similar to the learning
strategy proposed by Novotny et al. [25]. Differently, we
only use the model f(x) trained in this stage as a tool to
calibrate the SfM pose annotations (Sec. 4.2). Moreover,
we demonstrate that the model g(x) trained in our second
stage significantly outperforms the stage-one model f(x)
as well as Novotny et al. [25]. We provide detailed compar-
isons between f(x) and g(x) in Sec. 5.2.

4.2. Pose calibration

The pose predictor f(x) trained in the first stage provides
us a tool to calibrate the pose annotations from SfM into
a uniform pose frame, thanks to the emergence of canon-
ical pose (see Sec. 5.2 for more details). If the pretrained
f(x) provides perfectly accurate pose estimation per input
x, there exists a global rotation ∆R for each video that
aligns our pose annotations {Ri} to the pose predictions

{R̂i}:

R̂i = ∆RRi ∀i ∈ 1, . . . ,K (2)

where K is the number of frames in the target video. How-
ever, the pose predictions {R̂i} are inaccurate in practice
due to the limited performance of the pretrained pose pre-
dictor f(x). We thus target at a rotation matrix ∆R∗ that
aligns {Ri} and {R̂i} with minimal calibration error. We
define the calibration error as,

L∗cali =
1

K

K∑
i

dist(R̂i,∆R∗Ri) (3)

where dist(·, ·) is a distance function between two
rotation matrices. We adopt the geodesic distance
‖ logRT R̂‖F/

√
2 in our implementation. The pose cali-

bration is then formulated as an optimization problem:

min
∆R

Lcali(R̂,∆RR) (4)

s.t. ∆R ∈ SO(3) (5)

This problem can be solved by the classical Procrustes anal-
ysis [12]. In practice, we find that a simple search-based
optimization method works reliably. Concretely, the opti-
mal global rotation ∆R∗ is searched from the set {∆Rj :

∆Rj = R̂jR
T
j }. Moreover, the calibration error L∗cali is

closely related to the noise level of the calibrated pose anno-
tations. Large calibration error typically means the failure
of calibration and higher level of noise in the calibrated pose
annotations (see Sec. 5.2 for our empirical studies). There-
fore, the calibration error L∗cali may serve as a heuristic to
filter out noisy pose labels.

4.3. Absolute pose estimation

We now could apply any supervised learning methods
for pose estimation on our calibrated dataset {(xi, Rcali

i )}.
In this work, we adopt the framework proposed by Xiao et
al. [46, 47] to train our pose estimator. Concretely, we use
three Euler angles as our pose representation, including az-
imuth α ∈ [−π, π], elevation β ∈ [−π/2, π/2], and roll
γ ∈ [−π, π]. The Euler angles are decomposed from the
rotation matrices Rcali and divided into Zθ disjoint angular
bins with bin size Bθ = π/12. The model is trained to pre-
dict the bin indices yθ ∈ {1, . . . , Zθ} via a classification
loss and within-bin offsets δθ via a regression loss:

Labs =
∑

θ∈α,β,γ

Lcls(yθ, pθ) + λLreg(δθ, δ̂θ) (6)

where pθ is the probability of the object pose in the bin
yθ; δ̂θ ∈ [0, 1] is the predicted offsets within the bin yθ;
(pθ, δ̂θ) = g(x) are both outputs of our pose estimation
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model g(x). We use the cross-entropy loss as the classifi-
cation loss Lcls and the smooth-L1 loss as the regression
loss Lreg; λ is the weight on the regression loss (λ = 1 by
default).

At the inference time, the pose prediction θ̂ on the in-
put x is obtained via combining the prediction of the bin
classifier and the offsets within the predicted angular bin:

θ̂ = (j + δ̂θ,j)Bθ with j = arg max
i

pθ,i (7)

where pθ,i is the probability of object pose in the i-th bin,
and δ̂θ,j is the predicted offsets within the i-th bin.

5. Experiments
Implementation details. We use a standard ResNet50
network with three fully-connected layers as our pose es-
timation model. We initialize our model with ImageNet
pretrained weights and fine-tune it during training. In the
first training stage, we do not apply any data augmenta-
tion. In the second training stage, we use standard data
augmentations including in-plane rotation and flipping. We
conduct hyperparameter search and checkpoint selection
on a validation set separate from our training and test set.
The validation set consists of 338 non-truncated and non-
occluded car images from PASCAL3D+ [44]. Similar to
prior work [22, 24, 46, 47], we use a tightly cropped object
image as the input to our pose estimation model. The input
image is resized and padded to 224 × 224. We use Adam
optimizer with learning rate of 1E-4 and weight decay of
5E-4. In the second training stage we train our model on
videos with a calibration error L∗cali (Eqn. 3) lower than 7◦.

Benchmarks. We evaluate the performance of our model
on the PASCAL3D+ dataset [44] which is a standard
benchmark for 3D pose estimation. The test split in the
PASCAL3D+ dataset consists of 308 non-occluded and
non-truncated car images collected from PASCAL VOC
dataset [9]. More recently, Mariotti et al. [22] reports their
results on the ImageNet validation set included in PAS-
CAL3D+ which consisting of 2712 test images of cars. To
make a comparison with Mariotti et al., we provide re-
sults on both test splits. Following prior works, we mea-
sure the prediction error using the standard geodesic dis-
tance ∆R = ‖ logRTgtRpred‖F/

√
2 between the estimated

rotation matrix Rpred and the groundtruth Rgt. We report
the median geodesic error (Med.) and the percentage of
predictions with error less than π/6 (Acc.) relative to the
groundtruth.

Pose calibration for evaluation. The pose predictions
from our model align with human annotations up to a global
rotation, due to the difference between the coordinate frame

of our model and that of pose annotation tools adopted by
the benchmarks. To evaluate our model on the benchmarks,
similar to prior unsupervised learning methods [22, 24], we
need to calibrate our pose estimations to the groundtruth
annotations. Such pose calibration for evaluation is ex-
actly same as our pose calibration step described in Sec 4.2.
Specifically, we estimate a global calibration matrix ∆R
such that ∆RRpred equals the human annotations Rgt. We
formulate the pose calibration as an optimization problem
and solve it via a simple search-based method (see more
details in Sec 4.2). The calibration matrix ∆R is obtained
via solving the optimization problem on 100 car images ran-
domly sampled from the training set of PASCAL3D+.

5.1. Pose estimation

Quantitative results. Tab. 1 provides quantitative com-
parisons with prior unsupervised pose estimation works on
PASCAL3D+ test set. Our method significantly outper-
forms the existing SfM-based methods [25, 34]. Similar
to ours, these models are trained on video data with pose
annotations from SfM. However, they rely on SfM with
SIFT [20] and nearest neighbor (NN) matching, which fails
to provide high-quality pose estimations (see more details
in Sec 5.2). For this reason, prior SfM-based models col-
lect videos by slowly moving a camera around static cars
to avoid large motion blur. This tedious procedure lim-
its the size of existing car video datasets. For example,
the FreiburgCars dataset [34] consists of 52 car videos;
the EPFL car dataset [26] provides only 20 car videos. In
comparison, our video dataset (consisting of 313 videos) is
easy to collect and prevalent on the Internet. SfM, coupled
with the recent progress in object detection [15] and feature
matching [29], provides robust and accurate pose estima-
tions on our in-the-wild videos, which is the key to suc-
cess of our framework. Our model trained on the accidental
turntable dataset achieves higher pose prediction accuracy
than when trained on the FreiburgCars dataset.

In comparison with analysis-by-synthesis frame-
works [22, 24], our prediction accuracy is significantly
higher than that of SSV model [24] which is trained on
the CompCars dataset [48] (consisting of 137,000 real car
images). ViewNet [22] achieves the highest performance
on PASCAL3D+ among existing unsupervised learning
methods. However, this method relies on 3D models from
ShapeNet [2] to generate a highly curated dataset with
controlled variations in viewpoint, translation, lighting, and
background, etc. Moreover, ViewNet has a harder time
learning from real videos (e.g. FreiburgCars [34]) where
its performance drops remarkably. We’re unable to train
ViewNet on our own dataset, as the source code has not yet
been released.
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Table 1. Pose estimation on PASCAL3D+ test sets. We make comparisons with supervised learning methods trained with human
annotations (dubbed Anno.) and unsupervised pose estimation models based on Structure-from-Motion (dubbed SfM) or Analysis-by-
Synthesis (dubbed AbS). ∗ViewNet ignores the in-plane rotation in the evaluation and reports the results on ImageNet validation set.

Methods Supervision Trainset Testset Acc.(%) ↑ Med.(◦) ↓
Su

pe
r.

Tulsiani et al. [39] Anno. PASCAL3D+ VOC 89 9.1
Mahendran et al. [21] Anno. PASCAL3D+ VOC – 8.1
Liao et al. [18] Anno. PASCAL3D+ VOC 93 5.2
Grabner et al. [13] Anno. PASCAL3D+ VOC 94 5.1

U
ns

up
er

vi
se

d

VPNet [34] SfM FreiburgCars VOC – 49.6
VpDRNet [25] SfM FreiburgCars VOC – 29.6
SSV [24] AbS CompCars VOC 67 10.1
Ours SfM FreiburgCars VOC 72 15.7
Ours SfM Acci.Turn. VOC 75 15.8
ViewNet∗ [22] AbS ShapeNet ImageNet 88 5.6
ViewNet∗ [22] AbS FreiburgCars ImageNet 61 16.1
Ours SfM FreiburgCars ImageNet 84 15.0
Ours SfM Acci.Turn. ImageNet 86 14.8

Figure 4. Pose prediction on Pascal3D+ test set. Left: our model
achieves high accuracy of pose estimation on cars in diverse ap-
pearance, poses, and shapes. Right: the performance drops on
large, occluded objects (1st row), low-resolution images (2nd row)
or out-of-domain data (last two rows). The solid arrows indicate
the pose predictions from our model and the dashed arrows are
the groundtruth annotations. The blue arrow directs towards the
frontal side of cars and the red points toward the right side. The
angular distances between the predictions and the groundtruth are
less than 7◦ for examples on the left while higher than 90◦ on the
failure cases.

Qualitative results. Fig. 4 visualizes our pose predictions
on Pascal3D+ test set. Our model provides accurate pose
estimation on diverse cars in terms of appearance, poses
and shapes. The performance of our model drops in several
cases: the object is highly occluded; the image is in low res-
olution; the domain gap between the input and our dataset
is large (e.g. cartoon cars, snow-covered cars). These is-
sues can be potentially relieved by collecting more videos
to further enrich the diversity of cars in our dataset.

5.2. Analysis

The emergence of canonical pose. The key to the suc-
cess of the proposed model is the emergence of canonical
pose in our first training stage. Fig. 5 provides images from
our dataset with similar pose annotations after the calibra-
tion step (Sec. 4.2). On the one hand, Fig. 5 clearly demon-
strates that the calibrated pose annotations well align in a
uniform frame. On the other hand, the calibration fails on
several videos due to the limited performance of our stage-
one model (Fig. 5 bottom). A typical failure case is that
the pose predictor misidentifies the frontal view of a car as
the rear view. Such failure cases of pose calibration intro-
duce noisy pose annotations into our dataset. Fortunately,
we find that the noise level of the annotations are closely
correlated with the calibration error L∗cali (Eqn. 3). We thus
use the calibration error L∗cali as a heuristic to filter out noisy
annotations in our second training stage.

The effect of noise level in the annotations. We use the
calibration error L∗cali (Eqn. 3) as an indicator of the noise
level of the pose annotations. Higher threshold on the cali-
bration error corresponds to larger number of training im-
ages yet more noisy annotations, and vice versa. Fig. 6
presents the performance of our model under different noise
levels of the annotations. It demonstrates that neither clean-
yet-small data nor large-yet-noisy data leads to higher per-
formance than mid-size data with mid-level noise. We pro-
vide more analysis in Appendix B.

The effect of two-stage training. As demonstrated in
Fig 5, the model trained in the first stage provides a tool to
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Figure 5. Canonical pose emerges in our first training stage
(Sec. 4.1). For each reference images (top), we present four
matches (including one failure case) of which the pose annotations
have less than 5◦ angular distance to that of the reference frame.
The calibration error L∗

cali (Eqn. 3) is higher than 25◦ on these
failure cases while lower than 10◦ on the well-calibrated video in-
stances. This provides us a heuristic to filter out noisy annotations.
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Figure 6. The effect of annotation noise level on 3D pose pre-
diction. We report the performance of our pose estimation model
under different noise level of pose annotations. Higher level of
annotation noise corresponds to larger number of training images.
We report both prediction accuracy (left panel) and median error
(right panel) on two test splits included in PASCAL3D+.

calibrate the pose annotations of our dataset. However, the
performance of the stage-one model lags behind the state-
of-the-art analysis-by-synthesis frameworks (e.g. SSV [24]
and ViewNet [22]). We hypothesize that training to pre-
dict the relative pose is a suboptimal learning strategy for
the task of absolute pose estimation. As shown in Tab. 2,
the model trained in our second training stage significantly
outperforms the the one trained in the first stage. This sug-
gests that learning with the absolute pose annotations is in-
deed a more effective training method. However, our stage-
two training is not possible without the pose calibration
and stage-one model. Therefore, the proposed two train-
ing stages are complementary and both play an important
role in our framework.

The effect of network initialization. The recent self-
supervised learning (SSL) [3, 14] has significantly im-
proves the unsupervised pose estimation [4] and part dis-
covery [27]. We initialize our pose estimation network with

Table 2. The effect of two-stage training on 3D pose predic-
tion. The second stage trains the model to regress absolute pose
after using the first stage model to calibrate the relative pose an-
notations. This procedure leads to a significant improvement in
pose estimation accuracy (%) and median error (◦), in spite of the
training datasets.

Trainset Stage PASCAL VOC ImageNet
Acc. ↑ Med. ↓ Acc. ↑ Med. ↓

Acci. Turn. 1 42 38.8 46 32.9
2 75 15.8 86 14.8

FreiburgCars 1 36 44 47 31.9
2 72 15.7 84 15.0

Table 3. The effect of network initialization on 3D pose pre-
diction. ImageNet pretrained models provide significant improve-
ment over random initialized ones but self-supervised counterparts
are competitive alternatives without having to resort to extra hu-
man annotations.

Initialization PASCAL VOC ImageNet
Acc. ↑ Med. ↓ Acc. ↑ Med. ↓

Random 58 25 70 20.2
Contrastive [14] 74 15.7 85 14.3
ImageNet 75 15.8 86 14.8

ImageNet-pretrained models by default. However, Ima-
geNet classification labels require extensive human labors.
A natural question is how the recent SSL methods help us
further reduce the requirement of human annotations. Tab. 3
provides a comparison of different initialization strategies.
Supervised ImageNet pretraining and unsupervised con-
trastive pretraining [3, 14] have similar performance in the
task of pose estimation, while both outperforms the random
initialization in a large margin.

Pose distribution. Figure 7 compares the pose distri-
bution of the Acci- dental Turntables dataset and PAS-
CAL3D+. The distribution of azimuth is more balanced in
our dataset, where PASCAL3D+ has more cars with large
elevations.
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Figure 7. Distribution of the poses in the proposed accidental
turntable dataset and the PASCAL3D+.
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Feature extraction and matching for SfM. Feature ex-
traction and matching is the core of SfM algorithms. The
classical SIFT [20] and simple nearest neighbor matching
(NN) remains the default components in popular SfM pack-
ages (e.g. COLMAP [30, 32]), despite of the recent success
of learning-based methods [5, 29]. We observe that SfM
with SIFT and NN does not work reliably on our in-the-
wild video dataset. Fig. 8 compares the 3D reconstruction
and pose estimation from COLMAP under different fea-
ture extraction and matching algorithms on two videos from
our dataset. SfM with SIFT and NN only provides partial
3D reconstruction and pose estimation on a small subset of
frames. Its performance drops significantly on texture-free
objects (Fig. 8 bottom). Simply replacing SIFT with Super-
point [5] leads to more complete 3D reconstruction and pose
estimations. SfM with Superpoint and SuperGlue [29] pro-
vides the highest quality of shape reconstruction and pose
estimations. Our experimental results can be explained by
the following observations: SIFT detects few interest points
on most cars due to the texture-free surface; SIFT extracts
features in a small local region, which results in large am-
biguity in matching duplicated patterns (e.g. frontal and
rear wheels of a car); large motion blur further destabi-
lizes the feature matching process; In comparison, Super-
point provides rich interest points even on texture-free re-
gions; Lastly, SuperGLUE aggregates long-range contex-
tual information via attention mechanism, which we find
significantly reduces the ambiguity in matching repeated
patterns. Fig. 11 provides more examples from our acciden-
tal turntable dataset. The performance of SfM may drop on
highly-occluded objects (e.g. the car is occluded by smoke
in Fig. 11 bottom).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Video Frame Samples SIFT+NN Superpoint+NN Superpoint+S.G.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 8. Feature extraction and matching for structure-
from-motion. Left: video samples from the proposed accidental
turntable dataset. Right: pose estimations (top) and dense 3D re-
construction (bottom) under different feature extraction (SIFT [20]
or Superpoint [5]) and matching (nearest neighbor (NN) or Super-
Glue (S.G.) [29]) algorithms. The red square pyramids indicate
the location of the estimated camera pose. Each video consists of
more than 200 frames and the car turns around 720◦.
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Figure 9. More examples from the Accidental Turntables
dataset. SfM provides accurate 3D reconstructions and pose esti-
mations on either texture-rich (1st row) or texture-free (2nd row)
objects, as well as objects moving along a straight line without
any turns (3rd row). The performance drops on highly-occluded
objects (bottom). See more examples in Appendix A.

Figure 10. Accidental turntables for airplanes and cruise. Left:
video frame samples. Right: pose estimation and 3D reconstruc-
tion from structure-from-motion.

Extension to other categories. There are a fair number of
turntable videos for other categories on Youtube. For exam-
ple, airplanes turn along the runway (e.g., video1, video2,
video3, video4); landing or takeoff of airplanes usually in-
duces more than 90-degree pose changes relative to the
camera (e.g., video5, video6); cruises turn (e.g. video7).
Fig. 10 shows SfM with Superpoint and SuperGlue pro-
vides reasonable pose estimation and 3D reconstruction on
these categories. Even though we focus on cars in this work,
our dataset is much larger, easier to collect, and more use-
ful to train a pose estimator than existing car datasets (e.g.,
FreiburgCars).

6. Discussion and Conclusion
We propose to learn 3D pose estimation models from a

new source of data: videos where objects turn. We demon-
strate that classical structure-from-motion algorithms, cou-
pled with the recent advances in feature matching and ob-
ject detection, provide surprisingly accurate pose estima-
tions and 3D reconstructions on in-the-wild car videos. We
also provide a novel learning framework which success-
fully trains a high-quality 3D pose predictor on the col-
lected video datasets. We plan to release our Acciden-
tal Turntable dataset along with the pose estimations and
3D reconstructions from the enhanced SfM for the research
community.
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Appendix

A. Accidental Turntables Dataset

Data source We use 6 Youtube videos as the source of
our Accidental Turntables dataset including video1, video2,
video3, video4, video5, video6.

More data samples and 3D pose annotations Fig. 11
provides more examples from our Accidental Turntables
dataset.
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Figure 11. Samples from the Accidental Turntables dataset.
SfM provides accurate 3D reconstructions (middle) and pose es-
timations (right) on either texture-rich (1st row) or texture-free
(2nd row) objects, as well as objects moving along a straight line
without any turns (3rd row).

B. More Analysis

The effect of annotation noise level on pose estimation
In the main text, we use ImageNet-pretrained ResNet50 to
initialize our model and analyze the effect of annotation
noise level to the performance of pose estimation (Fig. 6 in
the main paper). Here we provide additional experimental
results under different network initialization including con-
trastively pretraining and randomly initialization. Fig. 12
demonstrates that the effect of annotation noise level on the
pose estimation performance is consistent across different
network initialization, i.e. neither clean-yet-small data nor
large-yet-noisy data leads to higher performance than mid-
size data with mid-level noise.
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10
3

10
4

10
5

Number of training images

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

ImageNet
Pascal VOC

10
3

10
4

10
5

Number of training images

20

30

40

50

60

70

80

M
ed

ia
n 

er
ro

r (
)

ImageNet
Pascal VOC

Random initialization

Figure 12. The effect of annotation noise level on 3D pose pre-
diction is consistent across different network initialization. For
each initialization method, we report the performance of the pose
predictor under different noise level of pose annotations. Higher
level of annotation noise corresponds to larger number of training
images. We report both prediction accuracy (top row) and median
error (bottom row) on two test splits included in PASCAL3D+ (i.e.
PASCAL VOC and ImageNet validation set.).

C. Implementation
We use the Structure-from-Motion (SfM) and Multiview

Stereo (MVS) pipelines implemented in COLMAP [31,
33] 1 and HLOC library [28] 2. We use the MaskRCNN [15]
implemented in Detectron2 [42] to get the object masks. We
implemente our pose estimation models based on PoseCon-
trast [46] 3.
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