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Abstract

We propose a novel-view augmentation (NOVA) strat-
egy to train NeRFs for photo-realistic 3D composition of
dynamic objects in a static scene. Compared to prior
work, our framework significantly reduces blending arti-
facts when inserting multiple dynamic objects into a 3D
scene at novel views and times; achieves comparable PSNR
without the need for additional ground truth modalities like
optical flow; and overall provides ease, flexibility, and scal-
ability in neural composition. Our codebase is on GitHub.

1. Introduction
Photo-realistic composition of objects in a 3D scene has

significant applications, one of which is creating realistic
content and experiences inside the Metaverse. Despite re-
cent advances in neural radiance fields (NeRFs) [9], photo-
realistic composition from dynamic monocular videos re-
mains a challenging problem. This is primarily due to the
ill-posed nature of this task—multiple scene configurations
can lead to identical observed image sequences, a problem
we refer to as the 3D structure ambiguity.

Current approaches for this task [2, 7] build implicit rep-
resentations of the static scene and dynamic objects sepa-
rately by predicting a per-point blending factor along with
color and density. To deal with structure ambiguity, these
methods also predict modalities such as 3D scene flow and
depth to regularize the prediction within each frame and be-
tween neighboring frames. This requires ground truth data
for these modalities, thus limiting applicability. These ap-
proaches also suffer from blending mask prediction errors
when rendering a novel view, causing blending artifacts at
the boundaries of the image that are not present in the refer-
ence frustum. This effect is amplified when inserting mul-
tiple objects into the scene and dramatically degrades the
rendering quality (see Fig. 1).

We introduce a framework, NOVA, that helps mitigate
these issues. NOVA reduces blending artifacts by augment-
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Figure 1: Prior works (left column) have blending artifacts
that are amplified when multiple objects are inserted at dif-
ferent points in the same scene. Our method (right column)
reduces these blending artifacts significantly.

ing NeRF with losses for different views during training and
requiring the network to predict consistent masks and col-
ors across novel views. NOVA additionally extends prior
works to facilitate learning different dynamic objects of the
scene using separate implicit representations and control-
ling their movement by manipulating these representations.
NOVA does not require 3D scene flow regularization, thus
removing the need for a scene flow predictor during data
preparation and reducing training time without impacting
PSNR. In summary, our contributions are three-fold:

1. a flexible NeRF composition framework to add an arbi-
trary number of dynamic objects into a static 3D scene;

2. a novel-view augmentation strategy for learning better
per-point blending factors;

3. corresponding novel-view losses for high rendered im-
age fidelity.

2. Related Work
Object composition via inverse-rendering. Inserting
objects into a scene requires properties like lighting, depth,
geometry, and material. [3, 14, 8, 24] estimate these prop-
erties for an indoor scene from a single image. For outdoor
scenes, a high dynamic range light field is necessary to rep-
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Figure 2: Overview of our training framework. Based on the 2D segmentation masks, separate NeRFs are initialized. These
NeRFs predict per-point RGB color and blending factors, which are passed through a differentiable volume renderer to
generate the final composed image from a novel viewpoint.

resent sun and sky [5, 20], and adversarial methods are com-
monly used to train photo-realistic results [20, 6, 19, 10].

Composing dynamic objects using NeRFs. NeRFs [9]
achieve impressive novel-view synthesis results with a sim-
ple formulation for static scenes, encouraging research to
compose multiple NeRFs. Guo et al. [4] proposed train-
ing per-object scattering functions for proper lighting ef-
fects during composition. Yang et al. [22] separated the
scene into background and object branches, using 2D seg-
mentation as supervision. To allow for 3D pose control, Ost
et al. [11] proposed a learnable scene graph to decompose
dynamic objects into nodes encoding transformation and ra-
diance. Tancik et al. [15] proposed a framework to tune and
compose individually trained NeRFs into city-scale scenes.

Novel-view synthesis for dynamic videos. Current
works either learn a static canonical radiance field, with a
second per-time-step field to apply deformation [17, 12, 13],
or learn a dynamic radiance field directly conditioned on
time [7, 21, 1, 2, 16]. For the latter direction, it is common
to learn a scene flow field [18] concurrently and constrain
adjacent frames for pixel consistency. Besides scene flow,
Li et al. [7] also applied geometric consistency and depth as
prior; Gao et al. [2] introduced additional auxiliary losses.
Tian et al. [16] propose a flow-based feature aggregation
module to incorporate spatial and temporal features.

3. Method
Our framework is inspired by Gao et al. [2], which

jointly trains two NeRFs that separately handle the time-
invariant static and time-varying dynamic parts of a monoc-
ular video. The static NeRF predicts the per-point color

and density (c, σ) given the point’s position and viewing
direction (x, y, z, θ, ϕ). The dynamic NeRF predicts the
per-point color, density, scene flow, and blending factor
(c, σ, sf , sb, β) given the point’s position, viewing direc-
tion, and time (x, y, z, θ, ϕ, t). Ground-truth optical flow is
used to learn the scene flow, and several regularizing losses
are applied to scene flow and depth to resolve the 3D struc-
ture ambiguity when learning from a monocular view. The
NeRF composition is done in an unsupervised manner using
the per-point blending factors β.

This approach works well for scene reconstruction but
produces blending artifacts when manipulating the scene
(see Fig. 1). We introduce a framework with three novel
modules to alleviate these issues, described in detail in the
subsequent sections. We also remove the losses based on
ground-truth optical flow in Gao et al. [2] from our frame-
work to reduce the amount of supervision.

3.1. Multiple NeRFs

Our framework uses separate NeRFs to learn different
parts of the scene. Each NeRF is provided a segmentaion
mask of the scene and is either static or dynamic based on
the dynamicity of the scene parts it models (see Fig. 2). The
static and dynamic NeRF architectures are similar to that of
Gao et al. [2]. The final RGB image is produced from a
novel viewpoint by combining the outputs of all the NeRFs
as follows:

Cfull
P (r) =

K∑
k=1

T full
k

(
num NeRFs∑

n=1

αn
kβ

n
k c

n
k

)
(1)

where K is the number of samples along the ray r, T full
k

is the transmittance at the kth sample along the ray after ac-
counting for rays from all the NeRFs, and αn

k , βn
k , and cnk



are the alpha, blending factor, and color respectively pre-
dicted by the nth NeRF for the kth sample along the ray.

3.2. Novel-View Augmentation

Figure 3: Novel-view augmentation training strategy

Our novel-view augmentation training strategy reduces
blending artifacts when manipulating multiple dynamic ob-
jects and composing them into the scene. During training,
we shift the camera responsible for the dynamic object to a
novel view (see Fig. 3). Given the camera’s relative trans-
formation, we calculate the ground truth segmentation mask
at the novel view using stereo geometry. Points are sampled
along the rays of the camera at the novel viewpoint C2 and
passed through the corresponding NeRF. We render the pre-
dicted segmentation mask Mn

P for the nth NeRF as follows:

Mn
P (r) =

K∑
k=1

T full
k αfull

k βn
k (2)

where T full
k is the transmittance and αfull

k is the alpha at
the kth sample along the ray after accounting for rays from
all the NeRFs, and βn

k is the blending factor predicted by the
nth NeRF at the kth sample along the ray. This augmenta-
tion strategy can be applied to other ground truths available
for training like RGB images.

3.3. Novel-View Losses

We introduce a few losses to ensure high image fidelity
when placing objects at novel points in the scene.
Novel-View Mask Loss. We take the squared error loss
between the predicted and ground-truth masks for the novel
viewpoint:

Lnvm =

num NeRFs∑
n=1

∑
ij

∥Mn
GT (rij)−Mn

P (rij)∥2 (3)

Per-Camera Novel-View RGB Loss. We render the RGB
image of each NeRF as follows:

Cn
P (r) =

K∑
k=1

Tn
k α

n
kβ

n
k c

n
k (4)

We take the squared error loss between the predicted and
the ground-truth RGB image from the novel viewpoint of
only the pixels for which the NeRF is responsible for:

Lnvcn =

num NeRFs∑
n=1

∑
ij

Mn
GT (rij)∥CGT (rij)−Cn

P (rij)∥2

(5)
Full Novel-View RGB Loss. After rendering the final RGB
image using Eq. 1, we take the squared error loss with the
ground truth full RGB image as follows:

Lnvcf =
∑
ij

∥CGT (rij)−Cfull
P (rij)∥2 (6)

Blending Loss. To ensure the contributions of all the
NeRFs for a particular point sum to one, we introduce a
blending loss:

Lnvb =
∑
ijk

∣∣∣∣∣
(

num NeRFs∑
n=1

βn
ijk

)
− 1

∣∣∣∣∣ (7)

Alpha Loss. We force the NeRFs to not predict anything
outside the masks they are responsible for by explicitly
adding a loss for alphas to be 0 outside the camera mask:

Lnva =

num NeRFs∑
n=1

∑
ij

(1−Mn
GT (rij)) ·

(∑
k

∣∣αn
ijk

∣∣)
(8)

4. Experimental Results
4.1. Dataset

We use the preprocessed Dynamic Scene Dataset [23]
provided by Gao et al. [2], which contains video sequences
for seven scenes, each consisting of a static background and
moving objects. Each sequence has 12 images captured at
different time steps and camera poses, which make them
effectively monocular.

4.2. Evaluation

4.2.1 Quantitative Evaluation

We evaluate the image fidelity quantitatively by assess-
ing the PSNR between the synthesized image and the cor-
responding ground truth image at a fixed viewpoint but
changing time. Our framework performs comparably to
other methods without the need for additional modalities of
ground truth data like optical flow (see Tab. 1).

4.2.2 Qualitative Evaluation

We compare our novel-view renderings with Gao et al. [2]
in Fig. 4. Our framework reduces blending artifacts, as vis-
ible clearly from our predicted object masks and generated
final images, with the improvement being significant when
composing multiple dynamic objects.



Method Balloon1 Balloon2 Jumping Playground Skating Truck Umbrella Average

NeRF + time 17.32 19.66 16.72 13.79 19.23 15.46 17.17 17.05
Yoon et al. [23] 18.74 19.88 20.15 15.08 21.75 21.53 20.35 19.64
Li et al. [7] 21.35 24.02 24.10 20.85 28.88 23.33 22.56 23.58
Gao et al. [2] 21.43 26.59 23.57 23.74 31.92 25.50 22.68 25.06

Ours 21.52 25.08 20.27 22.31 27.73 23.31 23.08 23.33

Table 1: We compare PSNR of our method against other methods that report their PSNR on Dynamic Scene Dataset [23].
The best results are highlighted in red while the second best are in blue. Our model performs comparably to other methods
despite not using ground-truth optical flow supervision.

Figure 4: Qualitative results of our model on Umbrella, Balloon1, and Jumping scenes. Compared with Gao et al. [2], our
novel-view augmentation training significantly reduces artifacts in the novel-view mask prediction, and produces images with
higher fidelity, especially when composing multiple objects in a scene.

4.2.3 Ablation Study

Figure 5: Ablation study on Lnvm and novel-view RGB
losses.

We study the impact of each of our losses on the quality
of the final image. As seen in Fig. 5, using just Lnvm can
remove the blending artifacts, but RGB losses are necessary
to ensure the inserted objects have proper color.

5. Conclusion
We have introduced a framework, NOVA, for the neu-

ral composition of dynamic scenes using NeRFs. Our ma-
jor contributions are three modules: multiple NeRFs, novel
view augmentation, and novel view losses. Using monoc-
ular dynamic video, object segmentation masks, and depth
information, our results demonstrate our framework’s relia-
bility, ease, flexibility, and scalability of inserting multiple
dynamic objects into a scene photo-realistically.
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