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Abstract

The goal of 2D human pose estimation (HPE) is to local-
ize anatomical landmarks, given an image of a person in a
pose. SOTA techniques make use of thousands of labeled
figures (finetuning transformers or training deep CNNs),
acquired using labor-intensive crowdsourcing. On the other
hand, self-supervised methods re-frame the HPE task as a
reconstruction problem, enabling them to leverage the vast
amount of unlabeled visual data, though at the present cost
of accuracy. In this work, we explore ways to improve self-
supervised HPE. We (1) analyze the relationship between
reconstruction quality and pose estimation accuracy, (2) de-
velop a model pipeline that outperforms the baseline which
inspired our work, using less than one-third the amount of
training data, and (3) offer a new metric suitable for self-
supervised settings that measures the consistency of pre-
dicted body part length proportions. We show that a com-
bination of well-engineered reconstruction losses and in-
ductive priors can help coordinate pose learning alongside
reconstruction in a self-supervised paradigm.

1. Introduction
Applications of human pose estimation span a wide

range, including predicting pedestrian behavior and trajec-
tory on roads with autonomous vehicles [2, 16, 37, 42, 48].
SOTA works [10, 40] have explored larger models or tack-
led specific failure modes (e.g. occlusion). Broadly speak-
ing, some of the latest HPE models address one or more of
the following five questions. (1) Can we speed up predic-
tion to enable real-time pose estimation [8, 22]? (2) Can
we create lightweight models with smaller memory foot-
prints [22, 25, 28, 39, 46]? (3) Pose estimation models
lack robustness under situation X . How can we address this
[10, 41, 45]? (4) Can we use transformers [7, 26, 40, 47]?
(5) Vision-based pose estimation is unreliable. Can we use
other more robust modes of data [9, 20]?

An important caveat is that many of these methods re-
quire labor-intensive pose labeling, which limits scalability
in training data. To illustrate, COCO’s training and vali-

Figure 1. (a) Baseline predictions of [29]. (b) Ours (with MSE
loss, Tnew template, coarse-to-fine learning). Our predictions
more closely follow the outline of the subjects.

dation set alone contain 1.7 million labeled keypoints [23].
MPII Human Pose contains more than 600,000 [1].

To make use of the vast amount of unlabeled data, we
look to self-supervised models, which frame classification
and regression as reconstruction problems [5, 21, 29, 35],
where given some parts of the input space (source), the
model reconstructs other parts of the input space (target).
These methods are engineered such that classification or
regression are necessary to reason about the signals ab-
sent in the source but present in the target to be recov-
ered. Hence, rather than optimizing directly for the task,
self-supervision learns indirectly by optimizing for recon-
struction, yielding representations that surpass the general-
izability of those learned via supervised learning [34]. Self-
supervised learning holds much potential for autonomous
driving, facilitating greater scalability in training data, im-
proving robustness, and enabling lifelong-learning [3, 6].
SOTA methods in this space typically rely on multi-view
geometry [4, 12, 15, 36], unpaired pose data [17, 33], or
synthetic datasets with pose labels [18].

Recently, Schmidtke et al. [29] use a template-based,
self-supervised approach to estimate pose in the Hu-
man3.6M dataset [13], without relying on multi-view ge-
ometry, unpaired pose data, or synthetic datasets with pose
labels. By guiding the model with templates of Gaussians,
each representing a body part, the model is able to render
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Figure 2. Baseline model architecture. Our adjustments to the pipeline are in green.

feasible pose estimates. However, without labels, there is
no guarantee that predictions will reflect ground truth [31].

In this work, we analyze the relationship between re-
construction optimization and pose estimate accuracy in
the absence of ground truth, using a carefully engineered
combination of reconstruction loss and inductive prior
(in the form of a new template). Using these insights,
we develop an efficient model pipeline that exceeds the
baseline [29] performance, using a training set that is
less than one-third the size of the original, along with
a new formulation of matrix transformation that imple-
ments coarse-to-fine learning and data augmentation. Fur-
ther, we propose a metric of consistency for body part
lengths that is suitable for self-supervised settings, where
ground truth is not available. Our code is available
at https://github.com/princetonvisualai/
hpe-inductive-prior-tuning.

2. Approach
2.1. Baseline

We begin by describing the baseline model [29] which
we build off of. It consists of pose extractor Φ and frame
reconstructor Ψ (encoder-decoder), and a template Torig of
18 Gaussians (one per body part), which form the induc-
tive prior for viable human shapes (Figure 2). Network Φ
is made up of 14 fully convolutional layers, followed by
two fully-connected layers. Reconstructor Ψ consists of an
encoder and decoder, each of which contain seven fully-
convolutional layers.

Network Φ takes input frame ft, which contains the
pose to estimate, and outputs transformation matrices M =
{M1≤i≤18}. MTorig generates pose estimate T ∗. Recon-
structor Ψ takes T ∗ along with frame ft+k (a frame with
the same background and subject as ft) to reconstruct ft
by jointly reasoning over the subject style and background
information present in ft+k and pose information from T ∗.

The model is trained using three objectives: (1) an
anchor-point loss to keep adjacent body parts together, (2)
a boundary loss to keep the predicted keypoints within the
physical 256×256 frame, and (3) a perceptual reconstruc-
tion loss with a VGG backbone pretrained on ImageNet to
reflect human judgements of similarity [19]. lanchor and
lboundary are as defined in [29].

lrecon = ||V GG(f̂t)− V GG(ft)||11 (1)
ltot = lrecon + λ1lanchor + λ2lboundary (2)

In baseline predictions, the chest, shoulder, and knee
keypoints are relatively collapsed, while the general form
only loosely follows the subject’s outline (Figure 1a). Limb
lengths are not always consistent; the second and third
frame in Figure 1a depict the same subject from approx-
imately the same camera angle; however, the length of the
forearm is significantly reduced in the former, presenting an
issue of inconsistency.

2.2. Change 1: MSE reconstruction loss

Since self-supervised HPE uses reconstruction optimiza-
tion as a proxy for pose learning, we consider how differ-
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Figure 3. (a) Torig . (b) Tnew. The new template better reflects
our data distribution.

ent formulations of reconstruction loss might improve pose
estimates. While earlier works measure perceptual against
pixel-wise loss [11, 14, 32], recent works in reconstruction
use pixel-wise L1 or L2 in conjunction with perceptual loss
[30, 38, 44]. So, we experiment with adding an MSE term to
lrecon in Equation 1 to improve reconstruction, with lMSE

computed across all pixels and the RGB color channels. The
reconstruction loss is now

lrecon = lMSE + ||V GG(f̂t)− V GG(ft)||11 (3)

2.3. Change 2: New template Tnew

We engineer a template Tnew shown in Figure 3b that
better reflects the natural distribution of poses in our dataset,
particularly the arms-down pose, providing a more appro-
priate inductive prior.

2.4. Change 3: Coarse-to-fine learning

Previous works have used multiple networks for coarse-
to-fine learning to reconstruct finer details [27, 43]. Instead
of using multiple networks, we modify the last layer of net-
work Φ; since matrix M directly influences the model’s
representation capability, we expand M to hold 20 matri-
ces (M = {M1≤i≤20}) to estimate pose in two steps. By
expanding the dimensions of matrix M and selectively map-
ping Mi (in a one-to-one or one-to-many manner), we en-
able coarse-to-fine learning of pose details without design-
ing a separate network for fine reconstruction. Note that we
only apply this two-step procedure to the arms, forearms,
and hands, since this is where the +MSE, Tnew model has
the most room for improvement (Figure 12).

Concretely, previously, transformation matrices M =
{M1≤i≤18}. Instead, we expand M to {M1≤i≤14+6}. In
step 1, the first 14 matrices M1≤i≤14 transform Tnew to
coarse estimate T ∗′

. In particular, M10 and M11 are ap-
plied to the whole left and right arm, respectively. Effec-
tively, we treat each whole arm as a course unit. In step 2,
the last six matrices M15≤i≤20 dictate finer transformations
of the individual components of the left and right arms (up-
per arm, forearm, hands) to get from T ∗′

to final estimate
T ∗. Specifically, we apply M1≤i≤20 as in Table 1.

Mi Apply Mi to...
M1 Core

M2,M3 Left/Right hip
M4,M5 Left/Right thigh
M6,M7 Left/Right shin
M8,M9 Left/Right shoulder
M10 Left upper arm, forearm, hand
M11 Right upper arm, forearm, hand

M12,M13 Left/Right foot
M14 Head

M15,M18 Left/Right upper arm
M16,M19 Left/Right forearm
M17,M20 Left/Right hand

Table 1. Coarse-to-fine learning. Steps 1 and 2 in coarse-to-fine
pose estimation.

2.5. Change 4: Flip dataset augmentation

We adopt a simple dataset augmentation approach to fur-
ther improve model training. Concretely, as is standard in
image classification, we augment the dataset by flipping the
input images across the longitudinal axis to overcome po-
tential discrepancies in distribution between the two sides.

2.6. Change 5: Constraining for consistency

Finally, this brings us to our last contribution of a new
metric that helps better constrain the model predictions.
Resuming our discussion on issues of inconsistent limb
lengths in baseline predictions (Section 2.1), we note that
in self-supervised HPE, it becomes important to explicitly
code for those things which are automatically coded for
in their fully-supervised counterparts via ground truth la-
bels; consistency is one such example. To this day, defi-
nitions of “consistency” in HPE have largely been kept to
the 3D setting, where it is defined as consistency of 3D rep-
resentation across camera views for the same subject and
pose and is tackled by creating new, reprojection losses
[12, 21, 35, 36]. Others have directly addressed inconsis-
tency in limb lengths by learning limb length priors in the
3D supervised setting [24].

We propose a metric for consistency in body part
length proportions across frames that can be used in self-
supervised settings with no ground truth labels (in the 2D
setting, but it can be extended to the 3D setting). We de-
fine body part length proportion (BPLP) as the proportion
of predicted limb length to torso length (Equation 4). The
central motivation is that a single subject maintains a level
of consistent BPLP across different poses. We formulate
BPLP consistency (BPLP-C) as the reciprocal of the stan-
dard deviation in BPLPs per body part (Equation 5). A



higher BPLP-C is indicative of more consistent predictions.

BPLP(limb i) =
predicted length(limb i)
predicted length(torso)

(4)

BPLP-C =
1

1
n

∑
1≤i≤n σBPLP,i

(5)

σBPLP,i : std. dev. of BPLP(limb i) over text examples
n: number of limbs

We note how ground truth labels are not needed to calcu-
late BPLP or BPLP-C, making them suitable for evaluating
models in the self-supervised setting. To improve BPLP-C,
we work on constraining M , since M influences the space
of pose estimates. We see this experiment as a proof-of-
concept to improve consistency, rather than as a method to
improve specific performance metrics, like PDJ or L2 error.
We approach the problem as follows. For simplicity, we
assume that BPLPs are consistent across all subjects. We
recognize this does not hold in the real-world; but for sim-
plicity, we work with this assumption. In concluding, we
briefly discuss how we can do away with this assumption in
future work by computing subject-specific BPLPs.

The major theoretical constraint we introduce is to ap-
ply scaling together on all limbs, since the size of individ-
ual limbs does not change drastically and disproportionately
across poses, relative to other limbs, for a single subject.
Hence, we have a new transformation matrix Mi that is de-
rived as follows:

Mi = RLS (6)

Mi =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

1 0 µ
0 1 δ
0 0 1

ϕ 0 0
0 β 0
0 0 1


R L S

T ∗ = MT (7)

In this constrained setting, T should be a subject-specific
template, since M is not free to scale individual limbs, but
in this paper we assume a generic template. R (rotation)
and L (localization) are for rotating and repositioning in-
dividual limbs, respectively. S (scaling) is for scaling all
limbs together.

θ, µ, δ are limb-specific parameters, while ϕ and β are
frame-specific parameters, in that for a given frame with a
subject in some pose, there will be 3 parameters for each
limb and 2 frame-specific parameters that apply to all the
limbs. Hence, in the original baseline setting, there would
be (18 × 3) + 2 = 56 salient, transformation parameters,
whereas in the coarse-to-fine setting, there would be (20 ×
3) + 2 = 62 such parameters.

3. Experiments
3.1. Setup

Similar to the baseline [29], we train our models on Hu-
man3.6M subjects 1, 5, 6, 7, and 8, evaluate on subjects 9
and 11, and group frames based on subject and background.
We downsample frames to 256×256. To encourage train-
ing efficiency, we keep the training set relatively small in all
experiments—around 180K pairs of frames (ft, ft+k). Our
model is trained over 50 epochs on 1 NVIDIA A100/V100
with a learning rate of 0.001, batch size of 48, λ1 = 0.5,
and λ2 = 1. Training typically takes 34 hours; we evaluate
our model on 130K images.

3.2. Evaluation

We use two overall evaluation metrics on a set J of
15 keypoints: Percentage of Detected Joints (PDJ) (Equa-
tion 8) and L2 error normalized for frame size (Equa-
tion 11).

PDJ@0.05 =
1

|J |
∑
j∈J

f(j, ĵ) (8)

f(j, ĵ) = 1 if dist(j, ĵ) ≤ .05× diagonal person length (9)

Per-joint accuracy =
1

# test instances

∑
test instances

f(j, ĵ)

(10)

L2 error =
1

|J |
∑
j∈J

dist(j, ĵ)
image size

(11)

The model detects joint j if estimate ĵ is within 0.05 of
the diagonal length of the person bounding box. A higher
PDJ and lower L2 error are characteristics of a more accu-
rate model. As with the baseline, we do not predict pose
orientation. We hope to address this in future work. In the
meantime, we use a frame-centric lens to describe joint-
handedness. Before we explore our modifications to the
pipeline, we analyze the baseline in the next section.

3.3. Baseline results

First, please note that there are reproducibility issues in
the baseline’s codebase (which we confirmed with the au-
thors). Going forward, we distinguish between the “base-
line” (obtained from the codebase), upon which we imple-
ment our proposed changes, and the published checkpoint,
against which we ultimately compare our best model.

The baseline yields a PDJ@0.05 of 38.5 and normalized
L2 error of 7.2 (Table 2). Surprisingly, the baseline has
a better L2 error than the published checkpoint, despite a
slightly worse PDJ. Figure 4 shows the published check-
point yields more outliers, with keypoints that overshoot
the image frame boundary. Quantitatively, Figure 5, which
shows the distribution of L2 by model, confirms the same.



Model PDJ L2 Error
Published checkpoint 40.8 11.0
Baseline 38.5 7.2
+MSE 26.6 9.2
+Tnew 33.1 7.5
+MSE, Tnew 37.2 6.7
+MSE, Tnew, flip augment 34.3 6.9
+MSE, Tnew, coarse-to-fine 39.0 7.0
+MSE, Tnew, coarse-to-fine,
flip augment 42.6 6.4

+MSE, Tnew, coarse-to-fine,
flip augment, constrained M

38.7 7.0

Table 2. Evaluation metrics by model. The +MSE, Tnew,
coarse-to-fine, flip augment model yields the best PDJ and L2.

Figure 4. The bottom 0.5% of worst predictions from the pub-
lished checkpoint and baseline. (a) In the first two, the predicted
keypoints are so out-of-bounds; the original frame is barely visi-
ble. (b) The baseline yields less severe outliers.

Next, we explore reconstruction quality in relation to
pose estimate accuracy. Figure 6b shows the baseline’s re-
construction of ft after 50 epochs. The torso and legs show
higher-quality reconstruction and keypoint grounding. The
opposite is true for the elbow and wrists, which show lower-
quality reconstruction and keypoint grounding. To improve
overall keypoint grounding, we propose modifying the re-
construction loss by adding a pixel-wise loss term: MSE.

One possible explanation for the disparity in reconstruc-
tion quality between the arms and legs comes from the dis-
tribution of the dataset—the left/right elbow and wrist ex-
hibit the most variation in spatial configuration (Figure 7).

3.4. Results overall

We now briefly compare our full model with [29]’s pub-
lished checkpoint before diving into a detailed ablation
study of the proposed changes. [29] attained a PDJ of
40.8 and L2 error of 11.0 using 600K images trained over
30 epochs. In comparison, our best model (+MSE, Tnew,
coarse-to-fine, flip augment) reaches a PDJ of 42.6 and L2

Figure 5. Error by model. We compute the normalized L2 error
(on a log scale) per frame and plot its distribution by model.

Figure 6. Reconstruction after 50 epochs. The model is given
only the image during training. (a) The ground truth pose shown
for illustration purposes. (b) Baseline reconstruction of ft.

Figure 7. Standard deviation of (x, y) coordinates of ground
truth joints. The left and right elbow and wrist exhibit the most
variation.

error of 6.4 using only 180K input examples trained over 50
epochs.

Furthermore, by the time our model reaches epoch 10,
our L2 is less than the checkpoint’s at 7.3. By epoch 30,
our PDJ is comparable with the checkpoint’s at 40.4 (using
three times fewer training samples) and by epoch 40, sur-
passes it at 41.8.

Analyzing Figure 1, we observe that (1) our model pre-
dictions follow the contour of subject poses cleaner, seeing
how the right wrist lies outside the subject in the fifth frame



Model Errorrecon (L2) Errorpose (L2)
Baseline 5414.5 7.2
+MSE 4242.0 9.2

+MSE, Tnew 3797.9 6.7

Table 3. Comparison between reconstruction and pose estimate
error after 50 epochs. (a) Baseline. (b) +MSE, Torig . Recon-
struction error↓, Pose estimate error↑. (c) +MSE, Tnew. Recon-
struction error↓, Pose estimate error↓.

Figure 8. +MSE model sample predictions. The model consis-
tently predicts an arms-out pose, regardless of the input frame ft.

in Figure 1a ([29]’s prediction), (2) our predicted keypoints
for the neck and shoulder are less sunken, as observed in
the third and fourth frame compared across Figures 1a and
1b, (3) our knee joint estimates are higher up (i.e. generally
more accurate), as observed in the first four frames com-
pared across Figures 1a and 1b.

3.5. Effect of the new reconstruction loss

We now dive into the individual proposed changes and
analyze them one-by-one. We begin by experimenting with
the new reconstruction loss described in Section 2.2. De-
spite the initial hypothesis that improving reconstruction
quality would improve pose estimates, we find this is not
necessarily the case. Adding an MSE loss term speeds up
reconstruction; but the model is worse at grounding key-
points, as shown by the lower reconstruction error accom-
panied by higher pose estimate error (Table 3). In fact, the
+MSE model exhibits worse performance than the baseline
(PDJ∆:−11.9 points; L2∆:+2.0) (Table 2).

Across the four sample predictions in Figure 8, the leg
joints are learned reasonably; however, the arms are con-
sistently predicted to be extended outward, resembling the
arms-out pose in template Torig, regardless of whether the
input frame contains a subject with arms up or down.

Notably, Torig (Figure 3a) is highly unreflective of the
pose distribution in the dataset. Torig represents an arms-
out pose; however, the test dataset has nearly a 40 : 1 ratio
of arms-down poses to arms-extended (“arms-out”) poses.
For simplicity, we assume the test and training set have a
similar distribution, since the data was randomly sorted into
training/test sets.

Our model is framed as a problem of template-matching
(i.e. distribution-matching) between estimate T ∗ and recon-

Figure 9. Effect of adopting Tnew on pose estimate accuracy.
Adopting Tnew shows performance improvements when paired
with the addition of an MSE loss term.

structed frame f̂t. In this context, adding an MSE term to
the lrecon encourages the model to reconstruct faster, and
in the process, to quickly pick up correlations between the
transformed template T ∗ and original frame ft. However,
because the base template is so far from the data distribu-
tion, the model learns spurious correlations between T ∗ and
f̂t, resulting in misalignment between reconstruction and
pose estimation.

In pushing the model toward faster, higher-quality recon-
struction, it becomes even more important to provide an ap-
propriate template that reflects the underlying structure in
the data, since the template provides a key inductive prior
for learning meaningful relationships between pose estima-
tion and reconstruction.

3.6. Effect of the new template

Adopting the new template Tnew (Figure 3b) with MSE
exhibits a strong lead over Torig with MSE (PDJ∆:+10.6
points; L2∆:−2.5) and performs comparably with the base-
line on PDJ and even outperforms the baseline’s L2 er-
ror. Tnew with MSE also outperforms using Tnew alone
(PDJ∆:+4.1 points; L2∆:−0.8). When Tnew is not paired
with MSE (i.e. the incentive to reconstruct faster), model
performance drops overall, but most severely on arms-out
poses (relative to Tnew paired with MSE) (Figure 9).

Furthermore, in Table 3, we see that the combination of
MSE with Tnew reduces both reconstruction and pose es-
timate error (reconstruction error ∆:−1616.6 points; pose
estimation error ∆:−0.5). Engineering an appropriate in-
ductive prior is key to coordinating reconstruction with pose
learning. Given the advantage of the MSE, Tnew combina-
tion, we use it as the new local benchmark against which we
compare subsequent models. Next, we discuss our experi-
ments updating the model to facilitate coarse-to-fine learn-
ing to refine the arm and forearm estimates.



Figure 10. Sample predictions from models using coarse-to-fine learning, augmentation. (a) +MSE, Tnew, coarse-to-fine model. (b)
+MSE, Tnew, coarse-to-fine, flip augment model.

Figure 11. Difference in PDJ@0.05 between left and right-side
ankle, knee, and elbow (the most extreme cases). The discrep-
ancy decreases after augmentation.

3.7. Effect of coarse-to-fine learning

Expanding M and adapting a coarse-to-fine learning
strategy described in Section 2.4 yields PDJ∆:+1.8 points
and L2∆:+0.3 (Table 2). Examining the L2 distribution, it
seems that the slight increase in L2 error comes from the in-
crease in outliers (Figure 5). On qualitative examples (Fig-
ure 10a), coarse-to-fine learning yields pose estimates that
closely follow subject contour.

One thing we notice in examining the per-joint accuracy
deeper is the discrepancy in keypoint accuracy between left
and right-side joints. For the ankle, knee, and elbow (the
most extreme cases), the absolute differences are 10.5, 7.7,
and 5.9 percentage points (Figure 11). To account for nat-
ural differences in distribution between the two sides, we

Figure 12. Model accuracy per anatomical region before/after
coarse-to-fine learning and augmentation. Torso keypoints: ab-
domen, chest, neck, hips, shoulders. Leg keypoints: knees, ankles.
Arm keypoints: elbows, wrists.

propose data diversification via augmentation.

3.8. Effect of dataset augmentation

We additionally augment the dataset by horizontal flip-
ping as mentioned in Section 2.5. To keep the training size
to around 180K pairs, we take approximately half of the
frames in the original training set and flip them, yielding
a total of 181,728 training pairs (ft, ft+k), compared to
181,383, pre-augmentation.

After augmenting the dataset, the absolute differences in
PDJ for the ankle, knee, and elbow drop to 0.5, 3.9, 5.1
percentage points, respectively (Figure 11). The accuracy
on arm keypoints jumps 10.2 percentage points (Figure 12).
Overall PDJ jumps to 42.6 (the highest yet) and L2 error
drops to 6.4 (the lowest yet). To analyze whether this jump



Model BPLP-C
Published checkpoint 2.03
Baseline 9.82
+MSE, Tnew, coarse-to-fine, flip augment 5.17
+MSE, Tnew, coarse-to-fine, flip augment,
constrained M

12.32

Table 4. BPLP consistency across four models. Constraining M
yields the highest BPLP-C.

in performance is solely due to the addition of flip augmen-
tation or whether it is a result of the specific combination of
flip augmentation with coarse-to-fine learning, we also train
a model using MSE, Tnew, and flip augmentation with the
original, unexpanded M1≤i≤18. Compared with the +MSE,
Tnew model, the performance drops when only augmenta-
tion is added (PDJ∆:−2.9 points; L2∆:+0.2) (Table 2).
Hence, we see that flip augmentation is working together
with the expanded M to produce more accurate predictions.

With respect to outliers, we can see from the L2 distribu-
tion (Figure 5) that the combination of MSE, Tnew, coarse-
to-fine learning, and augmentation yields a model with one
of the fewest number of outliers.

Despite its success, we notice inconsistent body part
length proportions in some of its predictions. Similar to
the baseline, the second and third frame in Figure 10b de-
pict significantly different predicted forearm lengths, de-
spite showing the same subject. Next, we offer a new met-
ric, BPLP-C, to measure this type of inconsistency and ex-
periment with constraining M to improve on this metric.

3.9. Effect of constraining M for consistency

Finally, we constrain M for consistency as described
in Section 2.6. Constraining M yields a PDJ of 38.7 and
L2 error of 7.0, which is comparable with the MSE, Tnew,
coarse-to-fine model. Table 4 shows BPLP-C by model.
We notice that constraining M yields the highest BPLP-C
and more consistency between left and right limb lengths
(Figure 13b). This serves as a preliminary proof-of-concept
that constraining the transformation matrix M along these
axes is a viable method to encourage consistent body part
length proportions.

4. Conclusion
In this paper, we present a modified self-supervised

model pipeline that sets a new benchmark in PDJ@0.05 and
normalized L2 error for 2D human pose estimation that is
based on a transformable, Gaussian shape template. Build-
ing off [29], we make several new contributions:

1. We analyze the settings in which reconstruction speed-
up helps or hurts pose estimation and identify the
importance of tuning the inductive prior to reflect

Figure 13. Sample prediction with/without constrained M . (a)
Without constrained M . (b) With a constrained M , left limbs (e.g.
left thigh) are relatively more consistent in length with right limbs
(e.g. right thigh).

some aspect of the data distribution, thereby enabling
template-matching and coordinating reconstruction
with pose estimation.

2. By proposing ways to combine reconstruction loss,
data augmentation, inductive prior tuning, and
network-level adjustments, we find a model pipeline
that exceeds baseline performance using approxi-
mately three times less data.

3. We propose BPLP-C, a metric that can be used to mea-
sure consistency in part length proportions in the ab-
sence of ground truth and propose one way to influence
it—by constraining the transformation matrix.

We consider a few ideas for extensions and future work.
To improve our model performance further, it would be a
good idea to incorporate some understanding of pose orien-
tation into the model, so that it knows when the subject is
facing away or toward the camera. It would be beneficial to
test our pipeline on other HPE datasets to check for gener-
alization. To relax the assumption we made about BPLPs
being consistent across all subjects, we could create an end-
to-end framework that learns not only the poses, but also,
subject-specific templates based on a few different poses
of the same subject. Furthermore, to measure the value of
the BPLP-C metric, we hope to conduct human studies to
understand how humans perceive predictions from models
with higher BPLP-C in the 2D and 3D setting.
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