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Abstract
Intrinsic susceptibility of deep learning to adversarial

examples has led to a plethora of attack techniques with
a broad common objective of fooling deep models. How-
ever, we find slight compositional differences between the
algorithms achieving this objective. These differences leave
traces that provide important clues for attacker profiling in
real-life scenarios. Inspired by this, we introduce a novel
problem of ‘PRofiling Adversarial aTtacks’ (PRAT). Given
an adversarial example, the objective of PRAT is to identify
the attack used to generate it. Under this perspective, we
can systematically group existing attacks into different fam-
ilies, leading to the sub-problem of attack family identifica-
tion, which we also study. To enable PRAT analysis, we in-
troduce a large ‘Adversarial Identification Dataset’ (AID),
comprising over 180k adversarial samples generated with
13 popular attacks for image specific/agnostic white/black
box setups. We use AID to devise a novel framework for
the PRAT objective. Our framework utilizes a Transformer
based Global-LOcal Feature (GLOF) module to extract an
approximate signature of the adversarial attack, which in
turn is used for the identification of the attack. Using AID
and our framework, we provide multiple interesting bench-
mark results for the PRAT problem. The dataset and the
code are available at https://github.com/rahulambati/PRAT

1. Introduction
Deep learning is currently at the center of many emerg-

ing technologies, from autonomous vehicles to numerous
security applications. However, it is also well-established
that deep networks are susceptible to adversarial attacks [1,
8]. This intriguing weakness of deep learning, which is oth-
erwise known to supersede human intelligence in complex
tasks [41], has attracted an ever-increasing interest of the re-
search community in the last few years [9]. This has led to
a wide range of adversarial attacks that can effectively fool
deep learning. Although adversarial attacks have also led
to research in defenses, there is a consensus that defenses
currently lack efficacy. Many of them are easily broken, or
become ineffective by changing the attack strategy [2].

Figure 1: Despite their imperceptibility, adversarial perturbations
contain peculiar patterns. Perturbations generated using the popu-
lar methods FGSM, DeepFool, CW and UAP Attacks are shown.

Incidentally, deep learning in practice is still widely open
to malicious manipulation through adversarial attacks [8]. It
is yet to be seen if this technology can retain its impressive
performance while also demonstrating robustness to adver-
sarial attacks. Until an adversarially robust high-performing
deep learning framework is developed, practitioners must
account for the adversarial susceptibility of deep learning in
all applications. These conditions give rise to an important
practical problem of ‘attacker profiling’. In real-life, under-
standing the attacker’s abilities can allow counter-measures
even outside the realm of deep learning. However, the cur-
rent literature on adversarial attacks on is almost completely
void of any exploration along this line. From the pragmatic
viewpoint, the primal question of this potential research is,
“given an adversarial example, which attack algorithm was
used to generate it?”.

In this work, we take the first systematic step towards
answering this question with PRofiling Adversarial aTtacks
(PRAT). Focusing on the additive adversarial perturba-
tions, our aim is to explore the extent to which a victim
is able to identify its attacker by analyzing only the adver-
sarial input. To explore this new direction, it is imperative
to curate a large database of adversarial samples. To that
end, we introduce Adversarial Identification Dataset (AID)
which consists of over 180k adversarial samples, generated
with 13 popular attacks in the literature. AID covers input-
specific and input-agnostic attacks and considers white-box
and black-box setups. We select these attacks considering
the objective of retracing the attacker from the adversarial
image.

We use AID to explore PRAT with a proposed frame-
work that is built on the intuition that attack algorithms
leave their peculiar signatures in the adversarial examples.
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As seen in Fig. 1, these traces might reveal interesting infor-
mation that can help in profiling the attacker. Our technique
works on the principle of extracting those signatures. At the
center of our framework is a signature extractor which is
trained to extract input-specific signatures. Unlike random
noise, these traces contain global as well as local structure.
We design a signature extractor consisting Global-LOcal
Feature extractor (GLOF) modules that combine CNN’s
ability to learn local structure [26] and transformer’s capa-
bility to capture global information [46, 47, 14]. These sig-
natures contain information which corresponds to the attack
algorithm and we use this signature to identify the attack
leveraged to generate the adversarial example.

Our contributions are summarized as follow.
• We put forth a new problem of PRofiling Adversarial

aTtacks (PRAT), aimed at profiling the attacker. We
formalize PRAT to provide a systematic guideline for
research in this direction.

• We propose an effective framework to provide the first-
of-its-kind solution to the PRAT problem which con-
sists of a hybrid Transformer network that combines
the capabilities of CNNs and attention networks tar-
geted to solve PRAT.

• We introduce a large Adversarial Identification Dataset
(AID), comprising 180k+ adversarial samples gener-
ated with 13 different attacks. AID is used to exten-
sively study PRAT, leading to promising results.

2. Related Work
Adversarial attacks and defenses are currently a highly

active research direction. Our discussion here focuses on
the relevant aspects of this direction with representative ex-
isting techniques. The discovery of adversarial suscepti-
bility of deep learning was made in the context of visual
classifiers [43]. [43] demonstrated that deep models can
be fooled into incorrect prediction by adding imperceptible
adversarial perturbations to the input. Hence, to efficiently
compute adversarial samples (for adversarial training), [16]
proposed the Fast Gradient Sign Method (FGSM). Concep-
tually, the FGSM takes a single gradient ascend step over
the loss surface of the model w.r.t. input to compute the ad-
versarial perturbation.

[25] enhanced FGSM to iteratively take multiple small
steps for gradient ascend, thereby calling their strategy Ba-
sic Iterative Method (BIM). A similar underlying scheme
is adopted by the Projected Gradient Descent (PGD) attack
[31], with an additional step of projecting the gradient sig-
nals on a pre-fixed ℓp-ball to constrain the norm of the re-
sulting perturbation signal. All the above attacks must com-
pute model gradient to compute the perturbations. Hence,
we can categorise them as gradient-based attacks. More-
over, the gradient computation normally requires complete

knowledge of the model itself hence categorized as white-
box attacks. Other popular gradient based attacks include
Carlini & Wagner attack [6], DeepFool [34] and Jacobian
Saliency Map Attack (JSMA) [35].

Black-box attacks do not assume any knowledge of the
model, except its predictions. The most popular streams of
black-box attacks are query-based attacks, which allow the
attacker to iteratively refine an adversarial example by send-
ing the current version to the remote model as a query. The
model’s prediction is used as feedback for improving the
adversarial nature of the input. If the attacker only receives
the model decision (not its confidence score), then such an
attack is called a decision-based attack. Currently, the de-
cision based attacks are more popular in black-box setups
due to their pragmatic nature. A few recent representative
examples in this category include [37], [40], [15], [27].

With the discovery of adversarial samples, there is an
increased interest in devising defences, of which, the most
popular strategy is adversarial training [16, 22, 31, 45, 48].

The existing literature also covers a wide range of other
defense techniques, from augmenting the models with ex-
ternal defense modules [36, 28, 12] to certified defenses
[23, 44, 11]. Here, we emphasize that these defenses gener-
ally come at considerable computational cost and degrada-
tion in model performance on clean inputs.

Instead of proposing yet another defense, we take a dif-
ferent perspective on addressing the adversarial suscepti-
bility of deep learning. Assuming a deployed model, we
aim at identifying the capabilities of the attacker. Such an
attacker profiling can help in adversarial defenses outside
the realm of deep learning. This is more practical because
it can eventually allow deep learning models to disregard
intrinsic/appended defensive modules that result in perfor-
mance degradation, causing deep learning to lose its advan-
tage over other machine learning frameworks.

3. The PRAT Problem
The PRofiling Adversasrial aTtacks (PRAT) problem is

generic in nature. However, we limit its scope to visual clas-
sifiers in this work for a systematic first-of-its-kind study.
Let C(.) be a deep visual classifier such that C(I) : I → ℓ,
where I ∈ Rm is a natural image and ℓ ∈ Z+ is the output
of the classifier. For attacking C(.), an adversary seeks a
signal ρ ∈ Rm to achieve C(I + ρ) → ℓ̃, where ℓ̃ ̸= ℓ. To
ensure that the manipulation to a clean image is humanly
imperceptible, the perturbation ρ is norm-bounded, e.g., by
enforcing ||ρ||p< η, where ||.||p denotes the ℓp-norm of a
vector and ‘η’ is a pre-defined scalar. More concisely, the
adversary seeks ρ that satisfies

C(I+ ρ) → ℓ̃ s.t. ℓ̃ ̸= ℓ, ||ρ||p< η. (1)

The above formulation underpins the most widely adopted
settings for the adversarial attacks, where ρ is a systemat-



ically computed additive signal. From our PRAT perspec-
tive, we see this signal as a function ρ(A, {I}, C), where
A identifies the algorithm used to generate the perturbation
and {I} indicates that ρ can be defined over a set of images
instead of a single image.

In practice, the targeted model C must already be de-
ployed and the input I fixed during an attack leavingA as
the point of interest for the PRAT problem. For clarity,
we often refer to A directly as ‘attack’ in the text. To ab-
stract away the algorithmic details, we can conceptualize
A as a function A({φ}, {ψ}), where {φ} denotes a set of
abstract design hyper-parameters and {ψ} is a set of nu-
meric hyper-parameters. To exemplify, the choice of the
scope of the adversarial objective, e.g. universal vs image-
specific, is governed by an element in {φ}. Similarly, the
choices of ‘η’ or ‘p’ values in Eq. (1) are overseen by the el-
ements of {ψ}. Collectively, both sets contain all the hyper-
parameters available to an attacker to compute ρ.

We are particularly interested in the design choices made
under {φ}. In the considered settings, {φ} is a finite set
because each of its elements, i.e., φi ∈ {φ}, governs a
choice along a specific design dimension under the practical
constraint that the attack must achieve its fooling objective.
Nevertheless, in this work, we are not after exhaustively list-
ing the elements of {φ}. Instead, we specify only three rep-
resentative elements to demonstrate the possibility of attack
profiling. These three elements are 1) φ1-model gradient
information, 2) φ2-black-box prediction score information,
and 3) φ3-attack fooling scope.

It is possible to easily extend the above list to incorpo-
rate further design choices. The criterion for a parameter
to be enrolled in {φ} is that a single choice should cover
a range of existing attacks. For instance, φ1 can either be
true for a family of attacks Fa

1 of gradient-based attacks
and can be false for non-gradient based attack family Fb

1 .
Similarly, when φ2 = true, we get an attack family Fa

2 of
score-based black-box attacks[30, 20], and φ2 = false
yields Fb

2 that represents decision-based attacks[4, 3, 10].
Similarly, φ3 = true results in the Fa

3 representing uni-
versal attacks and φ3 = false corresponds to the family
Fb

3 consisting input-specific attacks.

In the above formalism, Fx
i ∩ Fy

i = ∅ always holds
for the resulting attack families. However, we must al-
low Fx

i ∩ Fx
j ̸= ∅ because an attack family resulting

from φi may still make choices for φj ̸=i without any con-
straint.Let Fi = {f i

1, f
i
2, ..., f

i
Z} denote the ith attack family

with ‘Z’ adversarial attacks that are formed under φi such
that all f i

z ∈ Fi satisfy the constraint in Eq. (1). Then,
f i
z(I) → Ĩ s.t. C(Ĩ) → ℓ̃ ̸= ℓ, ||ρ||p< η. In this setting,

the core PRAT problem is a reverse mapping problem that
computes Ψ(Ĩ) → f i

z , given a set of ‘N ’ attack families
F = {F1,F2, ...,FN}. We must seek Ψ(.) to solve this.

4. Adversarial Identification Dataset (AID)
To investigate the PRAT problem, we develop Adversar-

ial Identification Dataset (AID). Below, we detail different
attacks A, attack families F and their design and numeric
hyper-parameters ({φ}, {ψ}) considered in AID.

Most of the existing literature on adversarial attacks con-
centrates on devising novel attack schemes or robustifying
models against the attacks. Multiple existing adversarial
attack libraries are available to generate adversarial sam-
ples on-the-fly. However, for our problem, it is imperative
that we store the generated adversarial perturbations to an-
alyze them for reverse engineering. This motivates the cu-
ration of Adversarial Identification Dataset (AID) that com-
prises perturbations generated by leveraging different attack
strategies over a set of images targeting different pre-trained
classifiers. In line with our PRAT problem, AID consists of
3 different attack families (gradient-based, decision-based,
and universal) with 13 different attack strategies resulting
in over 180k samples. We discuss these families next.

4.1. Attack Families
Gradient based attacks: Gradient based attacks are

able to exploit the gradients of the target model to perturb
input images. Since the attacker needs access to the gradi-
ents, these attacks are typically white box in nature. Our
gradient-based attack family consists of Fast Gradient Sign
Method (FGSM) [16], Basic Iterative Method [25], Newton-
Fool [21], Projected Gradient Descent(PGD) [31], Deep-
Fool [32], Carlini Wagner (CW) [7] attacks.

Decision based attacks: Decision-based attacks are ap-
plied in black-box setups where the attacker only has access
to the decision of the target model. The attacker repeat-
edly queries the target model and utilizes the decision of
the model to curate the perturbation. We consider Additive
Gaussian Noise, Gaussian Blur, Salt & Pepper Noise, Con-
trast Reduction, and Boundary Attack [5] for this family.

Universal attacks: Universal attacks generalize across
a dataset. A single perturbation is sufficient to fool the net-
work across multiple images with a desired fooling proba-
bility. Most common approaches to generate universal per-
turbations either iteratively compute perturbations by grad-
ually computing and projecting model gradients over input
batches, or use generative modeling to compute image ag-
nostic perturbations. We consider Universal Adversarial
Perturbation (UAP) [33], Universal Adversarial Network
(UAN) [17] for the universal attack family.

4.2. Dataset creation
Benign samples: We require clean images to create an

adversarial perturbation. We utilize ImageNet2012 [39] val-
idation set consisting of 50k images spanning across 1000
classes. We split the validation set into two exclusive parts,
forming training and test partitions of AID. The training
set of perturbed images for AID is generated by randomly



choosing 4k images per network per attack from the training
partition. Similarly, the test set of perturbed images is gen-
erated by randomly choosing 800 images per network per
attack from the test partition. Note that each attack image
can be computed with different networks i.e. target models.
We discuss these in the following section.

Target models: We consider three target models;
ResNet50 [18], DenseNet121 [19] and InceptionV3 [42].
Using multiple models ensures that the adversarial samples
are not model specific.

Attack settings: In practice, there can be variations in
perturbations norm for an attack - a hyper-parameter from
{ψ}. This variation is incorporated in AID by sampling η
from a range of values. For attacks constructed under l∞
norm, we consider a range of {1, 16} and {1, 10} for l2
norm based attacks. The procedure of generating the en-
tire dataset as well as the summary statistics are further de-
tailed in the supplementary material of the paper. We also
summarise the considered attacks, their families, and used
perturbation norm-bounds in Table 1.

5. Proposed Approach
Here, we discuss the design choices we consider for

solving the PRAT problem Ψ(Ĩ) → f i
z . A simple approach

to solve PRAT could be to build a classifier C(Ĩ) → f i
z

that identifies the attack leveraged to generate the adversar-
ial input Ĩ. In such a scenario, the underlying patterns in
the perturbation ρ are closely intertwined with the benign
sample I, thus making the problem much harder. To solve
it, we design a signature extractor Ω(Ĩ) → ρ̃ that generates
a signature ρ̃ from the adversarial input s.t. it lies close to
the original perturbation ρ while preserving patterns help-
ful in identifying the attacker. The objective of the signature
extractor is

Ω(Ĩ) → ρ̃, ||ρ̃− ρ||2= δ, min(δ). (2)

While the objective draws similarities with existing prob-
lems like denoising/deraining, signature extraction is rel-
atively complex. Noise/rain pertaining to these tasks are
largely localized in nature and are visually perceptible in
most cases which is not the case for PRAT that makes the
problem more challenging and requires methods beyond
standard techniques aimed at denoising and other low-level
computer vision tasks.

Extracted signature is utilized to train a classifier C that
identifies the attack. The objective of the classifier is

C(ρ̃) → f i
z, where f i

z(I) → Ĩ, (3)

where, ρ̃ is the generated signature, f i
z is the zth attack from

the ith toolchain family. Figure 2 shows an overview of the
proposed approach highlighting the signature extractor and
the attack classifier.

label Attack Method Family Setup NB

0 PGD [31] Grad. WB l∞
1 BIM [25] Grad. WB l∞
2 FGSM [16] Grad. WB l∞
3 DeepFool [32] Grad. WB l∞
4 NewtonFool [21] Grad. WB l2
5 CW [7] Grad. WB l2
6 Additive Gaussian [38] Grad. BB l2
7 Gaussian Blur [38] Grad. BB l∞
8 Salt&Pepper [38] Grad. BB l∞
9 Contrast Reduction [38] Dec. BB l∞
10 Boundary [5] Dec. BB l2
11 UAN [17] Uni. WB l∞
12 UAP [33] Uni. WB l∞

Table 1: Summary of the attacks in AID. Grad., Dec. and
Uni. denote Gradient-based, Decision-based and Universal
attacks. BB and WB denote Black- and White-box attacks.
NB is the norm bound on perturbation.

Signature Extractor: It serves the purpose of extracting
a signature with patterns specific to the attack. As shown in
Fig.2, the signature extractor has two streams of informa-
tion flow progressing through a series of GLOF modules.
Each stream is designed to capture local or global features
along with feature sharing across them. GLOF module uti-
lizes convolutional layers to extract local features while at-
tention mechanism applied over image patches help in at-
taining global connectivity. Conjunction of global and local
features help reconstruct a rectified image that lies in the
neighborhood of the clean image. Subtracting the rectified
image from the adversarial image yields the signature.

The input adversarial image Ĩ ∈ RH×W×3 (H, W corre-
spond to image height and width and 3 corresponds to the
RGB channels) is split into a series of patches. The patches
are flattened and projected onto the embedding space of di-
mension D1. Similar to [14], we add positional embed-
dings to the patch embeddings. The resulting patch em-
bedding is termed T0 ∈ RN×D1 (0 referring to the initial
feature level and N referring to the number of patches).

Alongside, the input image is projected to an embedding
dimensionD2, by applying a 3× 3 Conv with D2 features.
We term these features Z0 ∈ RH×W×D2 (0 refers to the
initial feature level). Features extracted from previous level
(l − 1) are passed on to the next GLOF module.

Tl,Zl = GLOF (Tl−1,Zl−1); l = 1...L (4)

Where L is the number of GLOF modules. The output of
the final GLOF module corresponding to the convolutional
arm Zl is transformed to RGB space by applying a 3 × 3
Conv with 3 feature maps resulting in the rectified image
Ir ∈ RH×W×3. Finally, to extract the signature from the
rectified image, difference of the rectified and the original
image is considered ρ̃ = Ĩ − Ir.



Figure 2: (Left) Schematics of the proposed approach. (Right) GLoF module architecture. In our method, an input adversar-
ial image is passed through a series of GLoF modules. Each GLoF module has two arms; one captures global dependencies,
the other captures local features. Extracted signature is fused with the adversarial image and fed to attack classifier.

GLOF Module: Standard convolutional layers are good
at extracting local patterns [24]. On the other hand, trans-
formers are known to be extremely powerful in learning
non-local connectivity [13]. As seen in [14], vision trans-
formers fail to utilize the local information [29]. Overcom-
ing these limitations, we propose Global-LOcal Feature ex-
tractor (GLOF) module to combine CNN’s ability to extract
low-level localized features and vision transformer’s abil-
ity to extract global connectivity across long range tokens.
Detailed schematic of the GLOF module is given in Fig.2.

The GLOF module at any level receives the local and
global features from the previous level.

Local features: Embedded 2D image features from the
previous layerZl−1 are fed to a ResNet block[18] with con-
volutional, batch norm and activation layers.

Global features: Embedded tokens are fed to attention
mechanism[46]. Series of tokens from previous layer Tl−1

are passed through a multi-head attention layer which calcu-
lates the weighted sum. A feed forward network is applied
over the attention output consisting of two dense layers that
are applied to individual tokens separately with GELU ap-
plied over the output of the first dense layer[14].

T2I Block: Features from the attention arm correspond-
ing to the global connectivity are merged with the convolu-
tional arm. Token to Image (T2I) is responsible for rear-
ranging the series of tokens to form a 2D grid. This trans-
formed grid is passed to a series of convolutional layers to
obtain the feature map with the desired depth and is merged
with the features from the convolution arm of the GLOF
module. The merged features as well as the learned token
embeddings are passed to consecutive GLoF modules.

Attack Classifier: The generated signature is specific to
the input. Since the input contains contextual information,
we complement the extracted signature with the adversar-
ial input and feed it to the attack classifier. The fusion is
done by applying a series of convolutional layers over the

signature and the input separately and concatenating them.
Training objective: We utilize two learning objectives

in our framework. We use L2 loss to minimize the distance
of generated signature ρ̃ to the raw perturbation ρ. Along-
side, the attack classifier is modelled with cross-entropy
loss to generate probability scores over a set of classes.

6. Experiments
We evaluate the performance of the proposed approach

on AID under various settings and also present extensive
ablations that support the design choices.

Implementation details: The signature extractor com-
prises of 5 GLOF modules with the attention arm embed-
ding dimension of 768 and the convolutional arm embed-
ding dimension of 64. The T2I block consists of two con-
volutional layers with kernel size 5 each followed by batch
normalization. We use a patch size of 16x16 and 12 atten-
tion heads. Each convolutional arm in the GLOF module
consists of a ResNet block with 2 convolutional layers of
kernel size 5, batch norm and a skip connection. We use
DenseNet121[19] as the attack classifier. Final layers of the
attack classifier are adjusted to compute probabilities over
13 classes for attack identification and 3 classes for attack
family identification.

GLOF Variants: Standard GLOF module consists of
convolution and attention arms. We introduce variants of
GLOF that exclusively contain either of the arms allowing
us to study the contribution of local and global features sep-
arately. We term GLOF-C, referring to the GLOF module
with only the convolutional arm and GLOF-A, referring to
the GLOF module containing only the attention arm.

Experimental Setup: We employ a two-stage training
strategy to train the overall pipeline. In the first stage, the
signature extractor is trained to produce the rectified image.
Benign samples corresponding to the adversarial inputs are
used as the ground truth. Adam optimizer and L2 loss are
used to pre-train the signature extractor. In the second stage,



Method Attack
Identification

Attack Family
Identification

no. of
params

ResNet50[18] 68.27% 80.11% 24.7M
ResNet101[18] 71.03% 80.38% 43.8M
ResNet152[18] 67.03% 78.48% 59.5M
DenseNet121[19] 73.20% 84.21% 8.2M
DenseNet169[19] 72.22% 84.10% 14.3M
DenseNet201[19] 73.07% 81.69% 20.2M
InceptionV3[42] 69.96% 81.91% 22.9M
ViT-B/16[14] 63.91% 75.89% 85.8M
ViT-B/32[14] 54.61% 72.34% 87.4M
ViT-L/16[14] 67.28% 78.25% 303M
ViT-L/32[14] 55.23% 72.62% 305M

Ours 80.14% 84.72% 47.8M

Table 2: Performance of different methods on AID focus-
ing on identifying 13 different attacks and 3 attack families.

the overall pipeline with the pre-trained signature extractor
is further trained. We use cross-entropy loss to train the net-
work with Adam optimizer with a learning rate of 1e−4 and
momentum rates of 0.9 and 0.999. We use exponential de-
cay strategy to decrease the learning rate by 5% every 1k it-
erations. All experiments are conducted on NVIDIA V100
GPU with a batch size of 16. Two stage training helps in
faster convergence of the overall network, allows the signa-
ture extractor to learn better, and removes the need to retrain
it if novel attacks are included.

Evaluation metrics: Since the main objective of the
PRAT is classification, we use accuracy to compare across
several techniques. We also evaluate the performance of the
signature extractor using PSNR and SSIM scores calculated
over the rectified image and the benign sample.

Baselines: Since the PRAT problem is first-of-its-kind,
we develop several baselines and compare our technique
against them. PRAT at its core is a classification prob-
lem, we look at the existing visual classifier models and
train them accordingly for the PRAT problem. We consider
variants of ResNet [18], DenseNet [19], Inception [42] and
different versions of Vision Transformer[14]-{ViT-B, ViT-
L}as baselines. In line with the original work, ViT-B refers
to the Base version of ViT with 12 encoder layers and ViT-
L is the Large version with 24 encoder layers. We analyze
patch sizes of 16x16 and 32x32 for both the variants.

6.1. Results
Attack Identification: Table 2 reports the results on

PRAT problem evaluated on AID under two settings: iden-
tifying the attack as well as the attack family. Our approach
with the pre-trained signature extractor, feature fusion and
the attack classifier achieves 80.14% accuracy on the attack
identification and 84.72% on attack family identification.

Comparison with baselines: Table 2 compares the per-
formance of our network against other baselines. The

Figure 3: Confusion matrix: The labels of the classes are
in accordance with the order in Table 1.

top performing compared method, DenseNet121[19], is
surpassed by our technique in both categories by a mar-
gin of 6.94% in attack identification and 0.51% in attack
family identification. In general, variants of ResNet[18]
and Inception[42] under perform when compared with
DenseNet[19] versions. Comparing with versions of
ViT[14], CNNs have fewer number of parameters and per-
form much better in both the settings. One reason for this
being that ViT requires large amounts of training data. We
also observe a drop in accuracy with increase in a patch
size from 16x16 to 32x32 suggesting that ViT[14] strug-
gles to accurately capture the local intrinsic properties as the
patch becomes bigger. We also evaluate the performance
of Wiener filtering combined with a classifier. This setting
achieves 67.55% compared to 80.14% by the GLOF based
model. It is evident that identifying attack family is simpler
compared to identifying the specific attack.

6.2. Ablations
Table 3 presents the ablation study on the proposed net-

work. Full model refers to the complete pipeline with
pre-trained signature extractor and a classifier accepting
fused features form the signature and the input which yields
80.14% on AID.

Effect of pre-training: Transformers are known to work
well with pre-training. Without pre-training of the signature
extractor the accuracy drop to 79.20%.

Effect of GLOF module: Signature extractor with ex-
clusively GLOF-C variant yields an accuracy of 78.66%
while its counter part with GLOF-A variant(without CNN
blocks) only achieves 73.61% indicating the importance of
both the components for a better performance on PRAT.

Effect of Fusion: The fusion module combines the fea-
tures from the extracted signature and the adversarial im-
age. Removing such fusion module and only relying on the



Method Accuracy

Full model 80.14%
without pre-training 79.20%
without global connectivity- GLoF-C 78.66%
without local connectivity- GLof-A 73.61%
without Feature Fusion 78.87%
without Signature Extractor 73.20%

Table 3: Ablation study for Attack Identification. Full
model has a pre-trained signature extractor and a classifier
accepting fused product of the signature and features.

GLoF Variant PSNR SSIM

GLoF-C 31.49 0.88
GLoF-A 31.53 0.87
GloF(Attn. heads= 4) 30.96 0.87
GloF(Attn. heads= 8) 30.93 0.88
GloF(Attn. heads= 12) 31.55 0.89
GloF(Attn. heads= 16) 31.54 0.89

Table 4: Quantitative results of Signature Extractor.
GLoF-C and GLoF-A refer to the variants of GLoF exclu-
sively containing local and global connectivity respectively.

# GLoF n = 1 n = 3 n = 5 n = 7 n = 9

Accuracy 79.20% 79.65% 80.14% 79.22% 79.90%

Table 5: Effect of number of GLoF modules n on the per-
formance of attack identification

extracted signature results in an accuracy of 78.87%.
Effect of Signature Extractor: While Signature Extrac-

tor acts as the crux of the overall pipeline, removing it is no
different than the baseline DenseNet121 [12] from table 2
which yields 73.20%.

6.3. Analysis and Discussion
Confusion Matrix: We analyze class wise scores and

the confusion matrix of the predictions from the proposed
approach in Fig 3. From the confusion matrix, we observe
the common trend of relatively high scores for all decision
based attacks except for boundary attack. With scores close
to 1, these attacks have distinctive patterns which are be-
ing easily identified by the signature extractor. Boundary
attack do not always have specific patterns because of the
way they are generated. Boundary attack performs a ran-
dom walk on the decision boundary minimizing the amount
of perturbation. Similarly, universal attacks generate dis-
cernible patterns making it easier for detection. Major con-
fusion occurs in the gradient based attacks among Newton-
Fool, DeepFool and CW attack. These attacks being highly
powerful, are targeted on generated nearly imperceptible
perturbations specific to the input image, making it difficult

Method Train
Set

Performance on
different test sets

AID-R AID-D AID-I

ResNet50
[18]

AID-R 71.46% 65.74% 62.90%
AID-D 66.15% 66.88% 61.46%
AID-I 59.69% 65.22% 66.96%

DenNet121
[19]

AID-R 70.01% 66.89% 58.46%
AID-D 55.77% 73.71% 53.83%
AID-I 63.3% 66.96% 69.54%

InceptionV3
[42]

AID-R 66.35% 60.51% 61.29%
AID-D 63.02% 66.05% 62.54%
AID-I 59.21% 60.03% 68.72%

Proposed
Approach

AID-R 75.41% 73.56% 69.76%
AID-D 70.46% 74.42% 67.42%
AID-I 69.95% 69.88% 73.12%

Table 6: Cross Model Attack Identification. AID-
R, AID-D, and AID-I refer to the subsets of AID con-
taining perturbations corresponding to the target mod-
els ResNet50[18], DenseNet121[19] (abbreviated as Den-
Net121) and InceptionV3[42] respectively.

for the method to identify and distinguish.
Signature Extraction: Table 4 investigates the perfor-

mance of the signature extractor under various settings.
Standard GLOF achieves higher PSNR and SSIM scores
over GLOF-C and GLOF-A indicating that global and local
connectivity used in conjunction help in better reconstruc-
tion. We also report the variation in reconstruction scores
when the number of heads m in multi head attention are in-
creased. GLoF modules with 12 heads achieves the highest
scores of 31.55 PSNR and 0.89 SSIM.

Number of GLOF modules: We analyze the perfor-
mance of the network by varying the number of GLOF mod-
ules. Signature Extractor with as low as a single GLOF
module achieves 79.20% (+6% over baseline) thus indicat-
ing its effectiveness. Employing 5 GLoF modules yields the
best accuracy of 80.14%.

Cross model attack identification: We analyze the per-
formance of our network on cross model attack identifica-
tion. AID consists of attacks generated by targeting 3 dif-
ferent networks. For this experiment, we split AID into
three subsets containing perturbations related to the cor-
responding target model. AID-R, AID-D, AID-I refer to
subsets of AID containing perturbations corresponding to
ResNet50[18], DenseNet121[19] and InceptionV3[42] as
target networks. Each subset is further split into train-test
sets. Table 6 details the results on cross model attack iden-
tification of several baselines compared against our tech-
nique. In general, we observe that the networks perform
well when trained and tested on the same subsets of AID.
The proposed technique performs better in all cases com-
pared to other baselines. This experiment suggests that per-
turbations from different target models also contain similar



Figure 4: Visualizations of features learned by the attack
classifier. (a) t-SNE for specific attack categories. Labels
are according to Table 1 (b) t-SNE for attack families. La-
bels {0,1,2} refer to {gradient, decision, universal} attacks.

traces that can be leveraged to profile the attacker.
Success rate vs. Identifiability: While the stronger at-

tacks like PGD have a 100% fooling rate, the weaker black
box attacks have a success rate of atleast 65% for the sam-
ples considered in AID. We also study the indentifiability
vs success rate for the FGSM class and find that our tech-
nique achieves 74.9% accuracy for an epsilon as low as 2
and 94.5% for an epsilon of value 16. We observe an up-
ward increasing trend as the epsilon increases indicating an
increasing level of perceptibility of the patterns.

Identifying unseen attacks: With the increasing threat
to neural networks, it is likely for the PRAT problem to
encounter novel/unseen attacks. To experiment the effec-
tiveness of the proposed network we devise an experiment
which includes identifying the toolchain family of an un-
seen attack. For this, we split AID into two different sets
containing mutually exclusive attack categories. We retrain
the overall pipeline and test it on the unseen classes which
achieves an accuracy of 57.2%. We extend our approach
to register novel attacks with minimal training set using
toolchain indexing(discussed in supplementary). Identify-
ing open set novel attacks under PRAT scenario remains
challenging due to the fact that the unseen perturbations are
nearly imperceptible and are difficult to distinguish.

Feature visualization: We study the separability of ex-
tracted features by analyzing the t-SNE plots of a set of fea-
tures extracted from the penultimate layer of the attack clas-
sifier. Fig.4 shows the three toolchain families forming sep-
arate clusters. Due to their ‘universality’ constraint, univer-
sal perturbations form a clear cluster and are easily distin-
guishable. While gradient based attacks share similar tech-
niques, decision based attacks have distinctive approaches
based on the decision of the network. Hence we observe the
overlap between gradient and decision based attacks. Fig.4
shows the t-SNE plots over specific classes. Boundary At-
tack has the maximum overlap with other attacks. In gradi-
ent based attacks, DeepFool, NewtonFool and CW attacks
overlap with each other indicating that they generate similar
patterns thus making it difficult to distinguish them.

Figure 5: Adversarial images, their perturbations (nor-
malized) and the corresponding signature(normalized) ex-
tracted by the proposed approach.

Reconstructions: Fig 5. depicts the adversarial images,
corresponding perturbations and the signatures extracted by
the our method. In general, the extracted signatures have
patterns highlighting the object from the image. This is due
to the fact that extracting these nearly imperceptible per-
turbations accurately is always challenging. These patterns
along with the patterns pertaining to the attacker help in
training the attack classifier to identify the attacker.

7. Conclusion
We presented a new perspective on adversarial attacks

indicating the presence of peculiar patterns in the perturba-
tions that hint back to the attacker. We formulate the PRAT
problem - given the adversarial input, profile the attack sig-
nature to identify the attack used to generate the sample.
We develop Adversarial Identification Dataset and compare
several baseline techniques on the proposed dataset. Target-
ing PRAT, we propose a framework that combines CNN’s
capability to capture local features and Transformer’s abil-
ity to encode global attention to generate signatures con-
taining attack-specific patterns, which are used by an at-
tack classifier to identify the attack. Extensive experiments
showcase the efficacy of our framework and support the
credibility of the proposed PRAT problem.
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