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Abstract

Artificial Intelligence makes great advances today and
starts to bridge the gap between vision and language. How-
ever, we are still far from understanding, explaining and
controlling explicitly the visual content from a linguistic
perspective, because we still lack a common explainable
representation between the two domains. In this work we
come to address this limitation and propose the Graph of
Events in Space and Time (GEST), by which we can repre-
sent, create and explain, both visual and linguistic stories.
We provide a theoretical justification of our model and an
experimental validation, which proves that GEST can bring
a solid complementary value along powerful deep learn-
ing models. In particular, GEST can help improve at the
content-level the generation of videos from text, by being
easily incorporated into our novel video generation engine.
Additionally, by using efficient graph matching techniques,
the GEST graphs can also improve the comparisons be-
tween texts at the semantic level.

1. Introduction
There is a considerable amount of research at the inter-

section of vision and language, such as image and video
generation [22, 40, 15, 3, 33, 24, 29], captioning [11, 39, 30]
or visual question answering [2, 18, 38]. However, we still
lack an explainable model that can fully relate, constrain
and control the connection between vision and language at
the level of meaning and content. This limitation, which
affects not only text-to-image/video models, but also Large
Language Models [36], seriously impedes our way towards
trustworthy and safe AI. We mention that, even in this work,
we found state of the art text-to-video transformer models
generating almost adult-only content for a simple, plain text
such as: A woman goes to the bedroom.

In this context, we introduce GEST, the Graph of Events
in Space and Time, which provides an explicit spatio-
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Figure 1. Functional overview of the proposed framework. GEST
represents the central component, allowing for the preservation of
the semantic content in an explainable form, as well as a seamless
transition between different domains.

temporal representation of stories as they appear in both
videos and texts and can immediately relate, in an explain-
able way, the two domains. GEST provides a meaningful
representation space, in which similarities between videos
and texts can be computed at the level of semantic con-
tent. GEST can also be used in the context of our spe-
cially designed video generation engine (Sec. 3) to pro-
duce videos that are rated higher in terms of content, both
by human and automatic evaluations, than their video coun-
terparts generated by state of the art text-to-video models
(Sec. 4). Also, GEST graphs can be used for comparing
the meaning of texts and improve over classic text similar-
ity metrics or in combination with heavily trained state-of-
the-art deep learning metrics (Sec. 2.1). Graphs have been
used to represent content in videos [26, 25, 7, 34, 32, 9] or
texts [17, 35, 19, 10, 4], but not both as is the case for GEST.

Main novel aspects of GEST are: 1) Nodes are events,
which could represent (Sec. 2) physical objects, simple ac-
tions or even complex activities and stories. 2) Edges can
represent any type of relation (temporal, spatial, seman-
tic, as defined by any verb) between two events defined as
nodes. 3) Any GEST graph can always collapse into a node
event, at a higher level of abstraction. Also, any event node
can always be expanded into a GEST graph, from a lower
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level of abstraction. This is an essential property that allows
GEST to have multiple layers of depth (see Fig. 2).

Another practical contribution of our work, is our novel
video generation engine (Sec. 3), based on GEST, which
can produce long and complex videos that preserve well se-
mantic content, as validated by human and automatic eval-
uations. We will make the engine code and the videos gen-
erated for our experiments publicly available.

2. GEST Model
The basic elements of GEST are the nodes, which repre-

sent events and the edges, which represent the way in which
events interact.

GEST nodes: represent events that could go from sim-
ple actions (e.g. opening a door) to complex, high-level
events (e.g. a political revolution), in terms of spatio-
temporal extent, scale and semantics. They are usually con-
fined to a specific time period (e.g. a precise millisecond or
whole year) and space region (e.g. a certain room or entire
country). Events could exist at different levels of semantics,
ranging from simple physical contact (e.g. “I touch the door
handle”) to profoundly semantic ones (e.g. “the government
has fallen” or “John fell in love with physics”). Even phys-
ical objects are also events (e.g. John’s car is represented
by the event “John’s car exists”). Generally, any space-time
entity could be a GEST event.

GEST edges: relate two events and can define any kind
of interaction between them, from simple temporal ordering
(e.g. “the door opened” after “I touched the door handle”) to
highly semantic (e.g. “the revolution” caused “the fall of the
government”, or “Einstein’s discovery” inspired “John to
fall in love with physics”). Generally, any verb that relates
two events or entities could be a GEST edge.

From a graph to a node and vice-versa: A GEST
graph essentially represents a story in space and time, which
could be arbitrarily complex or simple. Even simple events
can be explained by a GEST, since all events can be broken,
at a sufficient level of detail, into simpler ones and their in-
teractions (e.g. “I open the door” becomes a complex GEST
if we describe in detail the movements of the hand and the
mechanical components involved). At the same time, any
GEST graph could be seen as a single event from a higher
semantic and spatio-temporal scale (e.g. “a political revolu-
tion” could be both a GEST graph and a single event). Col-
lapsing graphs into nodes (Event ⇐ GEST ) or expanding
nodes into graphs (GEST ⇐ Event) , gives GEST the
possibility to have many levels of depth, as needed for com-
plex visual and linguistic stories.

Going from a GEST at a lower level to an event E at
a higher level (E ⇐ GEST ) reminds of how the atten-
tion mechanism is applied in Graph Neural Networks and
Transformers [27]: the GEST graph acts as a function that
aggregates information from nodes (events) Ei’s at level k

Figure 2. GEST graph explaining the following text: “John was
having breakfast when a bee approached the flower in the pot on
the table. Then he pulled back trying to avoid contact with the bee
but he realized that it was not an easy attempt because she actually
came because of the tasty food on his plate”.

and builds a higher level GEST representation, which fur-
ther becomes an event at the next level k + 1:

E
(k+1)
i ⇐ GEST (Ek

1 , E
k
2 , ..., E

k
n)

In Fig. 2 we present our GEST representation, as it ap-
plies to a specific text. In each event node, Ei, we encode an
action, a list of entities that are involved in the action, its
location and timeframe and any additional properties.
Note that an event can contain references (pointers) to other
events, which define relations of type “same X” (e.g. “same
breakfast”). We also exemplify how the GEST of two con-
nected events can collapse into a single event.

2.1. GEST for Textual Content Comparison

Next we verify experimentally that the GEST model can
capture the semantics of language by applying it to the task
of text to text comparisons, in the context of video to text
translation. We use the Videos-to-Paragraphs dataset [6]
that has multiple text descriptions for the same video. Start-
ing from the given texts, we build ground truth GEST rep-
resentations for the entire dataset as follows: we use a rule-
based method to obtain initial GESTs from texts, repre-
sented in a specific string format that captures information
in the nodes as well as their relationships. Next we check,
correct and refine the automatically generated GESTs by
human annotation. Note that we also tested with GhatGPT,



Method Corr(%) Acc(%) F AUC(%)
BLEU@4 24.45 75.52 0.28 52.65
METEOR 58.48 84.23 1.12 73.90
ROUGE 51.11 83.40 0.72 68.92
SPICE 59.42 84.65 1.04 74.43
BERTScore 57.39 85.89 1.07 77.93
GEST-SM 61.70 84.65 1.20 75.47
GEST-NGM 60.93 86.31 0.98 76.75

Table 1. Comparing GEST representation power (coupled with
graph matching similarity functions SM or NGM) and well-known
text-to-text similarity methods (applied on texts from Videos-to-
Paragraphs test set, on the task of separating texts describing the
same video vs. texts from different videos). Corr - correlation, Acc
- Accuracy, F - Fisher score and AUC - area under the precision-
recall curve. Best values are in bold, second best underlined.

which was able to produce mostly valid GESTs by learning
from a few human examples.

We seek to find how useful is GEST in deciding if two
texts stem from the same video or not. Basically, instead
of comparing texts, we move the comparison in the GEST
space in which we define a similarity function using graph
matching. In We use as graph matching methods the classic
Spectral Matching (SM) [14] and the recent Neural Graph
Matching (NGM) [31]. For both algorithms, the affinity ma-
trix is build using node and edge level similarity functions
based on pre-trained GloVe [21] word embeddings. Two
nodes are as similar as are their components (e.g. action,
entities), while edge-level similarity uses the relation type
defined by the edge (e.g. causality, temporal ordering, etc.)
along with the similarity of the nodes they connect.

In Tab. 1 we present comparisons of GEST+graph
matching similarity vs. other well-known text similarity
metrics, which demonstrate that GEST is capable to cap-
ture semantic content. In Tab. 2 we investigate whether
graph matching in GEST space can be combined with
state-of-the-art highly trained text similarity metrics such
as BLEURT [23]. We combine each pair of similarity met-
rics (BLEURT + X) in linear way, to ensure that if a per-
formance gain exists, it is less likely to be due to the com-
bination method and more due to the additional metric. In
this setting GEST graphs are learned by finetuning a GPT-
3 model (text-curie-001), with raw text as input and ground
truth GEST as output, on the Videos-to-Paragraphs train set.
Note that the combination of BLEURT with graph matching
in the GEST space consistently increases the performance
over BLEURT (which is not always the case for other met-
rics) and by the largest margin.

3. GEST Video Generation Engine
To complete the connection between GEST and the vi-

sual world, we introduce the engine of visual stories. Based

Method Corr(%) Acc(%) F AUC(%)
BLEURT 70.93 90.04 2.03 88.02
+BLEU@4 70.93 90.04 2.03 88.04
+METEOR 71.20 89.63 2.07 87.62
+ROUGE 70.76 90.04 2.00 87.71
+SPICE 71.94 88.80 2.09 87.71
+BERTScore 71.11 89.63 2.01 87.25
+GEST-SM 72.89 90.87 2.21 89.80
+GEST-NGM 71.91 90.46 2.05 88.58

Table 2. Results comparing the power of BLEURT coupled with
well-known text similarity metrics and GEST, applied on stories
from Videos-to-Paragraphs test set. Text metrics are computed on
the ground truth stories, while GESTs are generated with a trans-
former learned on the training set. Same notations as in Tab. 1.

on the game GTA San Andreas with Multi Theft Auto
(MTA)1 interfacing the game’s mechanics, we use the pre-
existing in-game locations, objects and animations and fo-
cus on events taking place in and around a house. The en-
gine has full control within the virtual environment and can,
therefore, take full advantage of the structured and explain-
able nature of GEST. It is capable of choosing a setting in a
virtual environment, with locations, actions and entities that
match the events described within the GEST and orchestrate
the complex interactions during the simulation, thus emulat-
ing an entire world (Figure 3).

The system takes a GEST as input and, based on it, gen-
erates multiple valid videos - note the one-to-many relation.
This engine is used to automatically generate videos from
GEST. We couple this with the system that generates GEST
starting from a text, closing the loop and building a sys-
tem that transforms a text into a GEST, then a GEST into
a video. We generate a set of 25 complex videos of 2-3
minutes each, with up to 15 different activities, much larger
than what is used in the current literature. Even if the set is
small, it is very challenging so we use to validate the qual-
ity of the generated videos. Results of this evaluation are
presented in the following section.

Metric Ours CogVideo Text2VideoZero
Bleu@4[20] 9.84 8.16 10.02
Meteor[5] 14.16 13.48 13.96
ROUGE[16] 35.40 32.72 34.87
SPICE[1] 20.04 19.54 19.43
CIDEr[28] 34.12 33.16 33.65
BERTScore[37] 19.37 13.09 15.02
BLEURT[23] 39.44 37.55 38.40

Table 3. Results on video-to-text task. We show in bold the best
value for each metric.

1https://multitheftauto.com/, accessed on 25 July 2023

https://multitheftauto.com/


Figure 3. The system architecture of the engine. Upper part - meta
context validation. Lower part - simulation.

4. Vision-Language Experiments with GEST
Next we present both human and automatic evaluations

of our GEST-generated videos, compared to recent text-to-
video models [12, 13]. We invite human annotators to rate
videos in terms of semantic content w.r.t input text, on a
scale from 1 to 10 and pick the best video for each input
text. We collected a total of 111 annotations, from 6 in-
dependent annotators. In Fig 5 we show the overall scores
given by human evaluators for each method. In 87.39% of
cases our GEST-generated video was picked as best, with
only 11.71% for Text2VideoZero and 0.90% for CogVideo.

For the automatic evaluation of the generated videos,
we use a state-of-the-art video-to-text generation method,
VALOR [8], and measure how well the text generated back
from the generated videos match the initial input texts.
VALOR is trained and tested separately for each type of
video generation method using 5-fold cross validation, from
scratch, over 3 runs with results averaged (shown in Tab. 3).
These experiments match the human evaluation, keeping
the same ranking across methods and proving that GEST-
generated videos can better maintain the semantic content
of the original input text. This proves that an explicit and
fully explainable vision-language model in the form of a
graph of events in space and time, could also provide in
practice a better way to explain and control semantic con-
tent - thus bringing a complementary value in the context of
realistic (but not necessarily truthful) AI generation models.

The reason why current deep learning models are not
strong is that we generate long and complex videos. Their
main weakness resides in their inability to integrate long
and complex context, both in video and text generation.

5. Conclusions
We propose an explainable representation that connects

language and vision (see Fig 1), which explicitly captures
semantic content as a graph of events in space and time

Figure 4. Example of input text (A), generated GEST from text (B)
and automatically generated video from GEST (C).

Figure 5. Overall scores (1-10) given by human evaluators.

(GEST). We prove that GEST is capable of capturing mean-
ing from text and contribute to the design of powerful
text-to-text comparison metrics when combined with graph
matching. More importantly, GEST can be also used to gen-
erate videos from text that better preserve the semantic con-
tent (as evaluated by humans and automatic procedures),
than deep learning methods for which there is no explicit
way of explaining and controlling content. In future work
we plan to explore ways to better integrate the power of
deep learning into the explainable structure of GEST, for
further developing a robust and trustworthy bridge between
vision and language.
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