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Abstract

Microscopy images are crucial for life science research,
allowing detailed inspection and characterization of cel-
lular and tissue-level structures and functions. However,
microscopy data are unavoidably affected by image degra-
dations, such as noise, blur, or others. Many such degra-
dations also contribute to a loss of image contrast, which
becomes especially pronounced in deeper regions of thick
samples. Today, best performing methods to increase the
quality of images are based on Deep Learning approaches,
which typically require ground truth (GT) data during train-
ing. Our inability to counteract blurring and contrast loss
when imaging deep into samples prevents the acquisition
of such clean GT data. The fact that the forward process
of blurring and contrast loss deep into tissue can be mod-
eled, allowed us to propose a new method that can circum-
vent the problem of unobtainable GT data. To this end, we
first synthetically degraded the quality of microscopy im-
ages even further by using an approximate forward model
for deep tissue image degradations. Then we trained a
neural network that learned the inverse of this degradation
function from our generated pairs of raw and degraded im-
ages. We demonstrated that networks trained in this way
can be used out-of-distribution (OOD) to improve the qual-
ity of less severely degraded images, e.g. the raw data im-
aged in a microscope. Since the absolute level of degra-
dation in such microscopy images can be stronger than the
additional degradation introduced by our forward model,
we also explored the effect of iterative predictions. Here, we
observed that in each iteration the measured image contrast
kept improving while detailed structures in the images got
increasingly removed. Therefore, dependent on the desired
downstream analysis, a balance between contrast improve-
ment and retention of image details has to be found.

Figure 1. Proposed scheme to improve deep tissue contrast.
(1) Pairs of data for supervised training are generated by degrad-
ing raw microscopy images using a suitable degradation function
d(x) composed of a blurring and a noising step. (2) During super-
vised network training, synthetically degraded images are used as
inputs and the original images as targets. (3) During inference, we
feed the original raw microscopy images once or iteratively into
the trained network (see Section 3).

1. Biological Motivation
In this work we applied our method (DEEPCONTRAST)

to microscopy images of liver tissue. The liver is a fre-
quently studied system in biomedical research, due to its
vital functions in the human body, e.g. blood detoxifica-
tion and bile production. Liver tissue is dense and com-
pact, composed of many different cell types that display
an intricate three-dimensional architecture. Still, many as-
pects of this structure are not fully understood, which drives
biomedical research to use modern microscopy techniques
to image large 3D sections of liver tissue at the highest
achievable quality and resolution.

Data presented in this work was obtained using a Laser
Scanning Confocal Microscope (LSM). This modality al-
lowed us to obtain highly detailed image data in large and
thick samples with sub-cellular resolution in all three spa-
tial dimensions. Unfortunately, the image quality inevitably
degrades in deeper layers of the imaged liver tissue, mostly
due to light scattering. This poses a challenge to better our
understanding of mesoscale structures that shape the liver
in its full 3D complexity. Therefore, methods that facilitate
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the downstream analysis of large 3D image data are much
sought after.

2. Related Work
Classical algorithms to enhance contrast in images of-

ten rely on the intensity histogram, typically altering the
overall histogram landscape with a set of predefined rules
to either obtain a more uniformly sampled distribution or to
match an histogram obtained from a desired reference. Ex-
amples to such algorithms are known as histogram match-
ing [8] or histogram equalization [20]. These approaches
are not content-aware, i.e., they follow specific rules inde-
pendent of the structures visible in the image to be mod-
ified. Contrast Limited Adaptive Histogram Equalization
(CLAHE) [34] is an example of widely used histogram
equalization method. We use this method as one of our
baselines methods due to its popularity and widespread use
in scientific image processing protocols.

Another popular family of algorithms used to improve
image quality and contrast are feed-forward deconvolution
methods such as the one by Richardson-Lucy [23, 14],
or the popular Huygens software from Scientific Volume
Imaging. These are iterative approaches that attempt to
undo the blurring induced by the point spread function
(PSF) of the microscope. The main drawback of such ap-
proaches is the assumption of spatial invariance of the PSF,
which does not hold in thick dense tissue microscopy.

Deep Learning (DL) based applications have proven to
perform especially well on several image restoration tasks
like denoising [29, 11, 3, 7, 22, 21], deconvolution [4, 9,
13], and super-resolution [19, 18, 26, 31, 32].

Content Aware Image Restoration (CARE) [29], uses su-
pervised DL methods to restores microscopy image quality
in various ways. However, in order to use CARE, it is nec-
essary to obtain low and high quality versions of the same
objects and structures, which is not possible in many real-
world scenarios, such as the one presented in this work. One
interesting insight with respect to out-of-distribution (OOD)
denoising is presented in [15]. In it, the authors show that
a network without trainable bias terms is more robust when
applied to inputs that contain levels of noise that are incon-
sistent (OOD) with respect to the training data.

One popular way to solve the problem of GT data being
required is to synthetically generate the required training
pairs [28]. In [6], the authors used “crapified” images, as
they call it, to obtain said training pairs for training super-
resolution networks and networks that increase the temporal
consistency in time-lapse movies. Others have used syn-
thetic data generation for object detection [30] or segmen-
tation [5].

Work specifically concerned with enhancing image con-
trast is less common. The FCE-Net [33] proposes a network
architecture specifically designed to enhance image contrast

in biological image data. Since this makes FCE-Net our
closest competitor, despite technically being a quite differ-
ent approach, we will always also compare our own results
to the ones obtainable with the FCE-Net.

3. Methods
Inspired by [29] and [6], we also set out to use the ma-

chinery of supervised learning in deep neural networks. In
our case, for the sake of improving image contrast in mi-
croscopy data of large tissue samples. To this end, we syn-
thetically generate appropriate training data, i.e. pairs of im-
ages that are of lower and higher contrast. Naturally, we
cannot synthetically remove scattered light and noise from
raw microscopy data, otherwise the very task we are seek-
ing a solution for would be solved already. Instead, we can
add additional light scattering and noise to the available raw
data, making it even worse (see Figure 1).

More specifically, our degradation function is

d(x) = α · x+ (1− α) · n(b(x)), (1)

where x is a raw input image, α a hyperparameter that con-
trols the blending between x and n(b(x)), b is a blurring
function that models light scattering in biological tissue,
and n a function adding noise. In line with the most domi-
nant noise in low-light fluorescent microscopy, n is adding
Poisson noise to the blurred data.

Light scattering depends on refractive index transitions
throughout the sample and a precise forward model is not
easy to compute. For our purposes, the simple approxima-
tion introduced in Equation 1 leads to contrast enhancement
results that outperform existing methods like the FCE-Net
(see Section 4).

Once a body of input data X = (x1, x2, . . . , xk) is fur-
ther degraded to D = (d(x1), . . . , d(xk)), we use image
pairs (di, xi) for supervised training of a contrast enhance-
ment network (Model A). The network was trained as a
bias-free [15] U-Net [24]. The reason for not training the
bias terms of the network nodes is that, once trained, it is
intended to be applied to images xi or similar, which are
less severely affected by degradations, therefore, OOD with
regards to di.

Iterative Predictions

Since the absolute level of degradation in such mi-
croscopy images can be stronger than the additional degra-
dation introduced by our forward model, we also explored
the effect of iterative prediction Iterative predictions with a
trained DEEPCONTRAST network (DC) are simply multi-
ple applications of DC to the input x. For example, the final
DEEPCONTRAST (3×) prediction y is computed by

y = DC(DC(DC(x))). (2)

https://svi.nl/
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Figure 2. Qualitative results. Images of liver tissue sections stained with Phalloidin as a proxy for cell borders, used to compare our results
(DEEPCONTRAST Model A) to several baseline methods. Rows show image planes at different depths in the liver tissue. Columns show
the raw input, results obtained with CLAHE [34], Huygens deconvolution (see Section 4.4), best FCE-Net [33] results (3×), and our best
DEEPCONTRAST results (3×), respectively. The three rightmost columns shows the inset areas marked by dashed boxes and line plots of
raw intensities, the FCE-Net, and DEEPCONTRAST (along the green line in the respective images). Scale bars: 20µm in full size images,
10µm in insets.

The experiments we describe below and the results we
show in Figure 3 indicate that iterative predictions indeed
keep increasing image contrast. It must be noted, that better
contrast does not necessarily mean that the predicted image
is better for downstream analysis. Image faint details might
get lost at the same time and the importance of such details
depends on the downstream analysis to be conducted. We
present one set of experiments on how to achieve a good
balanced between enhancing contrast and preserving image
details in the following sections.

4. Experiments

4.1. Data

The imaged samples were cleared liver tissue sections,
as described in [16], stained with Phalloidin 488 antibody
to label the Actin cortex at all cell borders. Images were
acquired in a Zeiss LSM 780 confocal microscope, with a
Zeiss LCI Plan-Neofluar 63x 1.3 NA Gly/Water objective,
a 488nm wavelength excitation laser, an emission window
range of 489− 551nm, and a pinhole size of 1AU . Images
were acquired with an isotropic voxel size of 0.3µm. The
maximum imaging depth was 100µm .

4.2. Image Degradation Model

To compute synthetically degraded images, as described
in Eq. 1, we first blur and noise each 2D slice (focal plane)
using a Gaussian filter (σ = 20 pixels) and Poisson noise
at an estimated magnitude as described in [10] (using the
image analysis software MotionTracking [17]). Synthetic
images were then merged with the original images using α
values ranging in linear steps from 0.5 to 0.3, with 0.5 being
used for the most superficial slice.

4.3. Network Architecture and Hyperparameters

Our network is a U-Net [24], using a depth of five, 32
initial feature channels, an MAE loss, and a linear function
as the last activation layer. Our models were trained until
convergence with an initial learning rate of 4 × 10−4 for a
total of 450 epochs with 200 steps per epoch. A step uses a
batch size of 16, of which each patch is a 128× 128 pixels
crop from the body of training data. Networks were built
using the CSBDeep toolbox [29] using Tensorflow 2.2.1.
By default, and if not otherwise stated, we would not train
the bias terms of each network node (-bias) to improve OOD
predictions [15], as also described in Section 3.

http://motiontracking.mpi-cbg.de 
http://csbdeep.bioimagecomputing.com/


Figure 3. Qualitative results of iterative OOD model application. Contrast of the image data of Figure 2 iteratively enhanced using a trained
DEEPCONTRAST network (Model A). Rows show, analogous to Figure 2, image planes at different depth into the imaged tissue. Columns
show the raw input data, and the results of applying DEEPCONTRAST a single time, two, three (same as in Figure 2), and six consecutive
times. The three rightmost columns shows the inset areas marked by dashed boxes and line plots along the green lines in the raw data, and
along the 1×, 3×, and 6× enhanced outputs. Note that, while contrast is continuously enhanced, too many iterative applications cause a
notable loss of image details. Scale bars: 20 µm in full size images, 10 µm in insets.

Figure 4. Quantitative results. Contrast quantification using the
Percentile Contrast Index (see Section 4.7) and the Wavelet Con-
trast Index [1] (higher values are better) represented as average and
95% Confidence Intervals at each depth (N = 18). Dashed verti-
cal grey lines depict depths shown in Figure 2. Multiple iterations
of FCE-Net [33] and our DEEPCONTRAST (Model A) approach
show image contrast is further improved when these networks are
iteratively applied.

4.4. Baselines

Baseline methods, which we used to compare
DEEPCONTRAST with, are: (i) classical methods, i.e.
CLAHE and deconvolution using Huygens, and (ii) DL
based methods, i.e. the FCE-Net [33] trained on our liver
dataset.

CLAHE images were obtained using Fiji [25], where the
Enhanced Local Contrast plugin is an implementation of
the original CLAHE [34] method.

Deconvolved images were obtained using the software
Huygens Professional (version 22.10.0p6) from Scientific
Volume Imaging (SVI, The Netherlands), following pro-
vided pipelines with a theoretical PSF. Internally, Huygens
is using the CMLE algorithm, with SNR set to 5, for 60 it-
erations, and the background value set to 100. This setup
led to the best results on the data at hand.

For the FCE-Net [33] we used the code as it is provided
by the authors of the original paper. Its worth mentioning
that the provided pre-trained FCE network led to inferior
results, hence, we trained the FCE-Net from scratch until
convergence using our own data. Please note that we have
also applied the FCE-Net iteratively, as described above in
Equation 2 and observed that also FCE-Net results keep im-
proving. For fair comparison we are therefore reporting it-
erative FCE-Net results whenever they are better than single
predictions.

4.5. Double Degradation Experiments

Since DEEPCONTRAST, by definition, is applied OOD,
we wondered if iterative contrast enhancement will make
consistent steps.

http://svi.nl


Figure 5. Qualitative and quantitative results of segmentation masks created at multiple iterations of contrast enhancement. Left side
column shows Raw input and segmentation mask (Section 4.8). Each further column shows different iterations of contrast enhancement
and corresponding segmentation of cell borders. Top row shows inference results with DEEPCONTRAST and bottom row shows inference
results with FCE-Net. Yellow arrow heads in images highlight lost or degraded structures when comparing DEEPCONTRAST and FCE-Net.
Violin plots shows distribution of IoU values between the different contrast enhancement methods and raw segmentation masks used as
reference at multiple iterations (N = 2682), showing faster decrease of IoU values and more abundant mistakes in segmentation with
FCE-Net.

Figure 6. Qualitative double degradation results and predictions with Model B (see Section 4.5). Each row shows different depths in the
sample, as in previous figures. Columns depict, from left to right, (i) double degraded images used as inputs during training, (ii) single
degraded images used as targets during training, (iii) predictions of Model B when applied to data as the one in column two, (iv) the raw
image data to compare Model B (1×) outputs against, (v) Model B (3×) outputs, and (vi) Model A (2×) outputs to compare Model B (3×)
outputs against. Note that these two predictions should be and are similar since Model B starts with inputs that are once more synthetically
degraded. The smaller panels in the rightmost columns show the insets (marked by dashed lines) from the other columns. Structures in all
enhanced images are consistent with structures in the raw data, which is encouraging. Scale bars: 20 µm in full size images, 10 µm in
insets.



SSIM
MB1× vs Raw MB2× vs MA1× MB3× vs MA2×

Very Deep 0.51 ± 0.07 0.70 ± 0.08 0.80 ± 0.07
Deep 0.52 ± 0.07 0.72 ± 0.09 0.82 ± 0.07

Intermediate 0.56 ± 0.06 0.77 ± 0.06 0.84 ± 0.03
Shallow 0.60 ± 0.06 0.80 ± 0.05 0.83 ± 0.03

Very Shallow 0.59 ± 0.08 0.79 ± 0.06 0.83 ± 0.02

Table 1. Quantitative results of the double degradation experi-
ment described in Section 4.5 and shown in Figure 6. We com-
pare the outputs of three iterations of Model B (MBk×), which
was trained on double-degraded and single-degraded inputs, to
the closest matching images, i.e. raw data for direct predictions
of Model B (MB1× vs Raw), direct predictions of Model A to
two iterations of Model B (MB2× vs MA1×), and predictions of
two iterations of Model A to three iterations of Model B (MB3×
vs MA2×). Section 3 for details.

As a first verification of our approach we degraded the
raw image data twice, acquiring data triplets (ei, di, xi),
with xi ∈ X , and di = d(xi) and ei = d(d(xi)). Then
we trained a DEEPCONTRAST network, Model B, on pairs
(ei, di) and applied the trained network, in-line with the ini-
tially proposed procedure, to di to increase its contrast and
yielding yi = DC(di).

Since we started by double degrading the original xi,
we can now compare the prediction yi with xi, and fur-
ther iterations of Model B with corresponding predictions
obtained with Model A (see Section 3). If the trained
DEEPCONTRAST network is indeed a good approximation
of the inverse of our degradation function d, predictions yi
should be similar to the original images xi at the first iter-
ation, and to the corresponding iteration of output images
from Model A.

4.6. Ablations

In order to evaluate if bias-free training [15] is indeed
leading to better results, we decided to repeat model training
also on networks that are not bias-free, i.e. train all weights
and biases.

4.7. Contrast Quantification

Wavelet Contrast Index

With increasing contrast in an image, we expect background
signal to be reduced and, consequently, the brightness of
biological structures in the image (signal) to be increased.
To quantify image contrast when no GT data is available, we
used the Wavelet Contrast Index (WCI) [1]. This measure
computes the difference between coefficients obtained from
a wavelet decomposition, following the equation

WCI(x) = log(
W95th(x)

W50th(x)
), (3)

where x is the input image for which we want to evaluate
the contrast, W95th is the 95th percentile wavelet coefficient
and 50th is the median wavelet coefficient.

Wavelet decomposition was performed with the Py-
Wavelets [12] python package using a Haar wavelet as the
reference function and used coefficients up to the fourth
level of decomposition.

Percentile Contrast Index

We also used the Percentile Contrast Index (PCI) to quantify
intensity differences between image background and image
structures. The PCI is computed by

PCI(x) = log(
I95th(x)

I50th(x)
), (4)

where x is again the input image to evaluate, and I95th is
the 95th intensity value in the image being analyzed and
I50th is the median intensity of x. We use the median value,
assuming that at least half the pixels of any given image are
background pixels.

4.8. Downstream Segmentation after Contrast En-
hancement

Enhancing contrast not necessarily improves down-
stream process-ability (interpretability) of a given dataset.
While the contrast, as measured by WCI and/or PCI, might
still improve, details relevant for biological interpretation of
the data might already get lost. Therefore, the best amount
of contrast enhancement depends on a given downstream
analysis task. To this end, we introduced a downstream seg-
mentation task and checked if a fixed segmentation pipeline
improved with respect to existing ground truth labels. GT
segmentation masks were generated from raw data using
Labkit [2] (available as a Fiji [25] plugin).

For simplicity, we segmented contrast enhanced im-
ages yi by thresholding, optimizing for the best threshold
value, i.e. the one that maximizes the intersection-over-
union (IoU) with respect to the previously generated GT.
Our reasoning was that enhancing contrast would result in
a better IoU after thresholding as long as relevant struc-
tures in the contrast enhanced images yi were not lost.
As soon as details were getting lost, the IoU dropped, al-
lowing us to choose the most sensible iteration depth for
DEEPCONTRAST (or the FCE-Net).

5. Results
Qualitative results presented in Figure 2 suggest

that DEEPCONTRAST outperforms all baseline methods.
DEEPCONTRAST removes or reduces image noise and en-
hances the intensity of visible image structures seemingly
without loosing fine details (signal) from predicted images.



Hence, DEEPCONTRAST is indeed increasing image con-
trast.

Both classical methods, i.e. CLAHE and deconvolution,
displayed relatively poor results mainly deep into the tissue.
CLAHE amplified image noise at all imaging depths and
mostly failed to highlight biological structures. Deconvolu-
tion, on the other hand, did reduce image noise, but failed to
increase intensities of foreground structures (most obvious
deep into the tissue).

The FCE-Net performed much better, leading to good re-
sults close to the surface. But the image contrast in FCE-Net
predictions decayed with increasing depth (see insets in Fig-
ure 2). Qualitatively, the FCE-Net also seemed to produce
less sharp cell borders (as seen in either deep and shallow
image regions).

To validate these qualitative observations, we quantified
contrast with the two measures WCI and PCI (see Sec-
tion 4.7). As can be seen in Figure 4, DEEPCONTRAST
achieved higher image contrast at all imaging depths and
over all plotted iterative applications (1× to 3×). One no-
table exception are the WCI values for 3× iterations in in-
termediate imaging depths. In these images, despite the
FCE-Net showing higher WCI values, one can see more
image structure being lost in FCE-Net predictions than in
predictions obtained with DEEPCONTRAST (see Figure 5
for a qualitative and quantitative comparison).

As introduced above, contrast enhancement can be ap-
plied iteratively (Equation 2). Results of performing multi-
ple rounds of enhancement are shown in Figure 3. Visually,
the best results were obtained with three rounds of enhance-
ment (3×). While contrast readouts using WCI and PCI
would still improve with additional iterations, image details
would start disappearing (as can be seen in the 6× column
and the line-plots in Figure 3).

Qualitative results of the Double Degradation Experi-
ments introduced in Section 4.5, are shown in Figure 6.
Predictions of Model B at iteration k should and are cor-
responding well to predictions of Model A at iteration k−1
since Model B is trained on image pairs that are one ap-
plication of our forward degradation model (d) more de-
graded. We quantify this via structure similarity index mea-
sure (SSIM) [27] in Table 1 and allow for a qualitative com-
parison between the corresponding columns in Figure 6.

5.1. Contrast Enhancement vs. Segmentation

To better quantify the undesired effect of loosing rele-
vant details while simultaneously gaining additional con-
trast in the processed microscopy data, we introduced a sim-
ple threshold based segmentation task (See Section 4.8). A
qualitative as well as quantitative comparison is shown in
Figure 5. IoU values are initially increasing with number
of iterations, but then eventually drop when too many im-
age structures are removed. The FCE-Net generally shows

lower IoU values, suggesting that DEEPCONTRAST is not
only leading to more contrasted images, but is at the same
time maintaining more image details with iterations. In ad-
dition to the IoU quantification, we highlighted lost details
on images with yellow arrow heads (see in Figure 5 ), point-
ing differences between iterative inferences.

5.2. Ablation: Training including Bias

As introduced above, DEEPCONTRAST employs bias-
free [15] network training. In Figure 7 we show represen-
tative predictions of Model A (3×), as used in Figure 2,
and compare them to predictions obtained with an equiv-
alent model which was trained with bias (+bias). Yellow
arrow heads in the figure point at locations where the bias
free network does a better job retaining image details. Em-
pirically, we did not spot any cases where the opposite is
true, which gave us additional motivation to use bias-free
networks in DEEPCONTRAST.

Figure 7. Qualitative results of networks trained without and with
bias. Phalloidin stained images of liver tissue sections enhanced
3× with DEEPCONTRAST models trained with (+bias; right side)
and without bias (-bias; left side). Rows show image planes at
different depths relative to cover-glass. Network model trained
with bias performs worse when applied OOD, removing structures
seen in a model trained without bias (- bias), highlighted by yellow
arrow-heads. Scale bars: 20 µm in full size images, 10 µm in
insets.



6. Discussion and Conclusion

In this work we propose to use an image degradation
function to approximate light scattering in deep tissue imag-
ing and use it to generate synthetically degraded data to en-
able supervised network training. Our results show that the
relatively simple degradation model we introduced is suf-
ficient to increase image contrast in real microscopy data.
Our method can be applied in an iterative manner to fur-
ther increase image contrast and will retain detailed image
structures for more iterations than the competitive baseline
methods we compared against.

For the liver data at hand, we have found that the best
number of iterations for contrast enhancement is three (3×).
This assessment is based on a combination of contrast en-
hancement and retention of fine image details in the con-
trast enhanced predictions. A more quantitative approach to
the visual assessment was introduced by means of a down-
stream segmentation task, which has indeed confirmed our
initial findings.

In general, the best trade-off between contrast enhance-
ment and structural integrity of predictions depends on the
nature of the downstream processing task to be conducted.
Hence, an analysis similar to the one we performed for the
segmentation task could be required to evaluate the best-
performing setup.

Similarly we found that for better OOD application of
our trained networks, the bias free version seems to lead to
better results.

While our approach is leading to excellent results and
can easily be used by microscopists and life scientists to
improve volumetric image data for quantitative downstream
processing, additional research will be required to undo im-
age degradations deep in imaged tissues in more fundamen-
tal ways.
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