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Abstract

This paper presents "FireFly", a synthetic dataset for em-
ber detection created using Unreal Engine 4 (UE4), designed
to overcome the current lack of ember-specific training re-
sources. To create the dataset, we present a tool that allows
the automated generation of the synthetic labeled dataset
with adjustable parameters, enabling data diversity from
various environmental conditions, making the dataset both
diverse and customizable based on user requirements. We
generated a total of 19,273 frames that have been used to
evaluate FireFly on four popular object detection models.
Further to minimize human intervention, we leveraged a
trained model to create a semi-automatic labeling process
for real-life ember frames. Moreover, we demonstrated an
up to 8.57% improvement in mean Average Precision (mAP)
in real-world wildfire scenarios compared to models trained
exclusively on a small real dataset.

1. Introduction
Wildfires are critical global issues, exemplified by recent

events of unprecedented severity, such as the 2023 wildfires
that consumed about 1.3 million acres of land and caused
immense disruption [31]. California, a region notorious for
recurrent wildfires, has also experienced significant wildfire
activity, with 408 fires burning a total of 131 acres by March
20, 2023 [32].

The destructive potential of wildfires extends beyond their
immediate heat radiation. Airborne debris from fire fronts,
known as embers or firebrands, can cause substantial damage,
often outstripping the wildfires themselves [10]. Research
on wildland urban interface (WUI) wildfires has shown the
significant role of embers in causing damage [9]. Embers can
travel substantial distances from the main fire front, making
it challenging to predict their trajectories [14, 17]. They can
potentially ignite fires when landing on building roofs or
entering attics through vents [26, 7].

Previous research has applied machine learning systems

Figure 1. Example of various weather and severity conditions in
our synthetic dataset (a) night, (b) evening, (c) early small fire, (d)
low visibility, (e) heavy smoke and (f) sunny. The circles show the
zoomed-in image with auto-generated labels.

for wildfire detection and perimeter mapping[30, 2, 19],
which are potentially deployable across a range of plat-
forms, such as watch towers, helikites aerostats [1], and
autonomous drones [25]. An ember detection system could
play a crucial role after mandatory evacuations, focusing
on vulnerable structures and potentially preventing severe
damage. Detecting and tracking embers could guide in-
telligent response systems to prioritize the actions of first
responders or guide drones to targeted areas for fire retardant
delivery [25, 8, 18, 13]. However, a significant obstacle in
developing such systems is the lack of datasets specifically
designed for ember detection. Current datasets primarily
focus on flames and smoke [4, 5, 3, 6], leaving a gap in
the ember-specific training material. Collecting real-world
data from wildfires poses significant risks and does not cap-
ture the diversity of environments where embers may occur.
Although manual annotation of real experiment videos has
been attempted [24], this process is highly time-consuming.

To address this gap, this paper presents FireFly, a syn-
thetic wildfire ember dataset created using Unreal Engine
4 (UE4) [15]. Developing synthetic datasets using a game
engine has multiple advantages: it significantly reduces the
reliance of computer vision machine learning on manual
annotations and users can readily diversify the dataset and
enhance model robustness through multi-scene generation,
as depicted in Fig 1. This is accomplished by adjusting
parameters including forest type, ember type, size, season,
atmospheric environment, background, lighting condition,
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Figure 2. Workflow for generating FireFly

and camera angle, thereby enriching the dataset’s variability.
We evaluated the dataset using four popular object de-

tection models [21, 27, 28, 11], providing insights into the
capabilities and limitations of these models in identifying
multiple small objects in a single frame. We also performed
inference using real world forest fire recordings with the
models to demonstrate their ability to generalize to real-
world images after training with FireFly.

This paper aims to contribute towards the development
of more effective wildfire response systems by providing
the synthetic dataset specifically for wildfire embers. Our
contributions are as follows.

• We have developed custom tools to automatically gen-
erate synthetic labeled dataset with dense small objects,
and make the parameters controlling the diversity of the
data adjustable.

• Using this tool we generated the first large-scale syn-
thetic dataset for ember detection. Our dataset consist
of 19,273 images with burning leaves and sparks span-
ning diverse environmental conditions such as weather,
light and atmospheric visibility, forest types, and smoke
intensity.1

• We have demonstrated that our synthetic dataset can
serve as an effective tool for comparing the performance
metrics of various mainstream detection models under
extreme testing conditions as well as enabling a semi-
automatic labelling flow of real-life ember frames. We
performed empirical evaluations to demonstrate the ef-
ficiency of the presented on real world use case. Specif-
ically, our method offers substantial enhancements in
the context of real-world wildfire scenarios. We ob-
served significant improvements in the mean Average
Precision (mAP) detection metrics, with an increase
of up to 8.57% compared to models that were trained
solely on a smaller real dataset.

2. Creation of the FireFly Dataset
The FireFly dataset is created in UE4 using two distinct

forest types, dense taiga and deadwood forest, as the base
1The dataset and associated program are open-sourced at

https://github.com/ERGOWHO/Firefly2.0.git

environment [23]. We then adjust various parameters such as
weather, light, and fog to create diverse world environments.
These parameters can be dynamically adjusted or preset with
a user-defined file.

The dataset comprises 14 scenes, each with a randomly
selected fire point. A camera simulates the perspective of a
firefighting drone, which can be manually positioned or cus-
tomized via an external file. The camera uses a perspective
projection mode with a 90-degree field of view and a 2560
x 1080 resolution and generates a configurable number of
output frames.

Embers in FireFly are created using UE4’s Niagara
particle system. We define ember data, including three-
dimensional coordinates, size, and particle count, using
blueprints and C++ scripts. This data is used to calculate
the bounding box of each particle in the 3D world, which is
then converted to a 2D bounding box based on the camera’s
view. To reduce distortion, we manually calibrate the ember
size. The bounding box and id are combined with the image
information captured by the camera to create the bounding
box ground truth for the frames. The workflow is illustrated
in Fig. 2.

3. Overview of the FireFly Dataset
As shown in Tab. 1, the FireFly dataset contains 19,273

frames of data, including 16,904 positive samples with em-
bers and 2,369 frames of negative samples without embers.
According to the type of ember, the dataset is partitioned into
two categories: ‘burning leaves’ that are characterized by
larger individual sizes but fewer in quantity, and ‘sparks’ that
are smaller in size but occur in denser distributions. These
are two common ignition sources for forest fires.

Burning leaves contains 6k frames of data, and its scenes
include a river and pond with slight water surface reflection,
and atmospheric haze environment with low visibility in
autumn. The forest background was chosen as dry dead
trees. The size of the burning leaves varies between large
(60 × 60 pixel average), medium (40 × 40 pixel average),
and small (20 × 20 pixel average). When firebrands are
formed and move under the action of wind, their density
will drop sharply with the increase of flight distance [29].
Burning leaves scenes are taken from a significant distance
away from the front edge of the fire, and their number is set
at 1 to 50 targets per frame.

Sparks contains 10.8k frames of data, and its main scenes
include day, evening, night, and low-visibility environments,
with some close-ups to the fire. Most of sparks are close to
the fire source, with small size, large number, and fast flying
speed. There are on average 200 small detection targets per
frame. We divide the dataset according to the size of the
sparks into small (3 × 17 pixel average), medium (3 × 45
pixel average), and large (11× 49 pixel average).

To better capture the complexity of wildfire embers, our
dataset includes a larger number of positive samples (16.7k
frames) than negative ones (2.3k frames). Despite deviating



Table 1. Firefly Dataset
Ember Type Scene # Average Objects Per Frame Ember Size #frames

Burning Leaves River/Dead Tree Forest1 1 Large 0.9k
Pond/Dead Tree Forest 1 Small/Medium 0.7k

Fog/Dry Wood/Dead Tree Forest 1 Large 0.7k
Fog/Dry Wood/Dead Tree Forest 2 Medium 0.7k

Fog/Dry Wood/Dead Tree Forest2 15 Small 1.2k
Sunny3 50 Medium/Large 1.8k

Sparks Cloudy Daytime/Tree Top 200 Medium 1.3k
Evening Sunset/Heavy Smoke 200 Medium 1.7k

Mist/Low Visibility 200 Medium 1.5k
Night/Warm Temperature 200 Small 0.8k

Daytime 200 Small 0.8k
Night/Cold Temperature 200 Small/Medium 2.4k

Mix Skylight/Temperature4 200 Small 2.4k

Empty Evening Sunset Time/Sunny 0 NA 2.3k

from real-world prevalence of negative cases, this enables
more effective training and improves model performance,
particularly in reducing false negatives (underreported wild-
fires)

We select several representative datasets with different
numbers of embers for testing. In the subsequent experi-
ments, we will use the dataset from the River/Dead Tree
Forest1 scene in Table 1 as the single ember dataset in Fig. 3.
The dataset from the Fog/Dry Wood/Dead Tree Forest2

scene will be used as the 15 ember dataset in Fig. 3 and
Fig. 5 for experimentation. The Sunny3 scene dataset will
be used as the 50 embers dataset (referred to as the 50em-
bers dataset in the following) in Figs. 3 and 5. Finally, the
Mix Skylight/Temperature4 scene dataset will participate in
the evaluation as the 200 ember dataset (referred to as the
200embers dataset) in Figs. 3 and 5.

4. Experimental Evaluation
4.1. Experimental Setup

We performed bounding box detection experiments on
four representative subsets of the FireFly dataset. Four mod-
els were evaluated in this process: Sparse R-CNN, RetinaNet,
DETR, and YOLOv7, using default hyperparameters from
MMDetection [12] and the YOLOv7 official repository [28].

Considering that the embers of the 200ember dataset are
extremely small and dense, we adjusted the pre-processing
of the image to have size 1, 280 × 1, 280 to obtain higher
resolution features.

When testing the performance of different models on the
same dataset and evaluating the performance of detection
models trained on various datasets, we employ a metric
known as mAP, or ’mean Average Precision.’ As depicted
in Figs. 3 and 5, we calculate the model’s average detection
accuracy at an IOU threshold of 0.5 and from 0.5 to 0.95.
These metrics allow us to effectively assess the model’s
capacity to detect objects accurately within the given datasets
and comprehend its robustness across different levels of
spatial precision.
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Figure 3. Detection comparison among models

4.2. Comparative Analysis of Detection Models

From the results shown in Fig. 3, we can see that all 4
models perform well on the identified synthetic subsets of 1
ember, 15 embers and 50 embers per frame. However, with
the increase in the number of embers and the reduction in
size, the metrics of RetinaNet, Sparse R-CNN and DETR
all dropped sharply. The mAP for DETR plummeted from
0.94 to 0.45, RetinaNet descended from 0.85 to 0.52, and
Sparse R-CNN dropped from 0.97 to 0.44. This is mainly
due to the backbone resolution they use, which makes it dif-
ficult to learn the features of extremely small targets in high-
resolution images. Whether it is downsampling achieved by
convolution or pooling, a large amount of target information
is lost. At the same time, it can be observed that the atten-
tion mechanism in DETR may tend to focus more on global
features, which could potentially create certain challenges
for the detection of small targets. However, the network of
YOLOv7 is designed based on high-resolution input and has
the best adaptability to our task. We thus choose YOLOv7
for subsequent experiments in this paper.



Figure 4. Real wildfire sparks frame evaluation

4.3. Evaluations in Real Ember Applications

To test our framework on real data, we used unlabeled
frames from forest fire videos acquired from U.S. Depart-
ment of Agriculture that contain embers of a wildfire at
Sycan Marsh Preserve, Oregon [20]. Since the amount of
embers produced by fires in real scenes is often very large
and densely distributed, as illustrated on the right-side of
Fig. 4, the cost of manually labeling these frames is very high.
In order to mitigate this problem, we developed an automatic
labeling program that leverages the YOLOv7 model [28]
in the AutoLabelImg framework [16]. We first used our
YOLOv7 model trained on our synthetic dataset to perform
automatic labeling and then applied manual adjustments to
correct for bad/missing bounding boxes. The result is a small
semi-automatically-labelled real-world dataset containing a
total of 240 images, of which 210 are used as training set
and 30 are used for evaluation.

Referring to Fig. 5, we initially evaluated the performance
of the YOLOv7 model trained exclusively on the synthetic
dataset by testing it on the real dataset. The results indicated
that, despite the absence of any training on the real dataset,
the model’s performance reached a functional level. Specifi-
cally, the model trained on the 50embers dataset achieved a
mAP of 0.31 at an IoU = 0.5 on the real dataset. Similarly,
the model trained on the 200embers dataset, as shown in
Fig. 4 left, achieved an mAP of 0.44 at the same IoU on the
real dataset. It is noteworthy that the YOLOv7 model trained
on the COCO dataset yielded a test metric of zero on the real
dataset, underscoring the necessity and utility of our dataset
for this task.

Our investigation encompassed three distinct training
methodologies. Method 1, denoted by the blue label in
Fig. 5, involved employing the actual dataset for comprehen-
sive supervised learning, leveraging the COCO dataset [22]
for pretraining, and then fine-tuning with real ember datasets.

Method 2, depicted by the green label (for 50 embers)
and orange label (for 200 embers) in Fig. 5, pretrains the
model on synthetic datasets and fine-tunes it using real ember
datasets, serving as a foundation for implementing transfer
learning on real-world datasets.

Lastly, Method 3, a hybrid strategy, utilizes a combina-
tion of synthetic and real-world datasets for comprehensive
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Figure 5. Comparison of test results on real dataset using different
training strategies

supervised learning. Here, we employed the COCO dataset
for pretraining and a hybrid dataset comprised of the 50 em-
bers (gray label in Fig. 5) and 200 embers (yellow label in
Fig. 5) datasets, supplemented with real ember datasets, for
fine-tuning.

The mAP at IoU = 0.5 for the model trained using
Method 1 converges to 0.70. This value is readily surpassed
by Method 2 after 30 epochs of training. The mAP at IoU =
0.5 for the model, which leverages pre-trained weights on the
200embers dataset, reaches 0.74. The final optimal mAP for
Method 2 is 0.76, representing a 8.57% improvement over
Method 1. Among all experiments, Method 3 achieves the
highest score of 0.28 on the more stringent mAP metric with
an IoU range of 0.5 to 0.95. Method 2 is our recommended
approach due to its efficient training, rapid convergence,
superior performance, and all without the need for additional
manual dataset mixing.

5. Conclusions

We designed a tool to automatically generate synthetic
labeled dataset with dense small targets, and made the param-
eters controlling the diversity of the dataset adjustable based
on UE. Using this approach, combined with reconstructions
of forest scenes and simulations of ember trajectories, we
released the large-scale synthetic dataset FireFly for ember
detection. Our dataset consists of 19,273 images with high
diversity. We tested the dataset on popular object detec-
tion models and demonstrates the relative effectiveness of
YOLOv7. Using our training strategies for the real wildfire
scene, the optimal mAP reaches 0.76 at IoU = 0.5, and 0.28
at IoU = 0.5 : 0.95, which is 8.57% higher than training
solely on a small semi-automatically-labelled real dataset.
In addition, our training strategy achieves higher accuracy
with fewer epochs than training only with the real dataset.
These results suggest our tool and dataset provide an effec-
tive framework for ML-based detection of real-life wildfire
embers.
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