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Abstract

Image recognition has recently witnessed a paradigm
shift, where vision-language models are now used to per-
form few-shot classification based on textual prompts.
Among these, the CLIP model has shown remarkable capa-
bilities for zero-shot transfer by matching an image and a
custom textual prompt in its latent space. This has paved the
way for several works that focus on engineering or learning
textual contexts for maximizing CLIP’s classification ca-
pabilities. In this paper, we follow this trend by learning
an ensemble of prompts for image classification. We show
that learning diverse and possibly shorter contexts improves
considerably and consistently the results rather than relying
on a single trainable prompt. In particular, we report better
few-shot capabilities with no additional cost at inference
time. We demonstrate the capabilities of our approach on
11 different benchmarks.

1. Introduction

Thanks to their large-scale pre-training, foundational
vision-language models proved to be very effective at gen-
eralizing to downstream tasks. In particular, CLIP (Con-
trastive Language-Image Pre-training) [15] has achieved
surprising performance in several different fields, such as
image generation [7], image retrieval [2, 1] and image qual-
ity assessment [18]. Specifically, CLIP can be employed for
zero-shot classification by predicting the output class based
on the similarity between the image features and the textual
features of words belonging to a given vocabulary.
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Figure 1: Overview of our approach. While CoOp uses
a single prompt with M context tokens, ECO trains D
prompts with N context tokens each, such that M=D ∗N .
Given the same number of trainable parameters, ensembling
multiple prompts with a reduced number of context tokens
performs better than using a single prompt with a larger
number of context tokens.

However, the textual input – referred to as prompt –
greatly influences the performance in downstream tasks.
For example, [21] reports a 5% increase in accuracy by
adding an “a” before the class token in the prompt “a photo
of [CLASS]” for few-shot classification with the Caltech101
[6] dataset. Given the significant difference in performance
caused by slight changes in wording, crafting prompts by
hand to find the best-performing one is a non-trivial task.
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Therefore, prompt ensembling is often employed to improve
the robustness and achieve better results [15]. Prompt en-
sembling consists of computing the textual features of sev-
eral different prompts, such as “a photo of a [CLASS]”, “an
illustration of a [CLASS]” etc., and then using the average
of them for the downstream task.

Recently, several works have proposed to employ prompt
learning to substitute hand-crafted prompts with learned
context word vectors. CoOp [21] was the first work to pro-
pose to use prompt learning for vision-language models,
improving over hand-crafted prompts. CoCoOp [20] trains
a neural network to generate an input-conditional token for
each image. MaPLe [10] proposes to learn a multi-modal
prompt instead of a textual-only one. However, all existing
methods only learn a single prompt, thus not exploiting the
potential of prompt ensembling.

For this reason, we present ECO (Ensembling Context
Optimization), a method for merging prompt learning and
prompt ensembling. The main idea of our approach is con-
ceptually quite straightforward: learning multiple prompts
with a reduced number of context tokens instead of a single
one with a larger number of context tokens, and then com-
bining them with prompt ensembling. Figure 1 shows an
overview of the proposed method and a comparison with
CoOp [21]. Note that ECO is orthogonal to the prompt
learning technique being used, as it focuses on how to take
full advantage of the information of the learned prompts
rather than how to obtain it. Despite its apparent simplicity,
our approach performs significantly better than the compet-
ing methods on 11 testing datasets. Moreover, it proves to
be a more data-efficient and effective few-shot learner, since
the largest gains in performance are observed for as few as 1
and 2 shots. Finally, ECO does not add any computational
overhead at inference time since the textual features used
for the classification can be precomputed.

We summarize the contributions of this work as follows:

• We propose ECO, an approach for prompt learning
that employs prompt ensembling to combine multiple
prompts with reduced learned context tokens;

• ECO can be combined with any prompt learning strat-
egy, making it a simple and versatile tool for improving
accuracy with no overhead at inference time;

• We obtain significant improvements over the compet-
ing methods on 11 testing datasets, showing the effec-
tiveness of our method.

2. Method
2.1. Preliminaries

The vision-language model CLIP [15] is designed to
align visual and textual data within a common embedding

space. It consists of two encoders: a visual encoder de-
noted as fθ and a text encoder represented as gϕ. These
encoders extract feature representations fθ(I) ∈ Rd and
gϕ(Ew(Y )) ∈ Rd from an input image I and its corre-
sponding text caption Y , respectively. Here, d indicates the
dimension of the CLIP embedding space, while Ew rep-
resents the word-embedding layer, which maps each tok-
enized word in Y to the token embedding space W . The
primary objective of training the CLIP model is to ensure a
high similarity between the feature representations of cor-
responding images and text, i.e. fθ(I) ≈ gϕ(Ew(Y ))).

In the zero-shot classification setup using CLIP, we start
with an image I and a set of text prompts {Yi}Ki=1, where
K represents the number of classes. Each text prompt Yi
is of the form “a photo of a [CLASSi]”, with CLASSi de-
noting a specific class name, such as “bird”, “dog”, “cat”,
etc. We then extract feature representations from the image
and the text prompts using the CLIP encoders. The image
feature representation is denoted as ψI = fθ(I), while the
text feature representation for each prompt is represented as
ψi
T = gϕ(Ew(Yi)). Finally, we can compute the prediction

probability for each class as follows:

p(y = i|I) = exp(cos(ψi
T , ψI)/τ)∑K

j=1 exp(cos(ψ
j
T , ψI)/τ)

, (1)

Here, τ is a temperature parameter that is learned during
the training of the CLIP model, and cos(·, ·) represents the
cosine similarity between the image and text features.

2.2. ECO

Our approach, named ECO, aims to enhance the
adaptability of frozen pre-trained CLIP models to down-
stream tasks by overcoming the inefficiency of hand-crafted
prompts. Previous methods, such as CoOp [21], Co-
CoOp [20], and MaPLe [10], learn a single set of context
tokens. On the contrary, drawing inspiration from prompt
ensembling techniques that have proven to boost perfor-
mance over using a single prompt [15], we learn multi-
ple sets of context tokens. In other words, while standard
prompt learning techniques learn only a single prompt, we
learn multiple prompts that we combine together to improve
performance.

We denote the multiple sets of context tokens (i.e. the
learnable prompts) as {vi1, . . . , viN}Di=1, where each con-
text vector vij belongs to the CLIP token embedding space
W . Here, N represents the number of context tokens per
prompt, whileD is the total number of prompts. For the k-th
class of a dataset, the inputs to the text encoder are defined
as {vi1, . . . , viN , ck}Di=1, where ck = Ew([CLASSk]).
Similarly to CoOp, we share the same set of context vec-
tors among all classes. We then extract the textual fea-
tures using the textual encoder, averaging across prompts



ψk
T = 1

D

∑D
i=1 gϕ({vi1, . . . , viN , ck}). Consequently, we

can compute the probability p(y = k|I) using Eq. (1).
The key innovation lies in our use of multiple prompts.

We learn distinct sets of context vectors from data in-
stead of relying on hand-crafted prompts like ”a photo of
a [CLASS]”. Intuitively, each prompt contributes to a di-
verse feature extraction process, and we effectively blend
the prompt-specific features by performing an element-wise
average. This prompt-wise average conceptually emulates
prompt ensembling, known to enhance CLIP’s zero-shot
classification performance [15]. However, unlike standard
prompt ensembling with hand-created prompts, our method
learns context vectors directly from the data. To summarize,
ECO seamlessly combines the concepts of prompt learning
and prompt ensembling, a novel combination not previously
explored in vision-language tasks.

During training, we employ cross-entropy as the loss
function, allowing the gradients to flow through the text en-
coder to update the weights of the context vectors. Impor-
tantly, the CLIP base model remains frozen throughout the
entire training process. To ensure a fair comparison with
CoOp, we keep the number of trainable parameters con-
stant. If CoOp uses M context vectors, we set N and D
such that M = N ∗ D. Note that our method coincides
with CoOP when D= 1 and N =M . Although in our ex-
periments we extend the CoOp method, what we propose
is a general framework that can be extended to all prompt
learning techniques that learn a single set of context to-
kens. In addition, ECO does not add any computational
overhead at inference time. Despite learning multiple con-
texts, after training these are fixed and their encodings are
averaged into a single latent vector ψk

T . Since ψk
T does not

depend on the input, it can be stored and used as a single
prompt, requiring no additional computation compared to
non-ensembling models like CoOp.

3. Experimental Results
Since ECO does not depend on a specific prompt learn-

ing technique, we choose to compare our approach to the
most basic one, i.e. CoOp [21]. In future work, we will ex-
tend the proposed method to other prompt learning works,
such as CoCoOp [20] and MaPLe [10].

3.1. Evaluation Protocol

We follow the few-shot evaluation protocol of [15, 21],
using 1, 2, 4, 8, and 16 shots for training and evaluating the
performance of each model in the full test sets. We report
the average results over three seeds.

Similarly to [21], we evaluate our approach on 11
image classification datasets: ImageNet [5], Caltech101
[6], OxfordPets [14], StanfordCars [11], Flowers102 [13],
Food101 [3], FGVCAircraft [12], SUN397 [19], DTD [4],
EuroSAT [9] and UCF101 [16].

Shots

Method 1 2 4 8 16

Zero-Shot CLIP‡ [15] 58.77 58.77 58.77 58.77 58.77
Linear Probe CLIP [15] 36.67 47.61 57.19 64.98 71.10
CoOp [21] 59.59 62.32 66.77 69.89 73.42

ECO (D=16, N=1) 62.42 63.97 66.10 69.72 72.82
ECO (D=8, N=2) 63.18 65.16 67.90 70.72 73.45
ECO (D=2, N=8) 61.76 64.51 67.26 70.95 73.71

CoOp† (D=1, N=16) 59.43 62.36 66.49 69.74 73.18
ECO (D=4, N=4) 62.90 65.24 68.26 71.33 74.03

+3.47 +2.88 +1.77 +1.59 +0.85

Table 1: Detailed comparison of the results on the average
of the 11 datasets. Best scores are highlighted in bold. ‡

uses always zero shots. † indicates results obtained with
our implementation. Note that CoOp† coincides with ECO
(D = 1, N = 16). Absolute gains over CoOp† [21] are
indicated in blue.

We consider the version of CoOp with the class token po-
sitioned at the end, ResNet 50 [8] as the backbone and with
the number of context tokens M =16. We inherit the train-
ing details from [21]. For a fair comparison, in the exper-
iments, we vary the number of prompts D and the number
of context tokens N for each of them so that the number of
trainable parameters stays the same (i.e. M=D ∗N ). Note
that, for D=1 and N=16, ECO coincides with CoOp.

3.2. Quantitative Results

Figure 2 shows the results of ECO for all the testing
datasets. For completeness, we also report the performance
of zero-shot CLIP, which is based on hand-crafted prompts.
ECO obtains significant improvements over the baselines
on all the datasets. The version of ECO with N = 4 and
D=4 achieves the best performance on average and proves
to be the best tradeoff between the number of prompts and
context tokens. In addition, ECO is less sensitive to noisy
labels than CoOp [21], as it achieves better performance
than zero-shot CLIP also on the Food101 dataset, which is
known to have noisy annotations [21].

In Table 1 we provide a comparison between the differ-
ent versions of ECO and the baselines by reporting the av-
erage accuracy on the 11 benchmarks, varying the number
of shots. For a fair comparison, for CoOp we report the re-
sults we obtained with the version of our model with D=1
and N = 16, since they coincide. We denote this in Ta-
ble 1 as CoOp†. However, we observed a difference of only
0.32% on average with the values of the original paper [21],
which can be attributed to different seeds and hardware. For
completeness, we also provide the results of the linear probe
model of CLIP, which is considered a strong few-shot learn-
ing baseline [17]. Our approach consistently outperforms
all the competing methods. In particular, we observe abso-
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Figure 2: Quantitative results on the 11 test datasets varying the number of shots, prompts D and context tokens N for each
of them. Note that CoOp [21] coincides with ECO when D=1 and N=16.

lute improvements up to 3.47 over CoOp. Moreover, the re-
sults show that ECO is a better few-shot learner and is more
data-efficient than CoOp since the largest gains in perfor-
mance are obtained for as few as 1 and 2 shots.

Overall, the experimental results demonstrate that, when
utilizing an equivalent number of trainable parameters, em-
ploying an ensemble of multiple prompts with a reduced
number of context tokens performs better than using a sin-



gle prompt with a larger number of context tokens.

4. Conclusion
In this paper, we have proposed a novel prompt learning

strategy that consists in optimizing an ensemble of multiple
contexts. Although simple, the method is effective, yield-
ing consistent improvements over 11 different benchmarks,
and versatile, being it applicable on top of potentially any
existing prompt learning technique with no additional over-
head at inference time. Interestingly, we found that balanc-
ing context length and number of prompts is beneficial for
effectively exploit CLIP for few-shot image classification.
This is particularly true for a reduced number of shots, such
as 1 or 2, for which we report the bigger gains.
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