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Abstract. Colonoscopy is the standard of care technique for detecting
and removing polyps for the prevention of colorectal cancer. Neverthe-
less, gastroenterologists (GI) routinely miss approximately 25% of polyps
during colonoscopies. These misses are highly operator dependent, influ-
enced by the physician skills, experience, vigilance, and fatigue. Standard
quality metrics, such as Withdrawal Time or Cecal Intubation Rate, have
been shown to be well correlated with Adenoma Detection Rate (ADR).
However, those metrics are limited in their ability to assess the quality of
a specific procedure, and they do not address quality aspects related to
the style or technique of the examination. In this work we design novel
online and offline quality metrics, based on visual appearance quality
criteria learned by an ML model in an unsupervised way. Furthermore,
we evaluate the likelihood of detecting an existing polyp as a function
of quality and use it to demonstrate high correlation of the proposed
metric to polyp detection sensitivity. The proposed online quality metric
can be used to provide real time quality feedback to the performing GI.
By integrating the local metric over the withdrawal phase, we build a
global, offline quality metric, which is shown to be highly correlated to
the standard Polyp Per Colonoscopy (PPC) quality metric.

1 Introduction

Screening for colorectal cancer is highly effective, as early detection is within
reach, making this disease one of the most preventable. Today’s standard of care
screening method is optical colonoscopy, which searches the colon for mucosal
abnormalities, such as polyps. However, performing a thorough examination of
the entire colon surface using optical colonoscopy is challenging, which may lead
to a lower polyp detection rate. Recent studies have shown that approximately
25% of polyps are routinely missed during colonoscopies [1].

The success (diagnostic accuracy) of a colonoscopy procedure is highly op-
erator dependent. It varies based on the performing physician skills, experi-
ence, vigilance, fatigue, and more. To ensure high procedure quality, various
quality metrics are measured and monitored. E.g., the Withdrawal Time (time
from the colonoscope reaching cecum to removal of the instrument from the
patient) metric was shown to be highly correlated to Adenoma Detection Rate
(ADR) [6, 13, 15, 16, 17, 18]. Another quality metric – Cecal Intubation Rate
(proportion of colonoscopies in which the cecum is intubated) – is considered
important to ensure good colon coverage.
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Most of these existing metrics are relatively easy to compute, but can provide
only limited data on the quality of a specific procedure, and are typically used
aggregatively for multiple sessions. Some studies [14] suggest that there are other
factors that impact the polyp detection rate. For example, one may wish to
distinguish between a good and bad colonoscope motion patterns, or assess the
style of the examination. The hypothesis is that a better inspection style yields
more informative visual input, which results in a better diagnostic accuracy.

In this work we propose a novel quantitative quality metric for colonoscopy,
based on the automatic analysis of the induced video feed. This metric is com-
puted locally in time, measuring how informative and helpful for colon inspection
a local video segment is. As this instantaneous quality is very subjective and dif-
ficult to formulate, human annotation is problematic and ill-defined. Instead, we
let an ML model build a meaningful visual data representation in a fully unsu-
pervised way, and use it to construct a metric highly correlated with the clinical
outcome. First, we learn visual representations of colonoscopy video frames us-
ing contrastive self-supervised learning. Then, we perform cluster analysis on
these representations and construct a learned aggregation of these cluster as-
signments, bearing a strong correlation with polyp detection, which can serve as
an indicator for “good-quality” video segments.

While the proposed approach resembles the one proposed in [7], the addressed
problems are markedly different, as [7] does phase detection in colonoscopy.
There are other works aiming to learn frame representations in colonoscopy
videos, However, those descriptors are usually associated with polyps, and used
for polyp related tasks - tracking, re-identification [3, 19], optical biopsy [20],
etc.

By measuring the duration of good quality video segments over the with-
drawal phase of the procedure, we derive a new offline colonoscopy quality metric.
We show that this measure is strongly correlated to the Polyps Per Colonoscopy
(PPC) quality metric. Moreover, we show how the real-time measurement of
the quality of a colonoscopy procedure can be used to evaluate the likelihood of
detecting a polyp at any specific point in time during the procedure.

2 Method

Our goal is to learn a colonoscopy quality metric through the identification of
temporal intervals in which effective polyp detection is possible. We start by
learning the colonoscopy video frame embedding using self-supervised learning,
followed by a cluster analysis. Using those clusters, we learn a "good" frame
classifier, which then serves as the basis for both global (offline) and local (online)
quality metrics. The end-to-end framework is described in the following sections,
and illustrated in Fig. 1.

2.1 Frame Encoding

We start from learning visual representations of colonoscopy frames using con-
trastive learning. We use SimCLR [4], which maximizes the agreement between
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Fig. 1: Method overview. (Left) Two augmented views for each frame are used
to train the encoder and the projection head using contrastive learning. (Right
top) Feature representations are directly clustered into semantically meaningful
groups using K-means. (Right middle) Learning clusters’ associations. (Right
bottom) At inference time, cluster attributes are leveraged for quality metric
evaluation.

representations of two randomly augmented versions of the same frame, while
pushing away the representations of other frames (see Fig. 1). Specifically, frame
xi is randomly augmented, resulting in two correlated views, x1i and x2i , consid-
ered as a positive pair. These views are fed to an encoder fθ(·) and projection
layer gφ(·), yielding the embedding vector zai = gφ(fθ(x

a
i )) (a = 1, 2). Given a

batch of N frames, the contrastive loss referring to the i-th frame is given by

`(z1i , z
2
i ) = −log

exp(sim(z1i , z
2
i )/τ)∑

k 6=i
∑2
a=1

∑2
b=1 exp(sim(zai , z

b
k)/τ)

, (1)

where τ is a temperature parameter, and sim is the cosine similarity defined as
sim(u, v) = uT v/‖u‖‖v‖. We use ResNet-RS50 [2] for the encoder and a simple
MLP with one hidden layer for the projection layer, as suggested in [4].

Our training data consists of 1M frames randomly sampled from 2500 colonoscopy
videos. Since the designed metric is supposed to be used for predicting the chance
of detecting a polyp, it is not expected to be used on frames where the polyp is
detected or treated. Therefore, we exclude such frames from the training set, by
detecting them automatically using off-the-shelf polyp and surgical tool detec-
tors [9, 10, 11].

For augmentation we use standard geometric transformations (resize, rota-
tion, translation), color jitter, and the Cutout [5] with the Gaussian noise filling.
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Fig. 2: T-SNE plot of frame embeddings. K-means clusters are color coded.

2.2 Frame Clustering

The second step in our scheme is clustering the learned representations1 fθ(xi)
intoK(=10) clusters using k-means [12]. While the standard k-means does a hard
assignment of each frame to its corresponding cluster, we use a soft alternative
based on the distance between the frame descriptor to cluster centers. Namely,
we define the probability of the i-th frame to belong to the k-th cluster by

ri,k = Prob(fθ(xi) ∈ k) ∼
[

1

‖fθ(xi)− ck‖22

]α
for k = 1, 2, . . . ,K, (2)

where {ck}Kk=1 are the cluster centers, α = 16, and {ri,k}Kk=1 are normalized
to sum to 1. Figure 2 shows the t-SNE projection of frame embeddings with k-
means clusters color coded. Interestingly, the samples are clustered into relatively
compact, meaningful groups. Figure 3 presents a random selection of frames from
each cluster. One can see that clusters 1, 2 and 7 contains inside-body informative
frames. In contrast, clusters 0, 3, 4, 5, 6, 8 and 9 contain non-informative outside-
body and inside-body frames. Please see the SM for more visual examples.

2.3 Online (Local) Quality Metric

Based on the learned frame embeddings and clusters, we now design an online
(local) quality metric. As our objective is to link the visual appearance to polyp
detection, we will learn a metric that tries to predict one from the other. Namely,

1 Note that the projection head gφ(·) is omitted from here on.



Semi-supervised Quality Evaluation of Colonoscopy Procedures 5

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Fig. 3: Clusters visualization. Random selection of frames from each cluster.

we learn a function Q(·) that maps frame xi appearance encoded by the vector
{ri,k}Kk=1 (see Eq. 2) to the chance of detecting a polyp in the following frames.

More precisely, we average the {ri,k}Kk=1 over a video segment of 10 sec to
get {ri,k}Kk=1, and train a binary classifier Q({ri,k}Kk=1) to predict the detection
of a polyp in the following 2 sec.

The training set for the classifier is built from a set of 2243 colonoscopy
videos annotated for the location of polyps. 1086 intervals of 10 seconds before
the appearance of polyps are sampled from the training set as positive samples,
and another 1086 random intervals sampled as negative samples. The Q(·) is
implemented as a binary classifier with a single linear layer and trained with
Adam optimizer [8] for 500 epochs, using a batch size of 64.

While the Q(·) achieves only a mediocre classification (i.e. polyp detection
prediction) accuracy of 64% on the test-set (indeed, it is very difficult to predict
a detection of a polyp when it is not known that the polyp is there), we will
show in the following sections that it can still be used as a quality metric.

2.4 From Quality Metric to the Chance to Detect a Polyp

We would like to assess the chance of detecting a polyp (if it exists) at a certain
time point t as a function of the procedure quality Q in the preceding time
interval [t − ∆t, t]. Let us denote the event of having a polyp in the colon at
time t as E (“exists”), and the event of detecting it as D (“detected”). For this
analysis we will treat the quality metric Q from the previous section, as a random
variable in the range [0, 1] measuring the quality of the procedure in the time
interval [t−∆t, t].

We are interested to estimate the following probability:

P (D|E,Q) =
P (E,Q|D)P (D)

P (E,Q)
=
P (Q|D)P (E|Q,D)P (D)

P (E,Q)
, (3)
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representing the chance of detecting a polyp if it exists as a function of quality. In
the above, the first equality uses the Bayes rule, and the second exploits the chain
probability relationship. We know that physicians rarely mistake a non-polyp
for a polyp, implying that P (E|Q,D) ≈ 1. Then, assuming the independence
between the existence of the polyp (E) and the quality of the procedure (Q),
Eq. 3 becomes

P (D|E,Q) ≈ P (Q|D)P (D)

P (Q)P (E)
(4)

As mentioned above, the incidence of polyp detection false alarms in colonoscopy
is negligible, hence the ratio P (D)/P (E) can be interpreted as the average polyp
detection rate/sensitivity (PDS). From the literature, we know that polyp miss-
rate in colonoscopy is about 20 − 25% [1]. Hence, P (D)/P (E) can be approxi-
mated as 0.75− 0.8, regardless of Q.

Therefore, to compute P (D|E,Q), all we need to do is approximate P (Q)
and P (Q|D). This can be done empirically by estimating the distribution of Q
in random intervals and in intervals preceding polyps for P (Q|D).

2.5 Offline Quality Metric (Post-Procedure)

We would like to design an offline quality indicator based on the above online
measure Q. We define the following quality metric by integrating Q over the
entire withdrawal phase,

QOffline =
∑

i∈withdrawal

Q
(
{ri,k}Kk=1

)
. (5)

3 Experiments

3.1 Online Quality Metric Evaluation

We would like to evaluate how relevant the proposed online quality metric Q
is to the ability of detecting polyps. We do that by estimating the likelihood
of detecting an existing polyp P (D|E,Q) as a function of Q. The higher the
correlation between Q and P (D|E,Q), the better Q is as a local colonoscopy
quality metric.

As discussed above P (D|E,Q) ∝ P (Q|D)/P (Q). Both P (Q|D) and P (Q) can
be estimated empirically: For P (Q) we build a 10-bin histogram of Q measured
in 543 randomly chosen colonoscopy video segments 10sec long. The same is
done for P (Q|D), but with 543 video segments preceding a polyp.

The estimated P (D|E,Q) is depicted in Figure 4. As one can see, the pro-
posed quality metric Q correlates very well with the polyp detection sensitivity
(PDS). Q can be computed online and provided as a real time feedback to the
physician during the procedure.
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Fig. 4: The likelihood of detecting an existing polyp in a short video segment as
a function of local quality metric Q.

3.2 Offline Quality Metric Evaluation

We would like to evaluate the effectiveness of the proposed offline quality metric
QOffline in predicting the polyp detection sensitivity.

To do so, we compute QOffline for 500 annotated test set colonoscopies. We
sort the cases in the increasing order of QOffline, and split them into 5 bins - 100
cases each, from lower QOffline to higher. For each bin we compute the average
Polyps Per Colonoscopy (PPC) metric. The resulting historgram is shown in
Fig. 5(Left). One can observe a strong correlation between the QOffline and the
PPC metric.

Fig. 5(Right) shows the distribution of procedures with (red) and without
detected polyps (blue), as the function ofQOffline. One can see that higherQOffline
are more likely to correspond to procedures with detected polyps.

The evaluations above suggest that the proposed quality metric QOffline is
highly correlated to polyp detection sensitivity (PPS). It is important to note
that high QOffline for any specific procedure does not mean that there is a high
chance of finding a polyp in that procedure, as we don’t know if there are any
polyps there and how many. What it does mean, is that if there is a polyp, there
is a high chance it will be detected.

4 Conclusion

We proposed novel online and offline colonoscopy quality metrics, computed
based on the visual appearance of frames in colonoscopy video. The quality
criteria for the visual appearance were automatically learned by an ML model
in an unsupervised way.

Using a Bayesian approach, we developed a technique for estimating the like-
lihood of detecting an existing polyp as a function of the proposed local quality
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Fig. 5: QOffline during the withdrawal phase. (Left) The relationship be-
tween the proposed offline quality measure and the actual number of polyps
detected, when QOffline observations are divided into five equal-sized groups.
(Right) Procedures with high QOffline values are likely to have polyps.

metric. We used this likelihood estimation to demonstrate the correlation be-
tween the local quality metric and the polyp detection sensitivity. The proposed
local metric can be computed online to provide a real time quality feedback to
the performing physician.

Integrating the local metric over the withdrawal phase yields a global, of-
fline quality metric. We show that the offline metric is highly correlated to the
standard Polyps Per Colonoscopy (PPC) quality metric.

As the next step, we would like to estimate the impact of the proposed real
time quality feedback on the quality of the procedure, e.g. by measuring its
impact on the Adenoma Detection Rate (ADR) in a prospective study.
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