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Abstract

In real medical data, training samples typically show
long-tailed distributions with multiple labels. Class dis-
tribution of the medical data has a long-tailed shape, in
which the incidence of different diseases is quite varied, and
at the same time, it is not unusual for images taken from
symptomatic patients to be multi-label diseases. Therefore,
in this paper, we concurrently address these two issues by
putting forth a robust asymmetric loss on the polynomial
function. Since our loss tackles both long-tailed and multi-
label classification problems simultaneously, it leads to a
complex design of the loss function with a large number of
hyper-parameters. Although a model can be highly fine-
tuned due to a large number of hyper-parameters, it is diffi-
cult to optimize all hyper-parameters at the same time, and
there might be a risk of overfitting a model. Therefore, we
regularize the loss function using the Hill loss approach,
which is beneficial to be less sensitive against the numerous
hyper-parameters so that it reduces the risk of overfitting
the model. For this reason, the proposed loss is a generic
method that can be applied to most medical image classi-
fication tasks and does not make the training process more
time-consuming. We demonstrate that the proposed robust
asymmetric loss performs favorably against the long-tailed
with multi-label medical image classification in addition to
the various long-tailed single-label datasets. Notably, our
method achieves Top-5 results on the CXR-LT dataset of
the ICCV CVAMD 2023 competition. We opensource our
implementation of the robust asymmetric loss in the public
repository: https://github.com/kalelpark/RAL.

1. Introduction

Multi-label classification, which predicts more than one
label from a single image, has received lots of interest in re-
cent years. Especially in the field of medical image recogni-
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Figure 1: Label distribution of the CXR-LT Dataset[17].
Typical radiological images have a lengthy tail distribution
since there are few positive samples for certain classes. Fur-
ther single radiological image contains multiple classes in
most cases. These long-tailed and multi-label data is com-
mon but critical issues in real-world medical image recog-
nition task.

tion, several studies [1, 27, 43, 32] have been conducted to
tackle the problem of the coexistence of multiple symptoms
in a single radiology image. However, these multi-label
classification studies have overlooked another critical issue:
the long-tailed distribution of medical data. [7, 5, 43, 18]
That is the long-tailed distribution problem. In general,
multi-label data, the more classes there are used, the more
long-tailed the distribution. In this case, for classes with
fewer labels (tail labels), the performance of the model will
drop significantly, and the model will be biased to the data
of head labels with more training data. Therefore, it is chal-
lenging to generalize the learned model in practice. To solve
this imbalance data distribution, there have been studies that
re-sample[2, 30, 35] or re-weight[39, 19, 12] the data to
make the model learn more from the tail labels, but these
studies have not been addressed the long-tailed problem in
a multi-label classification environment.

Another issue is that many studies[38, 15, 37] exploit ad-
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Figure 2: Examples of estimated probabilities of the BCE, ASL, and our RAL from the CXR-LT[17] and ISIC2018[10]
datasets. Example result of our proposed methods, BCE and ASL[4] from CXR-LT Dataset[17] and ISIC2018 Dataset[10].
The color red denotes the positive labels. The model trained by BCE loss has a tendency to overfit the single label. On the
other hand, models trained by ours exhibit higher probabilities for multiple labels, implying that ours are more reliable for
the long-tailed multi-label classification task.

ditional resources to tackle the long-tailed distribution and
multi-label classification problems. Using larger models or
increasing computational complexity can help such prob-
lems, but there might be limitations in that their high bud-
get reduces the practical applicability. Therefore, in this
paper, we propose a robust asymmetric loss that does not
require additional resources to learn the multi-label long-
tailed medical data. The proposed loss is based on asym-
metric weighting, which ensures that the importance of the
negative sample’s loss is regarded differently from that of
positive samples so that even hard negative samples can be
robustly learned. Compared to the existing cross-entropy,
focal loss[23], asymmetric loss[4], and balanced loss[11],
the proposed robust asymmetric focal loss effectively learns
long-tailed multi-label data reliably while being less sen-
sitive to hyper-parameters. Specifically, we re-weight the
negative samples adopting the hill loss[42] so that ours per-
forms favorably against the hard negative samples while be-
ing robust to the settings on the variety of hyper-parameters.
To this end, we expand the asymmetric loss using a Taylor
series-based approach[20] to account for the negative loss.
The Taylor series ensures that negative samples below a cer-

tain threshold are not used for training so that the stable gra-
dient can be passed to the deep neural networks.

We evaluate the proposed method on CXR-LT, a long-
tailed multi-label classification medical dataset, and demon-
strate that ours improve the performance of the classifi-
cation task over existing methods. Notably, our method
achieved 0.351 mAP, which is within the Top-5 of the fi-
nal ranking in the ICCV CVAMD 2023 competition. Fur-
thermore, we evaluate that our robust asymmetric loss
works well on long-tailed distributions, even on single-
label medical datasets. For this evaluation, we utilize
the ISIC2018 and APTOS2019 datasets and show that
our method achieves considerably better performance com-
pared to the existing methods.

We present the contributions of this paper as follows.

• We propose robust asymmetric loss, which is effective
for long-tailed multi-label classification. The proposed
loss can be finely tuned but is not sensitive to hyper-
parameter settings.

• We improve the performance of long-tailed multi-label
classification without additional training data, model



Figure 3: Grad-CAM visualization [34] from the model trained by the proposed RAL.

parameters, and computational budget.

• We achieved Top-5 results in the CVAMD2023 com-
petition on the long-tailed multi-label CXR-LT dataset.
In addition, we confirm that the proposed method
works well on single-label medical image classifica-
tion as well as the multi-label dataset.

2. Related Work
Multi-Label classification has been extensively studied

to predict more than one class label[25, 16]. Recently, to
understand the correlation between multiple labels, several
studies have introduced network architectures that enable
the model to predict the inherent relation between features
and corresponding labels. Most of the studies have used
Graph Convolution Network(GCN)[9, 40, 8] that learn la-
bel’s feature relation in the graph structure. Subsequently,
semantic representation in images using attention mecha-
nism has been researched in many studies[22, 36]. On the
other hand, there have been training algorithms to tackle
the multi-label classification, such as investigation on the
weight re-weighting and class frequency[11, 29, 33]. More
recently, asymmetric loss[4, 20] has been introduced to op-
timize the imbalanced positive and negative losses.

Long-tailed distribution has been regarded as a practi-
cal problem for real-world machine learning applications.
Studies that address the problem of the long-tailed distribu-
tion can be divided into two categories. First, re-sampling
methods[41, 21, 14] have been introduced to under-sample
or over-sample the data according to its class distribution to
construct the balanced training set. Re-weighting strategy
assigns different weights to the samples to adjust the long-
tailed distribution[23, 11]. However, there is an ambiguity
in applying the re-sampling methods to multi-label datasets.
When a single image contains both head and tail class la-

bels, it is difficult to determine whether the sample should
be over- or under-sampled. For this reason, re-sampling
methods are hardly applicable to the multi-label classifica-
tion so we encounter the problem that most gradients are
computed from negative samples. To address this issue, the
second category, studies[13, 29, 33] for dealing with the
long-tailed class distribution exploiting the loss functions,
are being researched. The focal loss[23] is the landmark
method to tackle the long-tailed class distribution using the
loss function. Focal loss adds the modulating factors(i.e.
focusing and balance parameters) to the cross-entropy loss
so that it can mitigate the long-tailed distribution by con-
trolling such modulating factors. Then, to further tailor the
loss function, asymmetric loss[20, 31] was proposed, which
determines the focusing parameters of negative and posi-
tive loss separately. Recently, the loss function has been
expanded to polynomial functions[20] to use only several
principle terms in computing the gradients. On the other
hand, the Hill loss[42] was proposed to prevent the gradient
from being too large in certain samples. The Hill loss per-
formed well for multi-label classification, but they did not
apply their method to complex formulas unfolded as poly-
nomial. Therefore, in this paper, we apply the Hill term
loss to the formula extended to polynomials to learn a long-
tailed multi-label classification model more accurately and
robustly.

3. Method

In this section, we introduce our robust asymmetric loss
function. We first describe the existing long-tailed and
multi-class losses as the background of our loss function.
Then, we introduce the robust asymmetric loss function by
adding the Hill loss term to the polynomial function.



Label
Positive

Label
Positive

#Sample(K) Portion(%) #Sample(K) Portion(%)

Atelectasis 67.6 10.6 Mass 5.5 0.9
Calcification 4.3 0.7 No Finding 41.8 6.6

Cardiomegaly 76.9 12.1 Nodule 7.6 1.2
Consolidation 16.0 2.5 Pleural Effusion 69.2 10.8

Edema 38.6 6.1 Pleural Other 0.6 0.1
Emphysema 4.3 0.7 Pleural Thickening 3.3 0.5

Cardiomediastinum 30.1 4.7 Pneumomediastinum 0.7 0.1
Fibrosis 1.1 0.2 Pneumonia 49.1 7.6
Fracture 11.9 1.9 Pneumoperitoneum 0.5 0.1
Hernia 4.0 0.6 Pneumothorax 14.9 2.4

Infiltration 10.2 1.6 Emphysema 2.4 0.4
Lung Lesion 2.5 0.4 Support Devices 89.1 14
Lung Opacity 79.9 12.6 Tortuous Aorta 3.4 0.6

Table 1: Specification of the CXR-LT dataset. It shows that the samples are heavily distributed in a few classes while several
classes have very few samples.

3.1. Long-tailed and Multi-label Classification Loss

Traditionally, multi-label classification tasks use the Bi-
nary Cross-Entropy (BCE) Loss as:

LBCE = −
K∑
i=1

(
yiL

+
i + (1− yi)L

−
i

)
(1)

{
L+ = log(ŷ)
L− = log(1− ŷ)

, (2)

where L+
i and L−

i are positive and negative sample losses
and y and ŷ denote the ground-truth and estimated proba-
bility for the class labels.

However, since this BCE function computes the same
weights for all class samples in training data with the long-
tailed distribution, it excessively focuses on learning the
head classes with a large number of training samples. This
problem is addressed by the focal loss[23] LFocal with bal-
ancing the positive and negative losses as:{

L+
Focal = α+(1− ŷ)γ log(ŷ)

L−
Focal = α−ŷ

γ log(1− ŷ)
, (3)

where α+ and α− represent the balancing parameter and
γ denotes the focusing parameter that is the key hyper-
parameters of the focal loss function. Controlling the hyper-
parameters, the focal loss can balance the head- and tail-
class samples. However, this focal loss has a weakness in
that positive and negative losses share the same focusing pa-
rameter γ. Therefore asymmetric weighting approach[31]

for the loss function alleviates this problem by assigning
different focusing parameters as:{

L+
ASL = (1− ŷ)γ+ log(ŷ)

L−
ASL = ŷγ−τ log(1− ŷτ )

(4)

ŷτ = max(ŷ − τ, 0),

where γ+ and γ− are the positive and negative focusing
parameters and yτ denotes the rectified probability thresh-
olded by τ . This ASymmetric Loss (ASL) is efficient for
optimizing the training of positive and negative samples
separately and able to mitigate the gradient vanishing prob-
lem due to too small a value of ŷ in the negative loss.

3.2. Robust Asymmetric Loss

Asymmetric loss can be expanded to the polynomial
equation using the Taylor series[24] based method[20]. In
a polynomial equation, using several principle low-order
terms can improve the performance of multi-label classi-
fication tasks. This is because the higher-order terms in the
polynomial form can be regarded as noise or redundant, so
using only a few low-order terms is effective. Therefore,
the asymmetric polynomial loss is formulated as follows:{

L+
APL = y

∑M
m=1 αm(1− ŷ)m+γ+

L−
APL = (1− y)

∑N
n=1 βnŷ

n+γ−

τ

, (5)

where M and N are parameters that determine the num-
ber of low-order terms to be used in the positive and neg-
ative losses, and αm and βn stand for the balance param-
eter of each term in the positive and negative losses. This



Asymmetric Polynomial Loss (APL)[20] has the advantage
of controlling the positive and negative losses on a term-
by-term basis, but it also has the significant drawback of
requiring a large number of hyper-parameters to be con-
figured by the user. Optimizing such a large number of
hyper-parameters can be a time-consuming process and of-
ten leads to overfitting the models.

To be less sensitive to optimizing the numerous hyper-
parameters, we introduce robust asymmetric loss. It is no-
ticeable that, especially in multi-label data, the number of
negative samples is much larger than that of positives, so
making the negative loss less sensitive is the most deci-
sive factor in the long-tailed multi-label classification task.
Therefore, we adopt the Hill loss[42] so that we prevent an
excessively large gradient of the negative loss in the learn-
ing process. Adding the Hill loss term to APL, we define
our Robust Asymmetric Loss (RAL) as:{

L+
RAL = y

∑M
m=1 αm(1− ŷ)m+γ+

L−
RAL = ψ(ŷ) · (1− y)

∑N
n=1 βnŷ

n+γ−

τ

(6)

ψ(ŷ) = λ− ŷ,

where ψ denotes the Hill loss term and λ is set to 1.5
value. Our RAL is robust to the change of numerous hyper-
parameters due to the less sensitive negative loss in the
training process. In the negative loss, when ŷ is close to 0,
that is, the estimated probability of the training data is close
to the correct negative answer, the gradient value is already
small. Therefore, in this case, the hyper-parameter is not
sensitive. On the other hand, when the estimated probabil-
ity is around 0, which is a hard negative sample, the gradient
value is too large, making the network training sensitive to
the hyper-parameter settings. Our RAL loss regularizes the
gradient of these hard negative samples to make them less
sensitive to hyper-parameters. As we expand the asymmet-
ric loss to polynomial form, there is an unavoidable problem
of setting too many hyper-parameter, so we propose RAL
with Hill loss term to alleviate such a problem.

Dataset classes Samples Imbalance Ratio

CXR-LT 26 377,110 142
APTOS2019 7 10,015 58

ISIC2018 5 3,662 10

Table 2: The details of long-tailed medical datasets.

4. Experiments Setup
4.1. Dataset and Metrics

CXR-LT. The 377,110 CXRs in the ICCV CVAMD 2023
Dataset(CXR-LT) dataset, which is included in the compe-
tition, have at least one label in 26 clinical findings. The

Method Image size mAP mAUC mF1

CE
224 0.301 0.808 0.218

384 0.314 0.813 0.227

Focal loss[23]
224 0.304 0.807 0.231

384 0.295 0.803 0.224

ASL[4]
224 0.307 0.808 0.225

384 0.317 0.811 0.237

RAL (Ours)
224 0.314 0.815 0.225

384 0.323 0.817 0.233

Table 3: Experimental comparison on the loss functions
with ours.

class labels consist of the "No Finding" class and 12 new
disease labels introduced from mimic-cxr-jpg, which cover
chest X-rays(CXR). The detailed specification of the CXR-
LT dataset can be found in Table 1. We randomly divide the
image sets into a test and training set with a ratio of 8:2 for
the CXR-LT dataset.
ISIC2018 and APTOS2019. The ISISC2018 dataset
has 10, 015 skin images with 7 lesion classes, and the
APTOS dataset includes 3, 662 diabetic retinopathy im-
ages with 5 disease classes. For these APTOS2019 and
ISIC2018 datasets, we follow the same protocol of the pre-
vious study[28].
Metric. To evaluate our methods for the CXR-LT
dataset, we use three metrics such as mean Average Preci-
sion(mAP), mean Area Under Curve(mAUC), and F1-Score
considering the multi-label dataset. For APTOS2019 and
ISIC2018, which is the single-label dataset, we use two
metrics as Accuracy and F1-Score. The details of these
three datasets are specified in Table 2. The imbalance ratio
for measuring the significance of the long-tailed distribution
is denoted as Nmax/Nmin, where N is the number of each
class sample in each class.

4.2. Implementation details.

We use the ConvNeXT-B[26] as the backbone for the
proposed loss. We resize the input images as 384 × 384
and exploit the data augmentation schemes following the
previous[3, 9]. We train our networks using the Adam op-
timizer with 0.9 momentum and 0.001 weight decay. The
batch size is 256, and the initial learning rate is set to 1e−4.
Our networks are trained on PyTorch version 1.11.0 with
RTX A5000 GPUs.



Label BCE APL RAL (Ours) Label BCE APL RAL (Ours)

Atelectasis 0.578 0.599 0.610 Mass 0.159 0.200 0.222
Calcification 0.120 0.137 0.151 No Finding 0.445 0.477 0.479

Cardiomegaly 0.626 0.633 0.648 Nodule 0.148 0.205 0.234
Consolidation 0.203 0.209 0.224 Pleural Effusion 0.801 0.813 0.821

Edema 0.527 0.552 0.562 Pleural Other 0.015 0.048 0.059
Emphysema 0.258 0.313 0.334 Pleural Thickening 0.065 0.094 0.111

Cardiomediastinum 0.155 0.166 0.173 Pneumomediastinum 0.103 0.138 0.203
Fibrosis 0.099 0.121 0.131 Pneumonia 0.289 0.306 0.167
Fracture 0.175 0.223 0.270 Pneumoperitoneum 0.134 0.143 0.524
Hernia 0.483 0.509 0.560 Pneumothorax 0.394 0.478 0.483

Infiltration 0.058 0.061 0.075 Emphysema 0.391 0.459 0.544
Lung Lesion 0.054 0.059 0.079 Support Devices 0.892 0.906 0.913
Lung Opacity 0.579 0.601 0.613 Tortuous Aorta 0.055 0.052 0.056

Table 4: Experimental results of the development phase of the CVAMD 2023 competition. Our RAL works well on most
cases compared to the other loss functions.

5. Experimental results
In this section, we show the experimental results to val-

idate the effectiveness of RAL. We first compare the pro-
posed RAL with previous state-of-the-art loss functions
such as focal loss, LDAM, and ASL. We then dissect the
proposed loss function into its component level to demon-
strate its robustness. In this experiment, RAL performs well
consistently for variations of numerous hyper-parameters.
We also show that the proposed RAL works favorably on
both multi- and single-label long-tailed medical image clas-
sification tasks. Further, we validate that ours is robust to
several noisy conditions.

method ISIC2018 APTOS2019
Accuracy F1-score Accuracy F1-score

CE 0.850 0.716 0.812 0.608
Focal loss[23] 0.861 0.735 0.815 0.629

LDAM[6] 0.849 0.728 0.813 0.620
ASL† [4] 0.854 0.734 0.820 0.660

RAL (Ours) 0.852 0.740 0.826 0.673

Table 5: Experimental results of the ICIS2018 and AP-
TOS2019 datasets. † denotes the result from our implemen-
tation with the official code: https://github.com/Alibaba-
MIIL/ASL.

5.1. Comparison on Loss Functions

In this subsection, we compare our RAL with other
loss functions on three datasets such as ISIC2018, AP-
TOS2019, and CXR-LT. In this part, we compare the pro-

posed RAl with other methods on three datasets: ISIC2018,
APTOS2019, and CXR-LT. Table3 and 4 show the re-
sult submitted to the CVAMD 2023 competition site us-
ing our RAL at the development phase. In this result, our
RAL achieves competitive performance compared to others.
Ours performs well on most classes consistently in Table
4. Further, our proposed RAL works well on single-label
long-tailed datasets, such as ISIC2018 and APTOS2019.
It outperforms the other methods in such datasets in Table
??. These findings of the experimental results highlight the
competitiveness of our RAL in diverse long-tailed medical
image classification datasets.

5.2. Ablation Study

For a more in-depth analysis of the proposed method,
we broke RAL into three components in our ablation study.
The three components are focal, asymmetric, and Hill
loss where we apply the polynomial expansion to the Hill
loss. All results of this ablation study are taken using the
ConvNeXt-B model with 384 × 384 image size in Table 6.
Through this ablation study, we demonstrate that each com-
ponent of our RAL is effective for the long-tailed multi-
label classification task.

5.3. Robustness Analysis

We carry out further experiments to investigate the ro-
bustness of RAL. In our experiment, we introduce Gaus-
sian Blur, Salt-Pepper, and Speckle noise to the original im-
ages of the CXR-LT dataset, as shown in Fig.5. To validate
that our method performs well even with noisy conditions,

https://github.com/Alibaba-MIIL/ASL
https://github.com/Alibaba-MIIL/ASL
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Figure 4: Experimental result on the evaluation of polynomial coefficient. The Y-axis F1 Diff shows the difference from the
best F1 score for each method (i.e. APL and our RAL). Therefore, a value less than 0 indicates a larger difference from the
best result and is sensitive to the polynomial coefficient hyper-parameter. In this result, RAL is less sensitive against the APL
considerably.

Focal Loss Asymmetric Hill mAP mAUC
✓ ✗ ✗ 0.295 0.803
✓ ✓ ✗ 0.307 0.815
✓ ✓ ✓ 0.323 0.817

Table 6: Experimental result of the ablation study of the
proposed RAL.

Original Image Gaussian Blur Salt-PepperSpeckle

Figure 5: Examples of noisy images such as Guassian Blur,
Speckle, and Salt-Papper.

we compare our method’s mAUC to that of Binary Cross-
Entropy(BCE) Loss and ASymmetric Loss(ASL). Under
the noisy condition, our method outperforms the others by
about 1 3% as shown in Table 8. Therefore, our RAL has
been empirically demonstrated to be more robust than exist-
ing methods when images are impacted by noisy conditions.

5.4. Performance Analysis on Hyper-parameters

We conduct more experiments for the performance anal-
ysis on hyper-parameter settings used in RAL. We compare
ours with Asymmetric Polynomial Loss (APL)[20] in this
experiment. We employ the same hyper-parameters for ours
and APL.

First, we adjust the polynomial coefficient value of αm

in Eq.6 for our RAL and APL. Figure 4 shows that, across
all three datasets, our RAL is generally less sensitive to
changes in the polynomial coefficient than APL, leading to

less variance in the performance.

(a) Effect of parameter β.

λ F1 score mAUC

1.0 0.199 0.695
1.5 0.249 0.785
2.0 0.246 0.783
3.0 0.243 0.783
3.5 0.239 0.782
4.0 0.238 0.783
4.5 0.232 0.782

(b) Effect of parameter λ.

Figure 6: Experimental result of ours according to the
hyper-parameters β and λ. In (a), we conduct an evaluation
to compare our RAL with APL with regard to β in Eq.6, the
weight that regularizes the negative loss. In (b), we evaluate
F1 and AUC scores in relation to λ in Eq.6, which is utilized
to avoid significant gradients in the negative loss.

Furthermore, we evaluate the balance parameter β,
which governs the negative loss. Fig.6(a) shows that for all
the β values, our RAL outperforms APL in terms of AUC
score, highlighting the resilience to the hyper-parameter
settings of our RAL. In addition, we experimented with
the balance parameter β, which controls the negative loss.
Fig.6(b) shows the F1 and AUC score for different λ val-
ues; it can be found that the best performance is obtained at
λ = 1.5 consistent with the previous study[42].

6. Result on CVAMD2023 Competition
Our method results in the Top-5 of the ICCV CVAMD

2023 competition’s final rankings. To get this result, we
scale the input image to 1024×1024 and use ConvNeXT-B



Image size 1024 1512 2048 Image size 1024 1512 2048

Label # 1 # 2 # 3 Label # 1 # 2 # 3

Atelectasis 0.607 0.576 0.574 Mass 0.206 0.127 0.128

Calcification 0.142 0.111 0.115 No Finding 0.478 0.452 0.452

Cardiomegaly 0.648 0.610 0.610 Nodule 0.200 0.184 0.182

Consolidation 0.218 0.182 0.182 Pleural Effusion 0.831 0.814 0.815

Edema 0.555 0.518 0.517 Pleural Other 0.039 0.032 0.033

Emphysema 0.193 0.174 0.176 Pleural Thickening 0.109 0.082 0.083

Cardiomediastinum 0.184 0.164 0.164 Pneumomediastinum 0.338 0.305 0.313

Fibrosis 0.153 0.119 0.122 Pneumonia 0.309 0.284 0.286

Fracture 0.289 0.234 0.237 Pneumoperitoneum 0.282 0.239 0.230

Hernia 0.550 0.397 0.402 Pneumothorax 0.552 0.507 0.507

Infiltration 0.060 0.056 0.055 Emphysema 0.560 0.545 0.544

Lung Lesion 0.038 0.028 0.029 Support Devices 0.913 0.896 0.896

Lung Opacity 0.596 0.556 0.556 Tortuous Aorta 0.060 0.049 0.049

Table 7: Experimental result of test phase of the CVAMD 2023 competition. It shows that image size of 1024×1024 achieves
the best result. We assume that this result is because the resolution we used for training is 1024 × 1024, which is not very
large.

Methods Img Blur Speckle SaltPepper

BCE 0.789 0.718 0.502 0.501
ASL 0.791 0.734 0.512 0.513

RAL (Ours) 0.796 0.547 0.534 0.745

Table 8: Experimental result on the noisy conditions. Our
RAL shows better performance compared to the others con-
sistently.

Submit mAP mAUC mF1

# 1 0.351 0.837 0.256
# 2 0.317 0.814 0.061
# 3 0.318 0.814 0.143

Table 9: Experimental result of three submissions of test
phase of the CVAMD 2023 competition.

models from [26]. We increase the input image size in the
test phase using the checkpoint file saved during the devel-
opment phase. We configure hyper-parameters in the same
values as Sec.4.2. In the final score of the competition, ours
recorded 0.351 mAP, 0.837 mAUC, and 0.256 mF1 scores,
which are included in the Top-5 ranking. With the efficient
loss function design, we show improved performance on the

multi-label long-tailed classification of the CVAMD 2023
challenge, which does not use additional model parameters
or inference complexity. Table 9 shows the test phase re-
sults of our three submissions.

7. Conclusion

In this paper, we introduce the Robust Asymmetric Loss
(RAL) for long-tailed multi-label classification tasks on
medical images. Our proposed RAL trains the model
more robustly against the various hyper-parameters with-
out additional resources. RAL shows competitive results
on the long-tailed single- and multi-label datasets compared
to previous state-of-the-art loss functions. We especially
achieve a Top-5 ranking in the CVAMD 2023 competition
using our method. We think that future research can benefit
from our findings and incorporate ours into their work.
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