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Figure 1: Set-the-Scene allows generating composable and controllable scenes from text prompts and 3D object proxies.
(left) The scene is represented using a set of proxies, defining the location, coarse shape, and text prompt of each target
object. A set of NeRFs are then optimized with respect to the object proxies and an additional scene text prompt. (right) By
manipulating the proxies, the scene can be edited without additional fine-tuning.

Abstract

Recent breakthroughs in text-guided image generation
have led to remarkable progress in the field of 3D synthesis
from text. By optimizing neural radiance fields (NeRF) di-
rectly from text, recent methods are able to produce remark-
able results. Yet, these methods are limited in their control
of each object’s placement or appearance, as they represent
the scene as a whole. This can be a major issue in sce-
narios that require refining or manipulating objects in the
scene. To remedy this deficit, we propose a novel Global-
Local training framework for synthesizing a 3D scene using
object proxies. A proxy represents the object’s placement in
the generated scene and optionally defines its coarse geom-
etry. The key to our approach is to represent each object
as an independent NeRF. We alternate between optimizing
each NeRF on its own and as part of the full scene. Thus,
a complete representation of each object can be learned,
while also creating a harmonious scene with style and light-
ing match. We show that using proxies allows a wide variety
of editing options, such as adjusting the placement of each
independent object, removing objects from a scene, or re-
fining an object. Our results show that Set-the-Scene offers
a powerful solution for scene synthesis and manipulation,
filling a crucial gap in controllable text-to-3D synthesis.

1. Introduction

Creating high-quality 3D content has traditionally been
a time-consuming process, requiring specialized skills and
knowledge. However, recent advances in text-to-3D syn-
thesis [19, 13, 14, 26] are revolutionizing the generation of
3D scenes. These methods use pretrained text-to-image dif-
fusion models to optimize a Neural Radiance Field (NeRF)
and generate 3D objects that match a given text prompt.

In spite of these exciting advancements, current solutions
still lack the capability to create a specific envisioned scene.
That is because controlling the generation of text prompts
alone is extremely challenging, especially if one wants to
describe specific objects with defined dimensions and ge-
ometry, and locate them at specific positions. Moreover,
once generated, modifying specific aspects of the scene,
while leaving the others untouched, can prove to be chal-
lenging. Various aspects of a scene may need to be modified
after generation, such as the position or orientation of cer-
tain objects, or the texture or geometry of individual com-
ponents. One may also want to export a single object to be
used in another scene. However, current methods represent
the scene as a whole, and objects are interdependent in their
representation, making it impossible to edit a specific scene
component or use objects in other scenes.
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Input Local Only Global-Local

Figure 2: Importance of Global-Local training. (Input)
The proxy objects used to define the scene. (Local Only) A
scene where each object is optimized only for itself; notice
how objects look pasted and do not match in terms of color
scheme. (Global-Local) Our global-local training, which
also interleaves global training steps of the entire scene.

Given that the generation process of scenes using current
text-to-3D methods takes a considerable amount of time, the
need for interactive editing capabilities has become even
more apparent. One may potentially save time and gain
control over individual objects by generating them sepa-
rately and then just rendering them together at inference
time. However, such an approach has several limitations:
it cannot generate objects that interact with each other; it
cannot ensure consistency in style between objects; and it
cannot model the interaction among objects, like shadows
and other global shading effects, see Figure 2 (A).

In this paper, we introduce a novel framework for syn-
thesizing a controllable scene using text and object proxies,
using a Global-Local approach. The key idea is to represent
the scene as a composition of multiple object NeRFs, each
built around an object proxy. The models are jointly opti-
mized to “locally” represent the required object and “glob-
ally” to be part of the larger scene. Both the local and the
global optimization propagate gradients into the same mod-
els, creating a harmonious scene composed of disentangled
objects, see Figure 2 (B). For optimizing our objects and
scenes, we follow [19] and use the score distillation loss.
Our method leverages the composability of our represen-
tation and iteratively alternates between localized training
of individual objects and optimizing the scene as a whole,
where objects are dependent on their representation. When
optimizing a single NeRF, we simply render it on its own
from a random viewpoint and apply score distillation based
on a text prompt describing the object. For scene-level op-
timization, we shift the rays using a rigid transformation to
match the desired placement defined by each object proxy
and apply score distillation with a “scene text prompt”.

In many scenarios it is desirable to not only define the
placement of an object, but also its dimensions and coarse
geometry. Therefore, we also optionally apply a shape
loss [14] on each object proxy to guide it towards a spe-
cific shape. In addition, we demonstrate that our approach

enables the definition of multiple object proxies that can be
linked to a single object NeRF. This permits the specifica-
tion of replicated objects that are intended to be located in
multiple positions throughout the scene (e.g., chairs around
a table), while aggregating the score distillation from the
different placements to optimize a single NeRF

Our proposed Global-Local approach not only provides
more control during the training process, but also allows for
better editing and fine-tuning of generated scenes. Specifi-
cally, using object proxies, we can easily control the place-
ment of an object without the need for further refinement
and even remove or duplicate the object as desired. Addi-
tionally, we can selectively fine-tune only parts of the scene
by defining the set of proxies that are trained and fine-tuning
the respective NeRF with modified text prompts. Further-
more, we demonstrate that the object proxy can be used to
define geometry edits on the coarse shape, which are then
applied during the fine-tuning process.

The contributions of our paper are threefold: (i) we pro-
pose to represent each object in the scene as a separate
NeRF around a proxy, which allows getting a disentangled
model for each object, (ii) we introduce a new optimization
strategy that interleaves between single-object optimization
and scene optimization, resulting in self-contained objects
that can be combined to create a plausible scene, and (iii)
our strategy provides control over the generated scene, both
before and after its creation.

2. Related Work

Text-Driven Shape Generation 3D shape generation
from text has been a well-researched topic for the past cou-
ple of years. Text2Mesh [15], ClipMesh [9] and Tango [2]
use Clip [20] to optimize a triangular mesh to match an in-
put text prompt. ClipForge [23] trains a point cloud genera-
tor conditioned on Clip embeddings, such that novel shapes
can be generated solely by a single matching text prompt.
DreamFields [8] uses Clip supervision to guide a 3D NeRF
scene to match a target text.

There has been an extraordinary development in NeRF
papers in recent years. Originally used for capturing scenes
from a collection of images [16, 1, 17], NeRFs have re-
cently also been adopted for shape generation [8, 19, 26,
14, 13, 12]. DreamFusion [19] first introduced Score-
Distillation for generating novel objects conditioned on an
input text prompt by leveraging a pretrained 2D diffusion
model. Latent-NeRF [14] extended DreamFusion to the
latent domain in order to leverage the publicly available
Stable-Diffusion [21]. Additionally, Latent-NeRF intro-
duced Sketch-Shapes as proxies for specifying a desired ap-
proximate target geometry. Yet, their approach is designed
to generate only a single object and not multiple ones.
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Figure 3: Set-the-Scene Training pipeline. A scene is first defined using a set of proxies, where each proxy is coupled
with a location and a text prompt. Given an input scene, we then apply a global-local training procedure where we alternate
between locally optimizing each object on its own and optimizing the entire scene rendered together as a whole.

Scene Generation Scene generation has also been tack-
led before using different approaches. Koh et al. [10] uses
point cloud rendering as a 3D consistent representation and
a 2D GAN architecture to synthesize novel realistic and
spatially consistent viewpoints of indoor scenes. Scene-
Dreamer [3] is able to generate large-scale 3D landscapes
from a collection of images, leveraging a 3D consistent
bird-eye-view that is trained using a 2D GAN objective.
SceneScape [6] generates novel parts of a scene conditioned
on an input text description of the sense and an initial im-
age, by iteratively warping and out-painting the previously
generated image according to specified camera movements.
These methods generate the scene as a whole and do not
offer composable control over the generated scenes.

Composable Neural Radiance Fields Decomposing
neural scenes enables controlling different objects in the
scene in a disentangled manner, allowing for explicit edit-
ing, removal, and addition of objects. Compressible-
composable NeRF [24] utilizes a tensor representation of
the scene for compression, which also enables rendering
multiple objects together as a unified scene. GIRAFFE [18]
uses an adversarial loss to train a decomposable generator
of feature fields, which when rendered together, form a sin-
gle scene. The disentangled control over each individual
feature field allows controlling the location and appearance
of each individual object in the scene.

Object-Centric NeRF [7] is able to render multiple NeRF
implicit models altogether, where each model was inde-
pendently optimized to capture a single object. Simi-
larly, Panoptic Neural Fields [11] also trains separate im-
plicit models for each object, plus a single model for the
background. Additionally, each object is associated with

a 3D bounding box, which is considered in the merging
policy between implicit models at the volumetric render-
ing stage of the entire scene. Nerflets [29] propose a
set of local NeRFs that represent a scene as a collection
of decomposed objects. Each of them maintains its own
spatial position, orientation, and extent, allowing for ef-
ficient structure-aware 3D scene representation from im-
ages. Object-NeRF [28] is able to learn individual per-
object NeRF models of a cluttered scene, through object-
level supervision that is achieved by leveraging a rough seg-
mentation mask of each training image. We adopt the same
ray aggregation strategy as Object-NeRF for rendering mul-
tiple implicit models in a single image.

Note that all the above methods are not generative nor
text-guided and are limited in their editing capabilities.
Similarly to our global-local paradigm, DisCoScene [27]
also learns to generate controllable scenes at inference time,
yet they require a 3D object-level training dataset, while our
method does not use any 3D supervision.

3. Method

We turn to describe Set-the-Scene. We start by defining
object proxies and composable NeRF rendering and then
formulate our Global-Local training. Finally, we show how
one may easily apply post-training edits using our method.

3.1. Composable NeRF Rendering

In order to allow object-level optimization and genera-
tion, we represent our scenes as a set of composable NeRFs.
For explaining our proposed strategy, we first describe gen-
eral NeRF rendering and the concept of object proxies for
improved control over the scene.



NeRF Rendering A single NeRF [16] represents a 3D
volumetric scene with a 5D function fΘ that maps a 3D
coordinate x = (x, y, z) and a 2D viewing direction d =
(θ, φ) into a volume density σ and an emittance color c =
(r, g, b). The rendering in Equation (1) is utilized to ren-
der the scene from a defined camera location o, by shoot-
ing rays from o through each pixel and integrating them for
color. More specifically, given a ray r originating at o with
direction d, we query fΘ at points xi = o+ tid that are se-
quentially sampled along the ray to get densities {σi} and
colors {ci}. Finally, the pixel color is taken to be:

Ĉ(r) =
∑
i

Tiαici, Ti =
∏
j<i

(1− αi),

αi = 1− exp(−σiδi), δi = ti+1 − ti
(1)

where δi is the step size, αi is the opacity, and Ti is the
transmittance.

Object Proxies When rendering multiple NeRFs in the
same scene, one first has to define their respective locations
in the scene. We do so through object proxies, where each
proxy is associated with a NeRF model, offset position, ori-
entation, and size, which define its settings in the scene. We
designed our method so that a single NeRF can be associ-
ated with multiple proxies. This allows rendering scenes
with numerous instances of the same object, which in turn
can be optimized together, as discussed in Section 3.2.

Multi-Proxy NeRF Rendering When rendering multiple
objects together, we divide the sampled points from each
ray between the different objects, such that each object gets
a fraction of the points. In order to integrate a single ray
over different proxies, each set of points has to undergo a
rigid transformation from the scene coordinate system to
the proxy coordinate system, such that the computed colors
and opacity values are calculated at the object level. This
allows sharing information between different proxies asso-
ciated with a single NeRF model, and between the Local-
Global training phases described in Section 3.2.

We generalize the treatment in Equation 1 by summing
over different NeRFs and transforming their input points ac-
cording to their proxy parameters, i.e.,

Ĉ(r) =
∑
i

Tiα
(k)
i c

(k)
i ,

x
(k)
i = R(k)(xi + loc(k)),

(2)

where α(k)
i is the output of the kth NeRF, Rk is a rigid ma-

trix defined by the proxy’s scale and orientation, and lock is
a 3D coordinate defined by the proxy’s location. The index
k is selected to be k = i mod Nobj, where Nobj is the total
number of objects in the scene, i.e., we sample alternatively
between each of the objects equitably.

3.2. Global-Local Training

Given our composing mechanism, we now turn to de-
scribe our training losses and supervision technique.

Score Distillation To optimize a NeRF using a text-
prompt we follow the score distillation loss proposed
in [19]. Score distillation turns a pretrained diffusion model
M to a critique that is able to provide per-pixel gradients
that measure the similarity of a given image to a target text.

∇xLsds ∼ εθ(x, T )− ε, (3)

where ε is a random noise purposely added to the image
x, εθ is the predicted noise by M, and T is the target
text prompt. This allows us to optimize a NeRF to grad-
ually match a given text prompt. In practice, we apply
the score-distillation directly to the latent representation and
only later decode the results as proposed in [14].

Interleaved Training Our method involves an iterative
process where we alternate between optimizing each ob-
ject individually and optimizing the entire scene as a whole.
This allows us to take advantage of our composable rep-
resentation and create objects that harmonize well together
but can still be rendered independently. The object-level
iterations are especially important for optimizing occluded
areas, which might not be visible at all on the scene level.

In practice, for object-level iterations we choose one of
the scene objects and render it in its canonical coordinate
system, Oi, such that it is located at the origin and we op-
timize it with a user-provided text prompt that describes it
(e.g. “a wardrobe”). For scene-level iterations, we render
all the objects together based on their proxies in the scene
coordinate system S and use a text prompt describing the
scene as a whole (e.g. “a baroque bedroom”).

Defining Proxy Geometry A proxy object is always used
to define a NeRF placement in the scene. For even higher
levels of control, we adopt the shape loss from [14] and al-
low user-defined shape proxies for each individual object in
the scene. The shape constraints allow users to define proxy
geometries in the form of 3D-like sketches and control the
dimensions and structure of the generated object, resulting
in a much more controllable process.

In practice, the geometry proxy constraint is imposed
through an auxiliary loss function, applied both on the scene
scale S and on each individual object scaleOi alongside the
score distillation loss function Lsds:

Lshape = CE(αNeRF (p), αGT (p)) · (1− e−
d2

2σS ),

where αNeRF is the NeRF’s occupancy, αGT is the occu-
pancy of the specified proxy, d is the distance to the proxy’s
surface, and σS is a hyperparameter that controls the le-
niency of the constraint.



“An Asian style bedroom” “A kid bedroom” “A Gothic style bedroom”

“A futuristic living room” “A Baroque living room” “A modern living room”

“A baroque dining room” “A futuristic dining room” “A Moroccan dining room”

Figure 4: Set-the-Scene results. The same proxy setting can be used to create different styles of the same scene. The
scene prompts are shown for each generated scene, and corresponding prompts are used for each object. For example “a kid
bedroom style wardrobe, closed doors” or “a baroque chair”.

3.3. Post-Training Editing

Given a generated scene, one might wish to modify some
aspects of it. We propose several different tools for refining
and editing a generated scene.

Placement Editing The composable formulation of Set-
the-Scene inherently allows editing objects’ placement in
the scene. This is done by changing the proxy location and
updating the rays accordingly during rendering. The same
technique can also easily duplicate or remove objects.

Shape Editing To modify an object’s geometry, we sim-
ply edit the proxy’s geometry and then fine-tune the scene
for more iterations. This allows defining shape edits without
having to extract a mesh from the implicit NeRF represen-
tation. Only the weights of the relevant NeRF are updated
in the fine-tuning, and we alternate between rendering it in
its canonical coordinate system Oi and with the rest of the
scene in Si. Scene-level iterations are key to ensuring that
the object remains consistent with the scene when edited.

Color Editing Finally, we show that one may also edit
the color scheme of a generated object. This is done by us-
ing an architecture where the density and albedo predictions
are separable, and the albedo is predicted using a set of ad-
ditional fully-connected layers. During fine-tuning we can
then optimize the albedo layers to guarantee that the gener-
ated shape will not change while modifying its color.

“An American diner”

“A classroom”

Figure 5: Scene generation results. Our method is able to
handle complex scenes with multiple repeating objects.

4. Experiments

We now turn to a set of experiments that validate and
highlight the generation capabilities of Set-the-Scene.

Implementation Details Our method uses the Stable-
Diffusion 2.0 model [21] implemented in Diffusers [25].
For score-distillation, we use [14]. During training we it-
eratively pass over the objects one after the other and apply
10 training steps for each object, global iterations are inter-
leaved between the objects. We train for about 15K itera-
tions, with about 5K of them being global iterations.



Input Settings “a flowerpot” “a fruit bowl”

Figure 6: Objects with no shape priors. For some objects
it is beneficial to define only their location without explicitly
stating their shape. Here we highlight how different objects
can be generated on top of the table.

4.1. Scene Generation

Qualitative Results Figure 4 shows results of generated
scenes guided by different text prompts. One can see that
our method closely follows the given proxies in terms of lo-
cation and coarse shape. For example, observe how in the
first row the wardrobe and bed are consistently placed in
the scene even when the guiding text prompt changes. Nev-
ertheless, our method is still able to expressively alter the
style of the generated shapes according to the guiding text
prompt given the geometric constraints, thus offering both
control and expressiveness. In Figure 5, the objects are used
multiple times within a single scene. This is done by defin-
ing a set of object proxies that share the same object NeRF,
explicitly enforcing similarity between a set of duplicated
objects in a scene, which is difficult to achieve when gen-
erating a scene directly without object proxies. This design
choice also enables aggregating information about how an
object is viewed from different locations and viewing angles
into a single NeRF model, instead of training each model
separately. Figure 6 shows results where an object in the
scene is generated without any specific geometry constraint,
but rather only with its respective location in the scene and a
guiding text prompt, showing the flexibility of our controls.
Finally, Figure 7 presents the exact text prompts used for
a specific scene along with the convergence of each object
and the scene as a whole during the optimization process.

Comparisons Recent text-to-3D methods generate the
scene as a whole and do not utilize a composable repre-
sentation. This makes it harder to control and can cause
it to fail on complex scenes. To highlight this issue, Fig-
ure 8 shows a result of Latent-NeRF [14] on our scene text
prompt. Observe how Latent-NeRF struggles with generat-
ing the complex scene. We note that although methods like
Dreamfusion [19] might be able to generate better scenes
due to their larger diffusion model [22], they still would not
provide explicit control. Furthermore, as Latent-NeRF is
the basis of our local optimization process, comparison to it
highlights the improvements gained using our scheme.

“a baroque nightstand”

“a baroque bed”

“a baroque style wardrobe, closed doors”

“an empty baroque style room with windows”

“a baroque bedroom”

Figure 7: Convergence process of Set-the-Scene for dif-
ferent NeRFs composing the scene. The bottom row shows
the entire scene. A specific text prompt is given for each
object, specified below each row of images.
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Figure 8: Comparison with Latent-NeRF. When generat-
ing “A princess bedroom“ Latent-NeRF struggles with gen-
erating the complex scene.

Ablation Study Next, we perform an ablation study over
our proposed Global-Local training scheme. Figure 9 shows
results for the same proxy configuration with and without
the global optimization phase, which makes several impor-
tant aspects of joint optimization noticeable. First, observe
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Figure 9: Impact of Global-Local training. Here we show
the importance of global training for three different scenes.
Observe how our Global-Local training policy results in
more coherent scenes, compared to scenes where each ob-
ject is optimized independently that are inconsistent.

how color schemes between objects do not match well with-
out joint optimization steps, for example, the sofa set which
is generated in two different colors. This supports the claim
that without global optimization steps the model will not
be able to match the objects well. Moreover, the results
generated without applying global optimization steps do not
blend well within the scene and tend to look like they have
been pasted over, which is expected for objects that were
trained separately. By contrast, our method generates glob-
ally consistent scenes with realistic shadows generated on
the background object, resulting in more natural renderings.

User Study We conducted a user study to quantitatively
assess the effectiveness of our training scheme. We chose
10 scenes and applied both our Global-Local and Local-
Only training schemes. We then gave 40 participants two
sets of tasks. In the ranking task, participants are pre-
sented with two results side-by-side (in random order) and
are asked to choose their preferred result with respect to
two aspects: (a) realism; and (b) compatibility between the
objects in the scene. In the second set, participants are pre-
sented with only a single result and are asked to rank it on a
scale of 1-5 with respect to (a) realism; (b) object compat-

Local Training Global-Local Training

Realism Rank (↑) 19.2% 80.8%
Compatibility Rank (↑) 20.5% 79.5%

Realism Score (↑) 1.92± 0.28 3.48± 0.36
Compatibility Score (↑) 2.91± 0.40 4.2± 0.33
Text Fidelity Score (↑) 2.69± 0.34 3.94± 0.35

Table 1: User study results. Each respondent is asked to
rank both Local-Only and Global-Local training with re-
spect to various aspects.

ibility; and (c) text fidelity. All results are shown as short
videos showing the moving scene to allow participants to
better evaluate the generated results. Table 1 shows the out-
come of our study. One can see that using our Global-Local
method is superior to a Local-Only solution and results in
generally higher scores for the generated images.

4.2. Scene Editing

Having shown our scene generation capabilities, we now
turn to evaluate our ability to edit already-generated shapes.

Placement Editing Figure 10 shows some examples of
placement editing. Due to our composable representation,
Set-the-Scene inherently allows for editing of object place-
ment after training by editing the object proxies, adding new
proxies, or even removing existing ones. Note that this can
be done without any additional fine-tuning steps. One can
additionally apply some fine-tuning steps to further improve
the result with respect to the new placement.

Training setting Post-Training editing

“a Baroque dining room”

“A classroom”

Figure 10: Location Editing. Here we show how the com-
posable nature of our representation allows removing or
moving objects around. Given an optimized scene, we can
simply move or remove each proxy, and still produce high-
fidelity results of the same scene.



Training setting Post-Training editing

Figure 11: Geometric Editing. (left) Input scene, (right)
Edited scene. Observe how narrowing the closet proxy
shapes results in a similar effect on the generated closet,
while keeping the rest of the scene content intact.
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Figure 12: Color editing. Using a dedicated albedo head,
we can fine-tune the NeRFs to change the color scheme
while keeping the geometry and other objects unchanged.
For each edited object the object text prompt was changed
according to the desired color, for example the prompt “a
baroque sofa‘’ was changed to ’“a red baroque sofa”.

Geometry Editing Figure 11 shows how we can edit the
geometry of a specific NeRF within the scene by changing
its corresponding object, which allows for easy and intuitive
control over the implicit NeRF. As the proxy geometry is
based on a user-defined mesh, the corresponding mesh can
be easily edited with existing tools such as MeshLab [4] or
Blender [5]. One can see that after fine-tuning the edited
result remains faithful to the original scene.

Appearance Editing Finally, Figure 12 demonstrates that
our method can easily change the appearance of specified
objects in the scene independently of other objects or the ge-
ometry of the edited object. Our method is able to change
the color scheme of both sofas while keeping them well-
matched with one another. This is not the case when opti-
mizing without global iterations, as also shown in the same
Figure. Observe for example how the exact shade of red
does not much well when using only local iterations.

Generated Room Generated Bed Room close up Walls close up

Figure 13: Limitations. In the scene view, the golden head-
board is seen as a part of the bed. In the object view, the bed
is seen as a complete object without it.

Limitations. While our experiments show the capabilities
of our approach, it is worthwhile to note that there are still
some limitations. First of all, the quality of our results is
governed by the local generation process which is based on
score distillation with a latent diffusion model. This ap-
proach still generally lacks in terms of quality and resolu-
tion, and in turn, limits our generation’s capabilities. An-
other limitation is that the objects in the scene may be gen-
erated in the background NeRF as textures, without a cor-
responding geometry, as shown in Figure 13. We believe
that this occurs due to the limited viewing angles available
when optimizing an indoor scene. Finally, our convergence
time is also governed by the number of unique NeRFs in the
scene, where adding more objects requires more optimiza-
tion time, as each object requires its own local iterations.

5. Conclusion

In this paper we have presented Set-the-Scene, a method
for generating controllable scenes using a composable
NeRF representation. Our method builds upon two main
techniques. First, a composable NeRF representation where
each object in the scene is represented using a dedicated
NeRF with its placement controlled using an object proxy.
Second, a Global-Local optimization process. Building on
the flexibility of the composable representation, each ob-
ject is locally optimized based on its text prompt, while also
getting optimized globally with the rest of the scene. This
allows us to create complete scenes, with objects that are
consistent with one another.

Set-the-Scene is shown to be superior compared to ex-
isting text-to-3D solutions in terms of control and editing
capabilities. Additionally, our method can easily be applied
on top of any existing optimization-based single-object text-
to-3D solution, enhancing them with several forms of con-
trol over the object proxies, as well as easy-to-use editing
techniques that require little to no fine-tuning. We believe
Set-the-Scene to be a useful step forward towards a more
controllable text-to-3D future.
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