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Abstract

Mixed reality applications require tracking the user’s full-
body motion to enable an immersive experience. However,
typical head-mounted devices can only track head and hand
movements, leading to a limited reconstruction of full-body
motion due to variability in lower body configurations.
We propose BoDiffusion – a generative diffusion model
for motion synthesis to tackle this under-constrained
reconstruction problem. We present a time and space
conditioning scheme that allows BoDiffusion to leverage
sparse tracking inputs while generating smooth and
realistic full-body motion sequences. To the best of our
knowledge, this is the first approach that uses the reverse
diffusion process to model full-body tracking as a condi-
tional sequence generation task. We conduct experiments
on the large-scale motion-capture dataset AMASS and
show that our approach outperforms the state-of-the-art
approaches by a significant margin in terms of full-body
motion realism and joint reconstruction error.

1. Introduction
Full-body motion capture enables natural interactions

between real and virtual worlds for immersive mixed-reality
experiences [17, 38, 51]. Typical mixed-reality setups use a
Head-Mounted Display (HMD) that captures visual streams
with limited visibility of body parts and tracks the global lo-
cation and orientation of the head and hands. Adding more
wearable sensors [14,16,18] is expensive and less comfort-
able to use. Therefore, in this work, we tackle the chal-
lenge of enabling high-fidelity full-body motion tracking
when only sparse tracking signals for the head and hands
are available, as shown in Fig. 1.

Existing motion reconstruction approaches for 3-point
input (head and hands) struggle to model the large variety
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Figure 1. BoDiffusion. Head and wrist IMUs are the standard
motion-capture sensors in current virtual-reality devices. BoDif-
fusion leverages the power of Transformer-based conditional Dif-
fusion Models to synthesize fluid and accurate full-body motion
from such sparse signals.

of possible lower-body motions and fail to produce smooth
full-body movements because of their limited predictive na-
ture [15]. A recent attempt [2] to address this problem
uses a generative approach based on normalizing flows [41]
falling short of incorporating temporal motion information
and generating poses for every frame individually, thus re-
sulting in unrealistic synthesized motions. Another ap-
proach [6] that integrates motion history information using
a Variational Autoencoder (VAE) [21] takes limited advan-
tage of the temporal history because VAEs often suffer from
“posterior collapse” [8,20]. Thus, there is a need for a scal-
able generative approach that can effectively model tempo-
ral dependencies between poses to address these limitations.

Recently, diffusion-based generative models [11, 46]
have emerged as a potent approach for generating data
across various domains such as images [42], audio [60],
video [12], and language [9]. Compared to Generative Ad-
versarial Networks (GANs), diffusion-based models have
demonstrated to capture a much broader range of the target
distribution [30]. They offer several advantages, including
excellent log-likelihoods and high-quality samples, and em-
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Figure 2. Predicting Dense Full-Body Poses from Sparse Data. Comparison of BoDiffusion and AvatarPoser [15] against the ground
truth. Color gradient in the avatars indicates an absolute positional error, with a higher error corresponding to higher red intensity. BoD-
iffusion synthesizes substantially more accurate and plausible full-body poses, particularly in the lower body where no IMU data are
captured.

ploy a solid, stationary training objective that scales effort-
lessly with training compute [30].

To leverage the powerful diffusion model framework, we
propose BoDiffusion (Body Diffusion), a new generative
model for human motion synthesis. BoDiffusion directly
learns the conditional data distribution of human motions,
models temporal dependencies between poses, and gener-
ates full motion sequences, in contrast to previous methods
that operate solely on static poses [2, 55]. Moreover, BoD-
iffusion does not suffer from the limitation of methods that
require a known pelvis location and rotation during infer-
ence [2,6,55], and generates high-fidelity body motions re-
lying solely on the head and hands tracking information.

Our main contributions can be summarized as follows.
We propose BoDiffusion – the first diffusion-based gener-
ative model for full-body motion synthesis conditioned on
the sparse tracking inputs obtained from HMDs. To build
our diffusion model, we adopt a Transformer-based back-
bone [34], which has proven more efficient for image syn-
thesis than the frequently used UNet backbone [5, 39, 42],
and it is more naturally suited for modeling sequential mo-
tion data. To enable conditional motion synthesis in BoD-
iffusion, we introduce a novel time and space condition-
ing scheme, where global positions and rotations of tracked
joints encode the control signal. Our extensive experiments

on AMASS [27] demonstrate that the proposed BoDiffu-
sion synthesizes smoother and more realistic full-body pose
sequences from sparse signals, outperforming the previous
state-of-the-art methods (see Fig. 2 and 4). Find our full
project on bcv-uniandes.github.io/bodiffusion-wp/.

2. Related Work

Pose Estimation from Sparse Observations. Full-body
pose estimation methods generally rely on inputs from
body-attached sensors. Much prior work relies on 6 In-
ertial Measurement Units (IMUs) to predict a complete
pose [14, 56, 57]. In [14], the authors train a bi-directional
LSTM to predict body joints of a SMPL [25] model, given
6 IMU inputs (head, 2 arms, pelvis, and 2 legs). However,
there is a high incentive to reduce the number of body-
attached IMUs because depending on many body inputs
creates friction in motion capture. LoBSTr [55] reduces this
gap by working with 4 inputs (head, 2 arms, and pelvis). It
takes past tracking signals of these body joints as input for
a GRU network that predicts lower-body pose at the cur-
rent frame. Furthermore, it estimates the upper body with
an Inverse Kinematics (IK) solver. The methods in [2, 6]
also require 4 joints as input since they leverage the pose
of the pelvis to normalize the input data during training and
inference.
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Figure 3. Overview of BoDiffusion. BoDiffusion is a diffusion process synthesizing full-body motion using sparse tracking signals as
conditioning. Top: At each denoising step, the model takes as input 2W tokens, which correspond to local joint rotations with t steps
of noise (xt = x1:Wt ) and sparse tracking signals of the head and hands (s1:W ) as conditioning. We concatenate the xit tokens with the
conditioning tokens si along the spatial axis to preserve the time information and ensure coherence between the conditioning signal and
the synthesized motion. After that, we pass it through the Transformer backbone of N DiT blocks [34]. Bottom: During inference, we
start from random Gaussian noise xT and perform T denoising steps until we reach a clean output motion x0.

In Mixed Reality (MR), obtaining user input from a
headset and a pair of controllers is common. The authors
of [15, 54] highlight the importance of a sensor-light ap-
proach and further reduce the amount of inputs to 3, a num-
ber that aligns well with scenarios in MR environments.
AvatarPoser [15] combines a Transformer architecture and
traditional IK to estimate full-body pose from HMD and
controller poses. Similar to [15], our method uses only 3 in-
puts but provides much better lower-body prediction thanks
to our diffusion model. Choutas et al. [4] propose an itera-
tive neural optimizer for 3D body fitting from sparse HMD
signals. However, they optimize poses frame-by-frame and
do not consider motions. QuestSim [54] proposes to learn a
policy network to predict joint torques and reconstruct full
body pose using a physics simulator. Nevertheless, this ap-
proach is challenging to apply in a real-world scenario, es-
pecially when motion involves interaction with objects (e.g.,
sitting on a chair). In such a case, one needs to simulate both
the human body and all the objects, which have to be pre-
scanned in advance and added to the simulation. In contrast,
our approach is data-driven and does not require a costly
physics simulation or object scanning.

Human Motion Synthesis & Pose Priors. A large body
of work aims at generating accurate human motion given
no past information [1, 23, 36, 37, 58]. Methods like

TEMOS [37] and OhMG [23] combine a VAE [21] and a
Transformer network to generate human motion given text
prompts. Recently, FLAG [2] argues against the reliability
of using VAEs for body estimation and proposes to solve
these disadvantages with a flow-based generative model.
VPoser [32] learns a pose prior using VAE, and Humor [40]
further improves it by learning a conditional prior using a
previous pose. Recent work [31] proposes a more generic
approach that learns a pose prior and approximates an IK
solver using a neural network. Another line of work tackles
motion synthesis using control signals provided by an artist
or from game-pad input [10, 13, 24, 35, 50]. However, in
contrast to our method, such approaches either focus on lo-
comotion and rely on the known future root trajectory of the
character or are limited to a predefined set of actions [35].

Denoising Diffusion Probabilistic Models (DDPMs) [11,
30] are a class of likelihood-based generative models in-
spired by Langevin dynamics [22] which map between a
prior distribution and a target distribution using a gradual
denoising process. Specifically, generation starts from a
noise tensor and is iteratively denoised for a fixed number of
steps until a clean data sample is reached. Recently, Ho et
al. [11] have shown [11] that DDPMs are equivalent to the
score-based generative models [48, 49]. Currently, DDPMs
are showing impressive results in tasks like image genera-
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tion and manipulation [5, 7, 29, 39, 42] due to their impres-
sive ability to fit the training distribution at large scale and
stable training objective. Moreover, concurrent to this work,
Diffusion Models have also been used to synthesize human
motion from text inputs [19, 52, 59].

UNet [44] architecture has been de-facto the main back-
bone for image synthesis with Diffusion Models [5, 39, 42]
up until a recent work [34] that suggested a new class of
DDPMs for image synthesis with Transformer-based back-
bones. Transformers are inherently more suitable than con-
volutional networks for modeling heterogeneous sequential
data, such as motion, and we capitalize on this advantage
in our work. In particular, we employ a Transformer-based
Diffusion Model, based on the DiT backbone [34], to con-
struct an architecture for conditional full-body pose estima-
tion from 3 IMU tracking inputs.

3. BoDiffusion
In this section, we present our BoDiffusion model. We

start with the DDPMs background in Sect. 3.1. Next, we de-
fine the problem statement and our probabilistic framework
in Sect. 3.2. Then, in Sect. 3.3, we give an overview of the
proposed BoDiffusion model for conditional full-body mo-
tion synthesis from sparse tracking signals, followed by the
details of our model design. Please refer to Fig. 3 for an
illustration of the entire pipeline of our method.

3.1. Diffusion Process

We briefly summarize DDPMs [11] inner workings and
formulate our conditional full-body motion synthesis task
using the generative framework. Let x1:W0 = x0 ∼ q(x0)
be our real motion data distribution, where W is the length
of the sequence motion. The forward diffusion process q
produces latent representations x1, . . . ,xT by adding Gaus-
sian noise at each timestep t with variances βt ∈ (0, 1).
Hence, the data distribution is defined as follows:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (2)

where I is the identity matrix. Due to the properties of
Gaussian distributions, Ho et al. [11] showed that we can
directly calculate xt from x0 by sampling:

xt =
√
ᾱtx0 +

√
1− ᾱtε, (3)

where αt = 1− βt, ᾱt =
∏T
i=1 αi, and ε ∼ N (0, I).

On the contrary, the reverse diffusion process q(xt−1|xt)
is the process of iterative denoising through steps t =
T, . . . , 1. Ideally, we would like to perform this process
in order to convert Gaussian noise xT ∼ N (0, I) back to

the data distribution and generate real data points x0. How-
ever, q(xt−1|xt) is intractable because it needs to use the
entire data distribution. Therefore, we approximate it with
a neural network pθ with parameters θ:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

We train to optimize the negative log-likelihood using the
Variational Lower Bound (VLB) [11]:

− log pθ(x0) ≤ − log pθ(x0)+

+DKL(q(x1:T |x0)‖pθ(x1:T |x0)) = Lvlb.
(5)

Following [11], we parameterize µθ(xt, t) like this:

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
. (6)

After a couple simplifications, [11] ignores the weight-
ing terms to rewrite Lsimple as follows:

Lsimple = Ex0∼q(x0),t∼U [1,T ]||ε− εθ(xt, t)||22. (7)

Ho et al. [11] observed that optimizing Lsimple works better
in practice than optimizing full VLB Lvlb. During train-
ing, we follow Eq. 7, where we sample x0 from the data
distribution, the timestep as t ∼ U{1, T}, and compute xt
using Eq. 3. Intuitively, we learn pθ(xt−1|xt) by training
neural network to predict the noise ε that was used to com-
pute the xt with Eq. 3. However, simple loss Lsimple as-
sumes that we have a predefined variance Σ(xt, t) = βt. In-
stead, we follow [30] and optimize the variance Σθ(xt, t) =

ev log βt+(1−v) log βt
1−ᾱt−1

1−ᾱ1 , where v is a learnable scalar.
Hereby, we use a combined objective:

L = Lsimple + λvlbLvlb. (8)

3.2. Conditional Full-Body Motion Synthesis

Problem Definition. Human motion can be character-
ized by a sequence of body poses xi ordered in time. We
define a pose as a set of body joints arranged in the kine-
matic tree of the SMPL [25] model. Joint states are de-
scribed by their local rotations relative to their parent joints,
with the pelvis serving as the root joint and its rotation
being defined with the global coordinate frame. We uti-
lize the 6D representation of rotations [61] to ensure fa-
vorable continuity properties, making xi ∈ R22×6. The
global translation of the pelvis is not modeled explicitly,
as it can be calculated from the tracked head position by
following the kinematic chain [15]. We consider a typ-
ical mixed reality system with HMD and two hand con-
trollers that provides 3-point tracking information of head
and hands in the form of their global positions pi and rota-
tions ri. Furthermore, we additionally compute the linear
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Figure 4. Error Comparison. Comparison of BoDiffusion and
AvatarPoser [15] with color coding as previously explained. Mo-
tions generated by BoDiffusion exhibit greater similarity to the
ground truth and display fewer foot skating artifacts, as high-
lighted in the red circles. Specifically, the leg in contact with
the ground should not slide, and BoDiffusion produces motion se-
quences that adhere more closely to this requirement.

and angular velocities vi, ωi of the head and wrists, mak-
ing si = {pi, ri, vi, ωi} ∈ R3×(3+6+3+6) to make the input
signal more informative and robust [15]. The target task is
to synthesize full-body human motion x1:W = {xi}Wi=1 us-
ing the limited tracking signals s1:W = {si}Wi=1 as input.

Probabilistic Framework. We formally define our con-
ditional full-body motion synthesis task by using the for-
mulation of Diffusion Models outlined in Sect. 3.1. Let
xt = x1:Wt , s = s1:W for brevity. We want to learn a condi-
tional distribution of the full-body human motion sequences
x0 defined as follows:

pθ(x0|s) =

∫
pθ(x0:T |s)dx1:T , (9)

pθ(x0:T |s) = p(xT )

T∏
t=1

pθ(xt−1|xt, s), (10)

where p(xT ) ∼ N (0, I) is a Gaussian noise. In this case,
we train a neural network θ to predict the mean µθ(xt, t, s)
and the variance Σθ(xt, t, s), similar to Eq. 4, but condi-
tioned on sparse tracking signals s. Thus, the simple loss
from Eq. 7 then becomes:

Lsimple = Ex0∼q(x0),t∼U{1,T}||ε− εθ(xt, t, s)||
2
2. (11)

Local Rotation Loss is Equivalent to the Lsimple. In Hu-
man Motion Synthesis, it is widespread [2, 6, 15, 55] to
use the local rotation loss that minimizes the difference be-
tween the local joint rotations of the estimated poses and

the ground truth. Because of this standard practice, one can
hypothesize whether learning εθ (from Eq. 7) is helpful for
synthetic motion sequences. However, we found that op-
timizing εθ is equivalent to directly minimizing the local
rotation error.

Lemma 1. Let L(x, x′) = ||x − x′||2 be the local rotation
error loss between a motion sequence x and x′ be an esti-
mate of x. Then, optimizing the Lsimple loss is equivalent to
optimizing L.

We provide the proof of Lemma 1 in the Supplementary
Material.

3.3. BoDiffusion Architecture

We draw inspiration from the diffusion models for image
synthesis to design a model for learning the conditional dis-
tribution pθ(x1:W0 |s1:W ) of the full-body motion sequences
(cf. Eq. 9). Specifically, we choose to leverage the novel
Transformer backbone DiT [34] to build the BoDiffusion
model because (i) it was shown to be superior for image
synthesis task [34] compared to the frequently used UNet
backbone [5, 39, 42], and (ii) it is more naturally suited for
modeling heterogeneous motion data. Below, we provide
a detailed description of our architecture and introduce a
method that ensures the conditional generation of motion
coherent with the provided sparse tracking signal s1:W .

In order to leverage the Transformer’s ability to handle
long-term dependencies while maintaining temporal con-
sistency, we format the input x1:Wt , which represents joint
rotations over time, as a time-sequence tensor and split it
along the time dimension into tokens. We treat each pose
xit as an individual token and combine the feature and joint
dimensions into a d-dimensional vector, where d = 22×6 is
the number of joints multiplied by the number of features.
This strategy allows us to take advantage of the temporal
information and efficiently process the motion sequence.

We implement our BoDiffusion model by extending the
DiT architecture of Peebles et al. [34] with our novel con-
ditioning scheme. The DiT backbone architecture consists
of a stack of encoder transformer layers that use Adaptive
Layer Normalization (AdaLN). The AdaLN layers produce
the scale and shift parameters from the timestep embed-
ding vector to perform the normalization depending on the
timestep t. Peebles et al. [34] input the class labels along
with the time embedding to the AdaLN layers to perform
class-conditioned image synthesis. However, we empiri-
cally demonstrate (see Sect. 4.2) that using the condition-
ing tracking signal s along with the time embedding t in the
AdaLN layers harms the performance of our BoDiffusion
model because in this case, we disregard the time informa-
tion. Therefore, we propose a novel conditioning method
that retains the temporal information and allows conditional
synthesis coherent with the provided sparse tracking signal.
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Method Jitter MPJVE MPJPE Hand PE Upper PE Lower PE MPJRE FCAcc ↑
Final IK* - 59.24 18.09 - - - 16.77 -
LoBSTr* - 44.97 9.02 - - - 10.69 -
VAE-HMD* - 37.99 6.83 - - - 4.11 -
AvatarPoser [15] 1.53 28.23 4.20 2.34 1.88 8.06 3.08 79.60
AvatarPoser-Large [15] 1.17 23.98 3.71 2.20 1.68 7.09 2.70 82.30
BoDiffusion (Ours) 0.49 14.39 3.63 1.32 1.53 7.07 2.70 87.28

Table 1. Comparison with State-of-the-art Methods for Full-Body Human Pose Estimation. Results on a subset of the AMASS dataset
(CMU, BMLrub, and HDM05) for Jitter [km/s3], MPJVE [cm/s], MPJPE [cm], Hand PE [cm], Upper PE [cm], Lower PE [cm], MPJRE
[deg], and FCAcc [%] (balanced foot contact accuracy) metrics. AvatarPoser is retrained with 3 and 10 (Large) Transformer layers. The
star (*) denotes the results reported in [15].

Conditioning on tracking signal. We use the 3-point
tracking information of head and hands from HMDs to com-
pute an enriched input conditioning s1:W . This condition-
ing s1:W has the shapeW×ds, where ds = 18·3 is the num-
ber of features (18) per joint multiplied by the number of
tracked joints (3). We treat it as a sequence of individual to-
kens si and apply a linear transformation (conditioning em-
bedding layer in Fig. 3) to each of them, thus increasing the
dimensionality of the tokens from ds to demb = 18 · 22. We
observe that such higher-dimensional embedding enforces
the model to pay more attention to the conditioning signal.
Next, we concatenate the input sequence tokens xit with the
transformed conditioning tokens and input the result to the
transformer backbone. By preserving the temporal struc-
ture of the tracking signal, we enable the model to effi-
ciently learn the conditional distribution of motion where
each pose in the synthesized sequence leverages the corre-
sponding sparse tracking signal si.

4. Experiments

Datasets. We use the AMASS [27] dataset for training
and evaluating our models. AMASS is a large-scale dataset
that merges 15 optical-marker-based MoCap datasets into
a common framework with SMPL [25] model parameters.
For our first set of experiments, we use the CMU [3], BML-
rub [53], and HDM05 [28] subsets for training and testing.
We follow the same splits of AvatarPoser [15] to achieve
a fair comparison. For our second set of experiments, we
evaluate the Transitions [27] and HumanEVA [45] subsets
of AMASS and train on the remaining datasets following
the protocol described in [2].

Evaluation Metrics. We report four different types of
metrics to evaluate our performance comprehensively. First,
we report the velocity-related metrics Mean Per Joint Veloc-
ity Error [cm/s] (MPJVE), and Jitter error [km/s3] [57] that
measure the temporal coherence and the smoothness of the
generated sequences. Second, we report the position-related
metrics Mean Per Joint Position Error [cm] (MPJPE), Hand
Position Error [cm] (Hand PE), Upper Body Position Error

GT

BoDiffusion

Figure 5. Full-Sequence Generation. Example prediction of
BoDiffusion compared against the ground-truth sequence. Our
method can generate realistic motions faithful to the ground truth.
Color gradient represents time flow, whereas lighter colors denote
the past.

[cm] (Upper PE), and Lower Body Position Error (Lower
PE). The third set is rotation-related metrics, including the
Mean Per Joint Rotation Error [deg] (MPJRE). Finally, we
devise a metric based on Foot Contact (FC) to measure if the
predicted body has a realistic movement of the feet. To cal-
culate this metric for every pair of instances in a sequence,
we determine if there is contact between the four joints of
the feet and the ground by calculating the velocity of the
joints and checking whether it is under a pre-defined thresh-
old or not, following [52]. Afterward, we calculate the accu-
racy between the predicted and the ground-truth FC. Since
the ratio of foot contact vs. foot in the air is meager, we
calculate a balanced accuracy (FCAcc).

Implementation Details. Similar to [15], we set win-
dow size W = 41. Our Transformer backbone consists
of 12 DiT blocks [34]. Before feeding to the backbone,
the input tokens are projected to the hidden dimension
emb = 384, as shown in Fig. 3. Finally, we project the
output of the last DiT block back to the human body pose
space of shape 41× 6 · 22, representing the 6D rotations for
22 body joints. During training, we use λvlb = 1.0, and de-
fine t to vary between [1, T ], where T = 1000 corresponds
to a pure Gaussian distribution. At inference, we start from
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Method Jitter MPJVE MPJPE Hand PE Upper PE Lower PE MPJRE FCAcc ↑
VAE-HMD (3p + pelvis)* - - 7.45 - 3.75 - - -
VPoser-HMD (3p + pelvis)* - - 6.74 - 1.69 - - -
HuMoR-HMD (3p + pelvis)* - - 5.50 - 1.52 - - -
ProHMR-HMD (3p + pelvis)* - - 5.22 - 1.64 - - -
FLAG [2] (3p + pelvis)* - - 4.96 - 1.29 - - -

AvatarPoser [15] (3p) 1.11 34.42 6.32 3.03 2.56 12.60 4.64 71.46
BoDiffusion (Ours) (3p) 0.35 21.37 5.78 1.94 2.27 11.55 4.53 82.04

Table 2. Comparison against Generative-based Models. Results reported on the held-out Transitions [27] and HumanEVA [45] subset
of AMASS, following the protocol of FLAG [2], for Jitter [km/s3], MPJVE [cm/s], MPJPE [cm], Hand PE [cm], Upper PE [cm], Lower
PE [cm], MPJRE [deg], and FCAcc [%] metrics. We report the results after retraining AvatarPoser, and report the same results as in [2]
for methods with a star (*).

pure Gaussian noise, and we use DDIM sampling [47] with
50 steps. We set the variance Σθ of the reverse noise to
zero. This configuration turns the model into a determinis-
tic mapping from Gaussian noise to motions, allowing it to
do much fewer denoising steps without degrading the qual-
ity of synthesized motions.

We use AdamW optimizer [26] with a learning rate of
1e− 4, batch size of 256, without weight decay. Our model
has 22M parameters and is trained for 1.5 days on four
NVIDIA Quadro RTX 8000. More implementation details
are in the Supplementary Material (Sec. A.1).

Our approach has no limitations concerning the length
of the generated sequences. We can synthesize motions of
arbitrary length by applying BoDiffusion in an autoregres-
sive manner using a sliding window over the input data. We
refer the reader to the Supplementary Material for more ex-
planation of our inference-time protocol (see Sec. A.2).

4.1. Results

We compare BoDiffusion with AvatarPoser [15] and
FLAG [2] following their experimental setups. For Avatar-
Poser in Table 1, we use the official source code to re-
train the standard version with 3 Transformer layers. Fur-
thermore, to ensure a fair comparison with BoDiffusion,
we train a scaled-up version of AvatarPoser (AvatarPoser-
Large) with 10 layers, 8 attention heads, and an embedding
dimension of 384. Since the other state-of-the-art meth-
ods do not provide public source codes, we compare them
against the results reported in each of the previous papers.

Table 1 shows that BoDiffusion outperforms the state-
of-the-art approaches in all metrics on the test subset of the
AMASS dataset (CMU, BMLrub, and HDM05). Since we
enforce the temporal consistency in BoDiffusion by lever-
aging the novel conditioning scheme and learning to gen-
erate sequences of poses instead of individual poses, our
method generates smoother and more accurate motions.
This is demonstrated by our quantitative results in Tab. 1.
We observe a significant improvement in the quality of
generated motions by leveraging the BoDiffusion model.
Thus, we are able to decrease the MPJVE by a margin of

9.59 cm/s and the Jitter error by 0.68 km/s3, compared
to AvatarPoser-Large. Fig. 4 shows that motions gener-
ated by BoDiffusion exhibit more significant similarity to
the ground truth across all the sequence frames and dis-
play fewer foot-skating artifacts compared to AvatarPoser,
which struggles to maintain coherence throughout the se-
quence and severely suffers from foot skating. Furthermore,
we empirically demonstrate that our method successfully
learns a manifold of plausible human poses while maintain-
ing temporal coherence. In practice, we are given the global
position of the hands and head as the conditioning; thus, it
is expected to have a lower error on these joints, while the
conditioning does not uniquely define the configuration of
legs and should be synthesized. However, Fig. 2, 4, 5 show
that BoDiffusion produces plausible poses not only for the
upper body but for the lower body as well, in contrast to the
state-of-the-art Transformer-based AvatarPoser method.

Fig. 2 qualitatively shows the improvement of our
method in positional errors. In particular, our method pre-
dicts lower body configurations that resemble the ground
truth more than AvatarPoser. These results support the ef-
fectiveness of our conditioning scheme for guiding the gen-
eration towards realistic movements that are in close prox-
imity to the ground-truth sequences.

Furthermore, our method achieves a better performance
in the Foot Contact Accuracy metric (FCAcc), as shown in
Table 1 and the feet movements in Fig. 5. Thus, the itera-
tive nature of the DDPMs, along with our spatio-temporal
conditioning scheme, allows us to generate sequences with
high fidelity even at the feet, which are the furthest from the
input sparse tracking signals.

Table 1 shows the performance of a larger version of
AvatarPoser-Large compared to ours. In particular, we
demonstrate that enlarging this model increases its motion
capture capacity to the point where it reaches more com-
petitive results. By definition, this experiment also demon-
strates that using more complex methods leads to better
performance. However, BoDiffusion depicts a better trade-
off between the performance and computational complexity
than state-of-the-art methods. Since BoDiffusion can take
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Method Jitter MPJVE MPJPE MPJRE

BoDiffusion (Token input cond) 0.49 14.39 3.63 2.70
Timestep cond 1.38 52.78 7.19 4.00
Token input + Timestep cond 0.59 16.22 3.60 2.60
with stochasticity 0.53 15.37 3.53 2.67

Window size W=1 19.71 174.9 4.77 3.13
Shuffled sequences 108.42 935.69 17.13 7.10

Table 3. Design Ablations. Up: We ablate our training scheme
by varying the conditioning approach. At inference, we demon-
strate that controlling the stochasticity smoothens our predictions.
Down: We assess the importance of including temporal context.

Method Jitter MPJVE MPJPE MPJRE

UNet w/o diffusion 1.44 33.35 4.36 2.81
Transformer w/o diffusion 1.27 27.62 3.92 2.60

BoDiffusion-UNet 1.24 20.65 3.63 2.48
BoDiffusion-Transformer (Ours) 0.49 14.39 3.63 2.70

Table 4. Architecture Ablations. We evaluate the relevance of
using DiT as our backbone. We also assess the effectiveness of
the denoising power of our DDPM by comparing it against the
backbones without diffusion.

DDIM steps Jitter MPJVE MPJPE MPJRE

10 0.56 16.16 3.89 2.84
20 0.52 15.05 3.72 2.75
30 0.51 14.75 3.66 2.73
40 0.49 14.55 3.64 2.71
50 0.49 14.39 3.63 2.70

100 0.48 14.12 3.44 2.59

Table 5. Ablation of inference sampling steps. During inference,
we use DDIM sampling with 50 steps. Note that the performance
improves when there are more sampling steps.

advantage of DiT, our approach will further improve in the
measure that foundation models reach better results.

Table 2 shows the quantitative comparison be-
tween BoDiffusion and other generative-based state-of-the-
art approaches for the Transitions [27] and HumanEVA [45]
subsets of AMASS. AvatarPoser is included for reference.
On the one hand, even though we only train with three
sparse inputs, we have competitive results regarding an
overall positional error (MPJPE) and upper body positional
error (Upper PE) with the methods that also use the pelvis
information. Our DDPM-based method outperforms the
VAE-based approaches VAE-HMD and VPoser-HMD and
has comparable results with the conditional flow-based
models ProHMR-HMD and FLAG. On the other hand, our
BoDiffusion has a better performance than AvatarPoser
in all the metrics, with a significant improvement in the
velocity-related metrics MPJVE and Jitter. Please refer to
the Supplementary for additional qualitative results.

4.2. Ablation Experiments

We conduct ablation experiments to assess the effect of
the different components of our method on the smoothness
and temporal consistency of the generated sequences. In Ta-
ble 3, we report the experiments corresponding to the con-
ditioning scheme, the stochastic component at inference,
and the relevance of temporal context. Firstly, we com-
pare the effect of using different conditioning schemes. Our
method receives the conditioning by concatenating the input
tokens (Token input cond). Thus, the conditioning keeps
time-dependent information, allowing us smoother predic-
tions, as the low Jitter and MPJVE values show. In con-
trast, applying the condition through the timestep embed-
ding (Timestep cond) results in a compression towards a
time-agnostic vector embedding. Table 3 shows that using
this time-agnostic embedding solely as conditioning results
in detrimental performance for the method. Furthermore,
using both the token input and the timestep conditioning
still results in less smooth sequences and is less consistent
than using only the token input conditioning scheme.

Secondly, we implemente a purely stochastic inference
scheme (w/ stochasticity), finding out that, even when the
rotational and positional errors decrease slightly, having ex-
tra control over the randomness is beneficial, especially for
the smoothness of the sequences, as shown by the decrease
in MPJVE and Jitter. Thirdly, we evaluate the importance
of having temporal consistency by using a sliding window
of size one during training (Window size W=1) and ran-
domly sorting the sequence at inference time (Unordered
sequence). As expected, the MPJVE and Jitter errors in-
crease significantly, and all the other metrics also increase
by some proportion. Therefore, these experiments confirm
the relevance of enforcing temporal consistency.

Table 4 presents the impact of different architectural
choices on the performance of our proposed model. First,
to validate the effectiveness of using DiT as our backbone
(BoDiffusion-Transformer), we compare it against UNet
(BoDiffusion-UNet), which has traditionally been used as
a backbone for diffusion models [5, 42]. Table 4 indi-
cates that the Transformer outperforms UNet in all the met-
rics, even when diffusion processes are not involved. Ad-
ditionally, when incorporating our diffusion framework on
top of both backbones, significant improvements are ob-
served in the temporal consistency and quality of the gen-
erated sequences. It is important to note that while replac-
ing the DiT backbone with UNet leads to a slight decrease
(0.2◦) in rotation error, it is accompanied by a significant
increase in Jitter and Velocity errors. Thus, these ablation
experiments demonstrate the complementarity of using a
transformer-based backbone in a diffusion framework, re-
sulting in smoother and more accurate predictions.

Table 5 shows the ablation experiment using different
sampling steps for DDIM at inference time. Increasing the
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sampling steps improves the performance of our method,
proving the importance of the iterative nature of DDPMs.
However, more steps require more computational capacity.
Thus, we select 50 DDIM steps for an appropriate trade-off
between performance and complexity.

5. Conclusion

In this work, we present BoDiffusion, a Diffusion model
for conditional motion synthesis inspired by effective archi-
tectures from the image synthesis field. Our model lever-
ages the stochastic nature of DDPMs to produce realistic
avatars based on sparse tracking signals of the hands and
head. BoDiffusion uses a novel spatio-temporal condition-
ing scheme and enables motion synthesis with significantly
reduced jittering artifacts, especially on lower bodies. Our
results outperform state-of-the-art methods on traditional
metrics, and we propose a new evaluation metric to fully
demonstrate BoDiffusion’s capabilities.
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Figure 6. Complete Overview of BoDiffusion. Our conditional model takes full advantage of sparse information since we calculate
relevant features in the conditioning pathway at the top (red block). In the case of the noisy input, we do not need any projection to
match the sizes from the conditioning pathway. After concatenating both pathways, we organize the tensors’ dimensions and perform an
additional projection. The linear projection changes the tensor dimensions to the embedding dimension for the DiT blocks. After denoising
by the DiT, we perform a final projection to the original space of full body motions (purple block). The output estimates εθ and Σθ that are
used to compute the local rotations x1:Wt−1 by sampling from N (xt−1;µθ,Σθ). Here W = 41 is the temporal window size, conditioning
signal s1:W contains 18D features for the three tracked joints (head and hands), and x1:Wt is the noisy local 6D rotations for 22 body joints.
⊕ is the operation of concatenation along the channels’ dimension. The numbers next to the arrows denote the input and output dimensions
for the corresponding blocks.

A. Implementation Details

We build upon the SMPL [25, 33, 43] parametric model
that uses local rotations in axis-angle representation to pro-
duce a full-body pose. Our model predicts local rotations in
6D representation that are then converted to axis-angle rep-
resentation to be used in the body model from SMPL. As
in [15], we use a neutral body model corresponding to the
average body model between women and men. We do not
apply normalization to the conditioning signal s1:W before
inputting it into the model.

A.1. Architecture

In Figures 6 and 7, we provide further information on
the architecture of our model and technical details. In Fig-
ure 6, we show the projection of the input condition (red
block), which corresponds to the joint positions p1:W , ro-
tations r1:W , linear velocities v1:W , and angular velocities
ω1:W in the global coordinate frame. This projection aims
to change the feature dimension of the conditioning input.
It is worth saying that the input xt corresponds to a noisy
input at time t. After denoising with the DiT, we perform
a final projection (Figure 6, in purple) to map back into the
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Figure 7. BoDiffusion Architecture. Our denoising model is built
using multiple DiT blocks. Here we show the details of a single
DiT block.

space of motions represented by 6D local rotations of joints.
We return a 12-channel tensor which contains predictions of
εθ and Σθ (6 channels each) that are used to compute losses
Lsimple and Lvlb.

Figure 7 presents a detailed scheme of our DiT archi-
tecture for the denoising process. The DiT network starts
with a Layer Normalization followed by an adaptive nor-
malization that uses the timestep embedding. This adaptive
normalization consists of an MLP that learns regression val-
ues that come from the embedding vectors of the timestep
instead of learning the modulation parameters γ and β pa-
rameters from the data. Afterward, we use six attention
heads in the self-attention and perform one more scaling
from which values come from the adaptive normalization.
We apply a residual connection between the scaling’s input
and output. Then, we repeat the normalization stages, but
instead of having another attention mechanism, we use the
typical point-wise feedforward. In the end, we finish with
another residual connection, which is a summation. We fol-
low [34, 49] to compute the timestep embedding.

A.2. Inference

At inference time, we use DDIM [47] with 50 iterations
and remove the stochasticity during sampling from the dis-
tribution by setting the variance Σθ to zero. Using a sliding
window, we use the temporal window size W = 41 and ap-
ply BoDiffusion to the input tracking signal from HMD and
hand controllers. While during online inference, one would
apply our model using a sliding window with stride 1, for
the sake of faster inference on AMASS dataset, we apply

our model using a stride of 20 frames. We did not observe
the degradation of generations’ quality when we increased
the stride.

A.3. Inference Speed

A forward pass with W = 41 takes 0.021 secs for our
method and 0.003 secs for AvatarPoser. At inference, we do
50 forward passes that amount to 1.046 secs. Our method is
not optimized for speed yet because our goal was to prove
that DDPMs can generate high-quality motions. Future
work has a huge potential for making DDPM’s inference
faster by more efficient sampling, reducing the number of
layers and channels, and using quantization.

A.4. UNet Architecture for Ablation

To ablate the architecture, we also implemented a ver-
sion of BoDiffusion using the popular DDPM UNet back-
bone [5] designed for image data and not for motions, the
overview of this architecture is shown in Fig. 12. We fol-
lowed [5] for the architecture’s hyper-parameter selection.
In our case, we modified the ImageNet 128-channel archi-
tecture but changed the base number of channels from 256
to 64. Furthermore, we kept the same hyper-parameters for
the feature dimension multiplication. Considering the mo-
tion represented as a sequence of poses x1:W , we can treat
it as a “structured” image tensor (as shown in Fig. 8), such
that spatial dimensions (height and width for image) are re-
placed by “time” and “joints” dimensions and channels are
replaced by joint features (in our case it is 6D rotations).
A “structured” image in this context means that each pixel
of the image represents a single joint located in the kine-
matic tree along one axis and time along another axis of
the tensor. Due to the sufficient depth of the network and
a self-attention block in the middle, the effective receptive
field of the deepest convolutional layers covers the entire
“structured” image.

B. Additional Ablation Experiment
Table 6 demonstrates that our window size is optimal for

this task. First, we empirically show that removing the tem-
poral information from the input leads to high jitter and ve-
locity errors. In practice, using single frames is not enough
to enforce temporal consistency, thus making it harder to
understand the full-body movement. Therefore, even when
the positional and rotational errors are not extremely high
compared with our model, the jitter and velocity errors in-
crease considerably, thus misspending the long-range anal-
ysis capacity of Transformers. Secondly, we vary the num-
ber of input sequences to demonstrate the importance of en-
forcing temporal consistency. Since our window size is 41,
we choose half and double the number of input sequences to
assess the benefit of increasing or decreasing the temporal
information. As expected, increasing the window size to 81
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Figure 8. Input tensor representation for UNet network. We
represent the motion sequence as a 3D tensor in which the chan-
nels correspond to the 6D rotation, the height to the time sequence,
and the width to the joints. This representation is analogous to
the image data input tensors. In this way, we can reuse the con-
volutional architectures of the denoising UNet for 3D body pose
estimation.

Method Jitter MPJVE MPJPE MPJRE

Window size W = 1 19.71 174.9 4.77 3.13
Window size W = 21 0.53 16.09 3.96 2.86
BoDiffusion (W = 41) 0.49 14.39 3.63 2.70
Window size W = 81 0.46 13.69 3.77 2.86

Table 6. Window Size Ablation. We evaluate the importance of
including more or less temporal context. We report Jitter [km/s3],
MPJVE [cm/s], MPJPE [cm], and MPJRE [deg].

results in having more temporal coherence, thus decreasing
the jitter and velocity errors. However, increasing the input
window size also increases the computational cost of train-
ing from 1.5 days to almost 3 days. In contrast, reducing
the window size to 21 leads to harnessing the smoothness
of the motion. It is worth mentioning that even when the
jitter and velocity errors are affected by different window
sizes, our method performs the best in terms of positional
and rotational errors.

C. Additional Qualitative Evaluation

Figure 9 shows additional qualitative results for BoDif-
fusion and AvatarPoser [15] on the CMU [3], BMLrub [53],
and HDM05 [28] test sets. Notice that our method can gen-
erate poses close to the ground truth even when the actions
are unusual. For instance, column 2 depicts poses of a per-
son doing movements very close to the ground. Our method
is able to use the sparse tracking input for such uncommon
motions and predict plausible body configurations that are
faithful to the ground truth. In contrast, AvatarPoser strug-
gles with creating accurate poses when seeing an uncom-
mon motion.

Figures 10 and 11 show qualitative results on the Tran-
sitions [27] and HumanEVA [45] test sets predicted with
BoDiffusion and AvatarPoser [15]. First, note that BoDif-
fusion generates individual poses with a high fidelity in the
upper-body configuration and a plausible lower-body con-
figuration. Second, 11 shows that BoDiffusion captures
more details of the position of the feet and avoids foot slid-
ing, unlike AvatarPoser.

To fully appreciate the high quality of the motions gener-
ated by our approach, we suggest the reader watch the video
attached to this supplementary material. The video demon-
strates that BoDiffusion synthesizes more accurate motions
with substantially less jitter than AvatarPoser [15].

D. Local Rotation Loss

Due to the properties of Gaussian distributions, Ho et
al. [11] showed that we can directly calculate xt from x0

by sampling:

xt =
√
ᾱtx0 +

√
1− ᾱtε, (12)

and the following simple loss function can be used for net-
work training:

Lsimple = Ex0∼q(x0),t∼U [1,T ]||ε− εθ(xt, t)||22. (13)

In Eq. 12, αt = 1− βt, ᾱt =
∏T
i=1 αi, βt define the vari-

ance schedule for t ∈ {1, . . . T}, and ε ∼ N (0, I).
We found that optimizing εθ to approximate the noise ε

(Eq. 13) is equivalent to directly minimizing the local rota-
tion error.

Lemma 2. Let L(x, x′) = ||x − x′||2 be the local rota-
tion error loss between motion sequences x and x′, where
x′ is an estimate of x. Then, optimizing the Lsimple loss is
equivalent to optimizing L.

Proof. Let the rotation loss be

L(x, x′) = ||x− x′||2. (14)

Considering that xt for any single step in the DDPM is gen-
erated with Eq. 12, we can solve for x from this equation.
Similarly, since the DDPM model generates an estimate of
ε, we can generate the estimate x′ by replacing ε with εθ.
Hence,

x =
1√
ᾱt

(xt −
√

1− ᾱtε),

x′ =
1√
ᾱt

(xt −
√

1− ᾱtεθ(xt)).
(15)
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Figure 9. Performance on unconventional poses. We compare single poses predicted by using BoDiffusion and AvatarPoser [15]. The
poses were extracted from sequences of the CMU, BMLRub and HDM5 datasets. Mesh colors denote absolute positional error. Note how
our method can predict plausible poses even for uncommon movements like crouching or lying down.

By combining Eq. 15 in Eq. 14, we compute

L(x, x′) = ||x− x′||2

=

∣∣∣∣∣∣∣∣ 1√
ᾱt

(xt −
√

1− ᾱtε)

− 1√
ᾱt

(xt −
√

1− ᾱtεθ(xt))
∣∣∣∣∣∣∣∣2

=

∣∣∣∣∣∣∣∣√1− ᾱt
ᾱt

(ε− εθ(xt))
∣∣∣∣∣∣∣∣2

=
1− ᾱt
ᾱt

∣∣∣∣ε− εθ(xt)∣∣∣∣2
(16)

Therefore,

L(x, x′) =
1− ᾱt
ᾱt
Lsimple(ε, εθ(xt)), (17)

showing that minimizing the local rotation and the simple
loss is equivalent to a scaling factor.
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Figure 10. Error visualization on individual poses. We compare BoDiffusion and AvatarPoser [15] on sequences from the Transi-
tions [27] and HumanEVA [45] datasets. Note how our method can predict poses with higher fidelity to the ground truth. In contrast,
AvatarPoser struggles to predict accurate lower-body configurations.
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Figure 11. Error visualization on sequences. We compare predicted motions of BoDiffusion and AvatarPoser [15] on the test se-
quences from the Transitions [27] and HumanEVA [45] datasets. Notice that the motions generated by BoDiffusion look more natural and
demonstrate better temporal consistency. On the contrary, methods like AvatarPoser struggle to maintain coherence throughout the frames
regarding aspects like foot sliding (third sequence).

17



Figure 12. Overview of BoDiffusion-UNet. Here we show a version of BoDiffusion based on the U-Net architecture. We condition
the input signals after a conditioning projection at the top (green block). Similarly, we project the noisy input local rotations (blue block)
to match the sizes from the conditioning pathway. After denoising by the U-Net, we perform a final projection to the original space of
full body motions (purple block). The output estimates εθ and Σθ that are used to compute the local rotations x1:Wt−1 by sampling from
N (xt−1;µθ,Σθ). ⊕ is the operation of concatenation along the channels’ dimension. The numbers next to the arrows denote the input
and output dimensions for the corresponding blocks.
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