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UncLe-SLAM: Uncertainty Learning for Dense Neural SLAM

Erik Sandström1* Kevin Ta1* Luc Van Gool1,2 Martin R. Oswald1,3

1ETH Zürich, Switzerland 2KU Leuven, Belgium 3University of Amsterdam, Netherlands

Abstract

We present an uncertainty learning framework for dense
neural simultaneous localization and mapping (SLAM). Es-
timating pixel-wise uncertainties for the depth input of
dense SLAM methods allows re-weighing the tracking and
mapping losses towards image regions that contain more
suitable information that is more reliable for SLAM. To this
end, we propose an online framework for sensor uncertainty
estimation that can be trained in a self-supervised manner
from only 2D input data. We further discuss the advan-
tages of the uncertainty learning for the case of multi-sensor
input. Extensive analysis, experimentation, and ablations
show that our proposed modeling paradigm improves both
mapping and tracking accuracy and often performs better
than alternatives that require ground truth depth or 3D. Our
experiments show that we achieve a 38% and 27% lower
absolute trajectory tracking error (ATE) on the 7-Scenes
and TUM-RGBD datasets respectively. On the popular
Replica dataset using two types of depth sensors, we report
an 11% F1-score improvement on RGBD SLAM compared
to the recent state-of-the-art neural implicit approaches.
Source code: https://github.com/kev-in-ta/UncLe-SLAM.

1. Introduction
Neural scene representations have taken over the 3D re-

construction field by storm [47, 41, 12, 42] and have re-

cently also been built into SLAM systems [67, 81, 78] with

excellent results for geometric reconstruction, hole filling,

and novel view synthesis. However, their camera track-

ing performance is typically inferior to the one of tradi-

tional sparse methods [9] that rely on feature point match-

ing [81, 78]. A major difference to sparse methods which

focus on a small set of points is that the rendering loss in

most dense methods treats all pixels equally although it is

plausible that they differ in their amount of useful infor-

mation for SLAM, due to sensor noise. In the context of

RGBD-cameras, it is well-known that several factors such

as surface material type, texture etc., often affect the sen-

sor’s raw output, leading to noisy measurements [23, 4]. In-

*Equal contribution.

Figure 1: UncLe-SLAM benefit. Our proposed method

learns depth uncertainty on the fly in a self-supervised way.

We show that our approach yields more accurate 3D map-

ping and tracking than other dense neural implicit SLAM

methods, like NICE-SLAM [81] which does not model

depth uncertainty.

troducing pixel-wise uncertainties into a dense SLAM ap-

proach allows us to model non-uniform weights to focus on

tracking and mapping suitable scene parts in a continuous

manner. This is akin to the discrete selection of features

points in traditional sparse approaches. Currently, the ma-

jority of dense neural SLAM approaches employ a uniform

weighting for all pixels during mapping [81, 78, 37, 80]

and tracking [81, 78, 67, 80]. Some efforts have been made

to construct more informed pixel sampling strategies via ac-

tive resampling or rejection based on the re-rendering loss

for mapping [67] and tracking [37], but these approaches

are ultimately limited by simple heuristics. In this paper,

we therefore tackle the task of learning aleatoric depth sen-

sor uncertainty on the fly to weigh scene parts in a non-

uniform manner based on the estimated confidence. Fur-

thermore, mobile devices are often equipped with more than

one depth sensing modality and it is often observed that dif-

ferent modalities complement each other [58]. With these

aspects in mind, we design our implicit SLAM system to

perform dense SLAM with one or more depth sensors. Ad-

ditionally, existing depth fusion methods that model single

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

4537



sensor depth uncertainty [59, 56, 54, 71] or fuse multiple

depth sensors [58] require access to ground-truth depth or

3D at train time. Hence, these methods may not be robust to

domain shifts at test time. On the contrary, we learn sensor-

agnostic uncertainty online in a self-supervised way without

requiring ground truth depth or 3D. For that, we assume a

Laplacian error distribution on the depth sensor and derive

the corresponding loss function.

Our method, dubbed UncLe-SLAM, jointly learns the

aleatoric depth uncertainty and the scene geometry by pass-

ing cheaply available 2D features from the depth sensor

as input to a small uncertainty decoder, meaning that we

stay within real-time run constraints. Our approach thus

guides the mapping and tracking process with the implicitly

learned uncertainty, see Fig. 1. Moreover, we showcase that

our formulation generalizes well to the multi-sensor setting

where two depth sensors with varying noise distributions

are fused into the same 3D representation. Our contribu-

tions are:

• A robust approach for estimating aleatoric depth uncer-

tainty for the single and multi-sensor case is proposed.

The introduced framework is robust, accurate and can be

directly integrated into a dense SLAM system without the

need for ground truth depth or 3D.

• In the single depth sensor case, we show that our

uncertainty-driven approach often improves on standard

performance metrics regarding geometric reconstruction

and tracking accuracy. In the multi-sensor case, we show

for various sensor combinations that our method extracts

results that are consistently better than those obtained

from the individual sensors.

2. Related Work
The approach proposed in this paper covers a wide range

of research topics such as SLAM, sensor fusion, sensor

modeling, uncertainty modeling, etc. All of these topics

are well-studied with an exhaustive list of literature. There-

fore, we narrow our related work discussion to the relevant

methods that better helps expose our contributions.

2.1. Single-Sensor Depth Fusion and Dense SLAM

Curless and Levoy’s seminal work [14] is the basis for

many dense depth mapping approaches [43, 71]. Subse-

quent developments include scalable techniques with voxel

hashing [45, 28, 46], octrees [63], and pose robustness [8].

Further advancements led to dense SLAM, such as [44,

61, 67, 81], which can also handle loop closures such as

BundleFusion [15]. To address the issue with noisy depth

maps, RoutedFusion [71] learns a fusion network that out-

puts the TSDF update of the volumetric grid. Other works

such as NeuralFusion [72] and DI-Fusion [27] extend this

concept by learning the scene representation, resulting in

better outlier handling. Lately, the work on continuous neu-

ral mapping [74] learns the scene representation using con-

tinual mapping from a sequence of depth maps. Yet, none

of the above-mentioned approaches explicitly study multi-

ple depth modalities or their uncertainty and their fusion

in a neural SLAM framework. Further, their extensions to

multiple sensor fusion are often not trivial. Nevertheless, by

treating all sensors alike, they can be used as simple base-

lines.

2.2. Multi-Sensor Depth Fusion

The fusion of at least two types of depth-sensing devices

has been studied in the past. Notably, the fusion of raw

depth maps from two different sensors, such as RGB stereo

and time-of-flight (ToF) [70, 13, 2, 21, 16, 38, 3, 17], RGB

stereo and Lidar [36], RGB and Lidar [55, 48, 50], RGB

stereo and monocular depth [40] and the fusion of multiple

RGB stereo algorithms [53] is well-studied and explored.

Yet, these methods study specific sensors and are not inher-

ently equipped with 3D reasoning. Few works consider 3D

reconstruction with multiple sensors [57, 31, 7, 76, 77, 24],

but these do not consider the online mapping setting. Con-

ceptually, more closely related to our work is SenFu-

Net [58], which is an online mapping method for multi-

sensor depth fusion. Still, contrary to our approach, [58]

requires access to ground truth 3D data at train time. It

does not predict explicit uncertainty per sensor but requires

multi-sensor input to weigh the sensors against each other.

2.3. Uncertainty Modeling for Depth

Uncertainty modeling for depth estimation has been

studied extensively in the past, specifically for multiview

stereo (MVS) [33, 73, 79, 66] and binocular stereo [54,

62, 69, 30]. In addition to the popular Gaussian distribu-

tion to model sensor noise [10], the Laplacian noise model

has also been employed to analyse depth uncertainty. For

instance, Klodt et al. [32] assume, like our approach, a

Laplacian noise model to explore the advantage of depth

uncertainty modeling from short sequences of RGB im-

ages. Likewise, Yang et al. [75] uses a Laplacian model

for monocular depth estimation [75]. Furthermore, some

works propose self-supervised frameworks for monocular

depth estimation, such as [52, 75]. Aleatoric uncertainty es-

timation has also been applied for surface normal estimation

from RGB [5]. This technique was recently used to refine

depth estimated from a monocular RGB camera [6]. Closer

to our setting, RoutedFusion [71] trains an encoder-decoder

style network to refine depth maps and predict a measure of

confidence. Nevertheless, unlike our approach, they require

access to ground truth depth for training. Despite impres-

sive progress in depth uncertainty modeling, there has been

little focus on uncertainty estimation of the 3D surface. DI-

fusion [27] proposed a technique to do this by imposing a
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Gaussian assumption on the signed distance function. Yet,

unlike our approach, it needs ground truth 3D for training.

Regarding uncertainty modeling, our method is related

to the treatment of probabilistic depth fusion methods [19,

20, 34, 18, 10]. As studied and observed by several meth-

ods, As studied and observed by several methods, explicit

uncertainty modeling is helpful1. In the context of SLAM,

Cao et al. [10] introduced a probabilistic framework via a

Gaussian mixture model for dense visual SLAM based on

surfels to address uncertainties in the observed depth. How-

ever, it is well-known that Gaussian noise modeling has its

practical limitations [49].

Overall, to the best of our knowledge, none of the state-

of-the-art neural SLAM methods for dense online SLAM

consider aleatoric uncertainty modeling along with multiple

sensors. Moreover, none of the above works consider esti-

mating uncertainty in an online self-supervised way with

implicit neural SLAM.

3. Preliminaries

To perform online neural implicit SLAM from a se-

quence of RGBD images, it is necessary to have a 3D repre-

sentation. Furthermore, due to the self-supervision from the

incoming sensor frames, a rendering technique is needed

that connects the 3D representation to the 2D observations.

By using the 3D representation and 2D rendering technique,

the mapping and tracking processes can be constructed. In

this paper, we focus on solid (non-transparent) surface re-

construction. We first present background information on

implicit surface and volumetric radiance representations,

which is then used to develop our online uncertainty mod-

eling approach.

3.1. Scene Representation

Convolutional Occupancy Networks [51] proposes to

learn the occupancy o ∈ [0, 1] using an encoded 3D grid

of features that can be passed, after trilinear interpolation,

through an MLP decoder to acquire the occupancy. NICE-

SLAM [81] utilizes this idea and encodes the scene in hier-

archical voxel grids of features. For any sampled 3D coor-

dinate pi ∈ R
3, feature vectors can be extracted from these

voxel grids. The features can then be fed, in a coarse-to-fine

manner, through MLP decoders to extract the occupancy of

the given point.

The geometry is encoded in two feature grids - middle

and fine2. Each feature grid φl
θ has an associated pretrained

decoder f l, where l ∈ {1, 2} and θ describes the optimiz-

able features. We denote a trilinearly interpolated feature

1For a review on uncertainty estimation in deep learning we refer to [1]
2There is an additional coarse grid, but it is not used for mapping, and

despite claims from the authors, when looking at the source code, it is

neither used for tracking. Thus, we do not consider it.

vector at point pi as φl
θ(pi). Additionally, the color is en-

coded in a fourth feature grid ψω (parameters ω) with de-

coder gξ (parameters ξ), and is used for further scene re-

finement after initial stages of geometric optimization. The

observed scene geometry is reconstructed from the middle

and fine resolution feature grids, with the fine feature grid

output residually added to the middle grid occupancy. In

summary, the occupancy oi and color ci are predicted as

oi = f1
(
pi, φ

1
θ(pi)

)
+ f2

(
pi, φ

2
θ(pi), φ

1
θ(pi)

)
ci = gξ

(
pi, ψω(pi)

)
. (1)

3.2. Depth and Image Rendering

To link the 3D representation with supervision using 2D

RGBD observations, NICE-SLAM uses volume rendering

of depth maps and RGB images. This process involves sam-

pled points pi ∈ R
3 at depth di ∈ R

1 along a ray r ∈ R
3

cast from origin O ∈ R
3, as

pi = O+ dir, i ∈ {1, ..., N}. (2)

The occupancies are evaluated along the ray according to

Eq. (1) and volume rendering constructs a weighting func-

tion wi using Eq. (3). This weight represents the discretized

probability that the ray terminates at that particular point.

wi = oi

i−1∏
j=1

(1− oj) (3)

The rendered depth is computed as the weighted average

of the depth values along each ray, and equivalently for the

color following Eq. (4) as defined below.

D̂ =
N∑
i=1

widi, Î =
N∑
i=1

wici (4)

This volume rendering method also provides variance from

the discretized selection of points. By taking the depth dif-

ferences with respect to the sensor depth multiplied by the

weighting function, a measure of variance can be extracted

that is a composite of the model uncertainty and sampling

uncertainty, as defined in Eq. (5).

ŜD =

√√√√ N∑
i=1

wi

(
D̂ − di

)2
(5)

4. Method
This section details how we introduce aleatoric uncer-

tainty modeling based on the preliminaries covered in Sec-

tion 3. The rest of our methodology section is arranged

as follows: We first present our theoretical assumptions

which form the basis for our loss function derivation. Then,
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we explain how our framework elegantly supports multi-

sensor fusion with additional depth sensors and RGBD fu-

sion without relying on heuristic hyperparameters. Finally,

we describe our architecture and implementation. For an

overview, see Fig. 2.

4.1. Theoretical Assumptions

We motivate our formulation of sensor noise under the

assumption of a Laplacian noise distribution on a per-ray

basis which was found to perform better on vision tasks than

a Gaussian assumption by [29]. Further, we assume that the

noise is heteroscedastic meaning that the noise variance is

a variable for each pixel. That is, each pixel m in the cap-

tured depth sensor is treated independently. Consequently,

the measured depth is sampled from the probability density

function

P (Dm) =
1

2βm
exp

(
−|Dm − D̂m|1

βm

)
. (6)

We take D̂m to be the true depth and
√
2βm to be the stan-

dard deviation of the depth reading of a specific pixel, pa-

rameterised by some function with parameters τ . When we

aggregate all depth sensor information, we get the joint den-

sity of the per-ray depth observations

P (D1, ..., DM ) =

M∏
m=1

1

2βm
exp

(
−|Dm − D̂m|1

βm

)
,

where M is the total number of pixel readings. The best

estimate of the depth can thus be determined via maximum

likelihood estimation

argmax
θ,τ

P (D1, ..., DM ) = argmin
θ,τ

− log
(
P (D1, ..., DM )

)

= argmin
θ,τ

M∑
m=1

|Dm − D̂m|1
βm

+ log(βm). (7)

4.2. Mapping

Mapping is performed equivalently to [81], but with the

revised loss function

Lmap =

M∑
m=1

|Dm − D̂m(θ)|1
βm(τ)

+ log
(
βm(τ)

)
(8)

A database of keyframes is utilized to regularize the map-

ping loss. Keyframes are added at a regular frame interval

and sampled for each mapping phase to have a significant

overlap with the viewing frustum of the current frame. Pix-

els are then sampled from the keyframes along with the cur-

rent frame to optimize the map. In terms of optimization, a

two-stage approach is taken. For each mapping phase, the

middle grid is first optimized and then, once converged, the

fine grid is included for further refinement. For more de-

tails, we refer to [81].

4.3. Tracking

Tracking is performed equivalently to [81], but with the

revised mapping loss function

Ltrack =
1

Mt

Mt∑
m=1

|Dm − D̂m(θ)|1
ŜD(θ) + βm(τ)

, (9)

which additionally takes the aleatoric sensor uncertainty

into account. Mt is the number of pixels that are sampled

during tracking. We optimize the camera extrinsics {R, t}.

4.4. Multi-Sensor Depth Fusion and RGBD Fusion

The methods described so far have encompassed implic-

itly learning uncertainty given a single sensor. We extend

this single-sensor approach to incorporate a second sensor.

If we again assume that each depth observation is I.I.D., the

joint likelihood we wish to maximize is the product of the

probability distributions for each pixel in each sensor.

Given two synchronized and aligned sensors, we can

sample a set of pixels m ∈ {1, ...,M} from two depth sen-

sors yielding the generalized loss function

L =

M∑
m=1

2∑
i=1

|Dm,i − D̂m|1
βm,i

+ log(βm,i). (10)

One interpretation of this objective function is that the

pipeline implicitly learns the weighting between the two

sensor observations. The loss function penalizes large un-

certainties via the log terms, and implicitly learns the un-

certainty for both sets of observations as the model depth is

optimized. In an analogous fashion, RGBD fusion can be

achieved via the loss function

Lrgbd = Lgeo + Lrgb (11)

Lgeo =
M∑

m=1

|Dm − D̂m|1
βm,d

+ log(βm,d) (12)

Lrgb =
M∑

m=1

|Im − Îm|1
βm,r

+ log(βm,r), (13)

where βm,d and βm,r denote the per pixel sensor uncer-

tainty for the depth and rgb sensor respectively. This mod-

eling is different to NICE-SLAM where the color and ge-

ometry losses are weighted by a heuristic hyperparameter.

4.5. Design Choices and Architecture Details

The per-pixel depth and variance is rendered according

to Eq. (4) and Eq. (5) respectively.

The variance from Eq. (5) could naively be applied to

Eqs. (8) and (9) with the rendered variance ŜD represent-

ing 2β2. Unfortunately, such an approach is poorly moti-

vated as this calculated variance is related to the model con-

fidence, as opposed to the sensor-specific noise. In practice,
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Figure 2: UncLe-SLAM Architecture. Given an input depth map from an estimated camera pose, mapping and tracking is

performed by minimizing a re-rendering loss, by optimizing either the grid features θ and network parameters w or the camera

extrinsics respectively. The depth is estimated using point samples pi along rays with a volumetric renderer which decodes

geometric multi-scale features φ1
θ(pi) and φ2

θ(pi) into occupancies. The uncertainty is estimated by feeding informative

features through an uncertainty decoder hw. The architecture can be extended to a multi-sensor setting or with RGB by

adding additional uncertainty MLPs. We build the architecture on top of NICE-SLAM [81].

the uncertainty we strive to model is aleatoric uncertainty

and should be distinct from the model confidence. One in-

terpretation of the variance from Eq. (5) is as the epistemic

uncertainty. With an increasing number of observations, the

epistemic uncertainty should shrink, driving the model to-

wards sharp bounds. We instead seek a separate process to

extract aleatoric uncertainty. We take the concept of implic-

itly learned aleatoric uncertainty from the work of Kendall

and Gal [29] and design a patch-based MLP. Our approach

takes in spatial information from the specific depth frame

to generate uncertainty β, distinct and decoupled from the

rendered variance ŜD.

An additional concern within the framework is the com-

putational overhead. Volume rendering is one of the more

intensive operations and an additional rendering for each

sensor may be prohibitively expensive. Consequently, we

propose a simpler approach to derive a ray-specific uncer-

tainty through the use of 2D features that contain relevant

information. We can leverage cheaply available metadata,

as was done in e.g. [60], to capture sensor noise. We inves-

tigate plausible per-pixel (per-ray) features and end up with

the following inputs to estimate depth uncertainty: the mea-

sured depth Dm ∈ R and the incident angle θ ∈ R between

the local ray direction and the surface normal, computed as

in [43] from the depth map through central difference af-

ter bilateral filtering [68]. For RGB uncertainty, we feed

the color instead of the depth and incident angle. Instead

of only feeding the features from a single pixel observation,

we feed the features from a 5×5 patch, effectively expand-

ing the receptive field of the ray. This patch of pixels gives

local context and local correlation of uncertainty for areas

near edges or with high frequency content. We denote the

concatenation of the features ζ.

The MLP network, denoted hw, is similar in architecture

to the MLPs f l used for the occupancy decoders. We use

a network with 5 intermediate layers with 32 nodes each,

activated via ReLU, except for the last layer. Inspired by

NeRF-W [39], we apply a softplus activation with a mini-

mum uncertainty value βmin. The output ỹm ∈ R from the

last layer is thus processed as

βm = hw(ζ) = βmin + log (1 + exp (ỹm)) (14)

The addition of a minimum uncertainty changes the bound

of the uncertainty to (βmin,∞), and mitigates numerical in-

stability during optimization. Finally, we only update hw

during the fine stage of optimization i.e. in the middle stage,

we use the same loss as [81].
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5. Experiments
We first describe our experimental setup and then report

results on single and multi-sensor experiments. We evaluate

our method on the Replica dataset [64] as well as the real-

world 7-Scenes [22] and TUM-RGBD [65] datasets. All

reported results are averages over the respective test scenes

and over ten runs, unless otherwise stated. Further experi-

ments and details are in the supplementary material.

Implementation Details. We leave many of the hyperpa-

rameters from [81] as is e.g. we use 0.32 m and 0.16 m
voxel size for the middle and fine resolution respectively.

The ray sampling strategy remains the same, with 32 points

uniformly sampled along the ray and 16 points sampled uni-

formly near the depth reading. The feature grids store 32-

dimensional features and we use the same occupancy de-

coders and color decoders as [81]. We leave the learning

rates for feature grid optimization under the same sched-

ule—i.e. 0.1 for the middle stage and 0.005 for the fine

stage. On Replica, we map every 5th frame and use 5K pix-

els uniformly sampled during mapping and tracking. We

use 10 tracking iterations and 60 mapping iterations and in-

lude the fine grid optimization after 60 % of the total map-

ping iterations. These parameters were not tuned and may

be optimized to further improve performance. Specifically,

the learning rates may be adjusted under the new loss for-

mulation to improve stability.

Evaluation Metrics. The meshes, produced by marching

cubes [35] from the occupancy grids, are evaluated using

the F-score which is the harmonic mean of the Precision (P)

and Recall (R). We further provide the mean precision and

mean recall along with the depth L1 metric as in [81]. For

tracking accuracy, we use ATE RMSE [65].

Baseline Methods. We compare our proposed method to

existing state-of-the-art online dense neural SLAM meth-

ods. The most natural baseline is NICE-SLAM [81], which

treats all depth observations equally, followed by SenFu-

Net [58], which performs multi-sensor depth fusion. Sen-

FuNet does not explicitly model per sensor uncertainty,

but fuses two depth sensors with a learned weighting net-

work. In the multi-sensor setting, we also compare to Vox-

Fusion [78] by weighting all depth readings equally. Ad-

ditionally, we pretrain a 2D confidence prediction network

from the raw depth maps using a slightly modified version

of the network proposed by Weder et al. [71]. The per pixel

learned confidences are used at runtime in NICE-SLAM to

scale the importance in the mapping and tracking loss func-

tion. We call this baseline “NICE-SLAM+Pre”. Details are

provided in the supplementary material.

Datasets. The Replica dataset [64] comprises high-quality

3D reconstructions of a variety of indoor scenes. We uti-

lize the publicly available dataset collected by Sandström et
al. [58], which provides trajectories from a simulated struc-

Depth L1↓ mP↓ mR↓ P↑ R↑ F↑ ATE↓
Model ↓ |Metric →

[cm] [cm] [cm] [%] [%] [%] [cm]

Depth + Ground Truth Poses
NICE-SLAM [81] 2.64 2.65 2.35 88.75 88.20 88.45 -

NICE-SLAM+Pre 2.67 2.65 2.31 89.00 88.62 88.78 -

Ours 2.42 2.58 2.29 89.14 88.70 88.89 -

Depth + Tracking
NICE-SLAM [81] 10.65 10.04 7.17 48.46 51.43 49.80 27.90

NICE-SLAM+Pre 9.90 13.99 6.84 52.43 57.72 54.54 36.95

Ours 7.39 6.56 6.20 57.30 57.57 57.41 19.36
RGB-D + Tracking

NICE-SLAM [81] 8.11 7.81 6.77 51.81 53.56 52.63 20.25

Ours 6.49 6.43 5.93 58.89 59.39 59.09 18.92

Table 1: Reconstruction Performance on Replica [64]:
PSMNet [11]. Our model outperforms the baseline meth-

ods in the mapping only setting as well as with tracking

enabled and when color is available. Best results are high-

lighted as first , second , and third .

tured light (SL) sensor [25], depth from stereo with semi-

global matching [26] (SGM) and from a learning-based ap-

proach called PSMNet [11] as well as color.

The 7-Scenes [22] and TUM-RGBD [65] datasets com-

prise a set of RGBD scenes captured with an active depth

camera along with ground truth poses.

5.1. Single Sensor Evaluation

Replica. We provide experimental evaluations on two depth

sensors in three different settings: 1. Depth with ground

truth poses i.e. pure mapping from noisy depth. 2. Depth

with estimated camera poses (i.e. with tracking) and 3.

RGBD with tracking. In Table 1 for the PSMNet [11] sen-

sor, our model shows consistent improvements on all met-

rics in all three settings. For the SGM [26] sensor (in Ta-

ble 2) we find consistent improvements in the settings where

tracking is enabled. In the mapping only setting, the pre-

trained confidence model performs marginally better for the

SGM sensor. Fig. 4 shows the reconstruction results for two

scenes from the Replica dataset with the two sensors. Com-

pared to NICE-SLAM [81], we find that UncLe-SLAM on

average reconstructs more accurate geometries.

Uncertainty Visualization. To gain insights about the es-

timated uncertainties that our model produces, we visual-

ize the estimated uncertainties for our two depth sensors in

Fig. 3. For reference, we also plot the absolute ground truth

depth error. Compared to the uncertainties produced by the

pretrained network, we find that our model produces sharper

estimates, see e.g. the last row where our model can repli-

cate the error pattern more accurately. This is likely a result

of our restricted receptive field while the pretrained model

employs a fully convolutional network model with a larger

receptive field. Moreover, our model seems to be able to

replicate some errors better than the pretrained model, see

e.g. the red patch for the PSMNet sensor where our model
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Depth L1↓ mP↓ mR↓ P↑ R↑ F↑ ATE↓
Model ↓ |Metric →

[cm] [cm] [cm] [%] [%] [%] [cm]

Depth + Ground Truth Poses
NICE-SLAM [81] 2.35 2.55 2.12 89.54 91.07 90.29 -

NICE-SLAM+Pre 2.25 2.49 2.08 89.86 91.42 90.62 -

Ours 2.27 2.56 2.10 89.59 91.24 90.40 -

Depth + Tracking
NICE-SLAM [81] 12.03 10.21 7.75 46.00 50.58 48.10 30.73

NICE-SLAM+Pre 18.96 16.35 6.90 48.92 57.60 52.54 39.14

Ours 10.60 9.38 6.58 52.62 57.21 54.72 29.11
RGB-D + Tracking

NICE-SLAM [81] 9.91 10.37 6.82 50.12 54.51 52.00 26.56
Ours 7.79 11.01 5.80 56.10 61.16 58.19 27.41

Table 2: Reconstruction Performance on Replica [64]:
SGM [26]. Our model outperforms the baseline methods in

most settings while being marginally worse than the model

using pretrained uncertainties in the mapping only setting.

Estimated Uncertainty Ground Truth

Sensor Depth NICE-SLAM+Pre Ours Depth Error

P
S

M
N

et
[1

1
]

S
G

M
[2

6
]

Figure 3: Uncertainty Visualization. Each row shows a

depth map from a specific sensor with the associated un-

certainty estimation from the pretrained network model and

ours. As reference, the ground truth absolute depth error

is shown in the last column. We find our model reproduces

the error map with less smoothing than the pretrained model

while capturing more details, e.g. the red patch from the

PSMNet sensor. Blue: low uncertainty, red: high uncer-

tainty.

can capture the error while the pretrained model struggles.

We believe this is due the the ability of our model to adapt to

test time constraints through runtime optimization. More-

over, our network hw contains only 5409 parameters while

the pretrained network contains 360 241.

7-Scenes. In Table 3, we evaluate our framework on the 7-

Scenes dataset [22]. We use sequence 1 for all scenes. We

find that NICE-SLAM [81] consistently yields worse track-

ing results suggesting the effectiveness of our depth uncer-

tainty when it comes to maintaining robust camera pose

tracking. On average, our method yields a 38 % gain in

terms of the mean ATE.

TUM-RGBD. In Table 4, we evaluate our framework on the

real-world TUM-RGBD dataset [65]. Our conclusions on

this dataset is similar to the 7-Scenes dataset. On average,

O
f
f

0
|P

S
M

N
et

[1
1
]

R
m

2
|S

G
M

[2
6
]

Ground Truth NICE-SLAM [81] Ours

Figure 4: Single Sensor Reconstruction on Replica [64].
We show that our uncertainty modeling on average helps

to achieve more accurate reconstructions when noisy depth

sensors are provided as input. The office 0 scene uses

only depth as input while the room 2 scene is provided

RGBD input. Tracking is enabled for all experiments. The

colorbar displays the deviation from the ground truth mesh.

Method Chess Fire Head Off. Pump. Kitch. Stairs Avg.

NICE-SLAM [81] 40.30 47.67 20.55 8.49 33.11 24.39 9.18 24.24

Ours 14.85 25.47 13.12 7.83 29.32 6.21 8.53 15.05

Table 3: Tracking Evaluation on 7-Scenes. We report the

average ATE RMSE [cm] over 5 runs for each scene. With

our depth uncertainty modeling, we achieve significantly

better tracking compared to NICE-SLAM. On average, our

method yields a 38 % gain in terms of the mean ATE.

Method
fr1/ fr1/ fr1/

Avg.
desk desk2 xyz

NICE-SLAM [81] 40.40 47.81 5.11 31.11

Ours 29.04 36.57 2.71 22.77

Table 4: Tracking Evaluation on TUM-RGBD. We report

the average ATE RMSE [cm] by mapping every 2nd frame.

camera pose tracking is greatly benefited by our uncertainty

aware strategy.

5.2. Multi-Sensor Evaluation

We conduct experiments in the multi-sensor setting. We

compare to Vox-Fusion [78], a dense neural SLAM sys-

tem and SenFuNet [58], which is a mapping only frame-

work. To learn sensor specific uncertainties, we use one

uncertainty decoder hw per sensor. In Table 5 we show

for SGM+PSMNet fusion that we are able to consistently

improve over the single-sensor reconstructions in isolation

and over SenFuNet [58] and VoxFusion [78]. When ground

truth poses are provided, we find that original NICE-SLAM

performs very similar to our proposed uncertainty aware

model. On a closer look, the PSMNet and SGM sensors are
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Depth L1↓ mP↓ mR↓ P↑ R↑ F↑ ATE↓
Model ↓ |Metric →

[cm] [cm] [cm] [%] [%] [%] [cm]

Single Sensor Ours: Depth + Ground Truth Poses
PSMNet [11] 2.42 2.58 2.29 89.14 88.70 88.89 -

SGM [26] 2.27 2.56 2.10 89.59 91.24 90.40 -

Multi-Sensor: Depth + Ground Truth Poses
NICE-SLAM [81] 2.03 2.34 1.99 90.57 90.86 90.69 -

SenFuNet [58] 23.49 15.62 12.66 32.74 28.32 30.22 -

Vox-Fusion [78] 6.52 48.76 30.72 28.01 49.36 35.65 -

NICE-SLAM+Pre 2.19 2.44 2.01 89.93 90.76 90.31 -

Ours 1.97 2.36 2.01 90.15 90.76 90.42 -

Single Sensor Ours: Depth + Tracking
PSMNet [11] 7.39 6.56 6.20 57.30 57.57 57.41 19.36
SGM [26] 10.60 9.38 6.58 52.62 57.21 54.72 29.11

Multi-Sensor: Depth + Tracking
NICE-SLAM [81] 13.58 16.76 7.84 51.19 55.45 52.81 40.37

NICE-SLAM+Pre 11.29 13.59 6.12 62.02 65.95 63.30 35.55

Ours 4.13 4.60 4.35 70.30 69.30 69.76 19.88

Table 5: Reconstruction Performance on Replica [64]:
SGM [26]+PSMNet [11]. Our multi-sensor reconstruction

performance improves over the single sensor results in iso-

lation and we outperform most of the baseline methods. The

experiment was conducted in the depth only setting with

known camera poses.

quite similar and we believe that when both sensors yield

similar depth characteristics, simple averaging works well,

i.e. putting equal weight to both sensors as done by NICE-

SLAM. We find, however, that uncertainty modeling is very

important to obtain robust tracking which greatly improves

the reconstruction accuracy. Finally, Fig. 5 shows visualiza-

tions of the reconstruction accuracy comparing the single

sensor reconstructions to the geometry attained by UncLe-

SLAM. We find that the most accurate sensor is on average

favored. For more results, see the supplementary material.

5.3. Memory and Runtime

Due to the low number of parameters in our uncertainty

MLP hw (5409), we add 43 kB to the already allocated 421

kB for the decoders in NICE-SLAM. This is negligible in

comparison to the 95.86 MB allocated for the dense grids

for the office 0 scene. We report a 15 % increase in

runtime over NICE-SLAM which can be compared to the

average gain of 38% and 27% in terms of ATE RMSE on the

7-Scenes and TUM-RGBD datasets respectively and 11%
and 32% in terms of the F1-score on single sensor RGBD

SLAM and multi-sensor depth SLAM.

5.4. Limitations

Our framework uses patch based modeling of uncertainty

which may not hold in the general case along with the

cheaply available features we feed as input to the uncer-

tainty decoder. Simply using a more expressive model with

learned features is not straight forward though, as shown

by our results with the pretrained model and we leave this

as future work. Finally, we believe that the relatively large
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Figure 5: Multi-Sensor Reconstruction on Replica [64].
The two middle columns show single sensor reconstruc-

tions while the rightmost column shows the result when

both sensors are jointly fused into the same geometry us-

ing our proposed UncLe-SLAM. Our uncertainty modeling

helps on average to achieve more accurate reconstructions

in the multi-sensor setting compared to the single sensor re-

constructions. The colorbar displays the deviation from the

ground truth mesh.

voxel size we use can prevent efficient uncertainty learning

from fine geometric details due to the high degree of aver-

aging. We believe that our method can benefit from a scene

representation that allows for resolving finer details.

6. Conclusion
The paper presents a way to learn per pixel depth uncer-

tainties for dense neural SLAM. This allows the mapping

and tracking re-rendering losses to be re-weighted such that

trustworthy sensor readings are used to track the camera and

to update the map. We believe this is a useful instrument

in closing the gap in tracking accuracy to traditional sparse

SLAM methods. We show that modeling depth uncertainty

generally results in improvements both in terms of mapping

and tracking accuracy and often performs better than alter-

natives that require ground truth depth or 3D. The paper also

provides one of the initial solutions that utilizes more than

one depth sensing modality for dense neural SLAM.
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Izadi, and Christian Theobalt. Bundlefusion: Real-time

globally consistent 3d reconstruction using on-the-fly sur-

face reintegration. ACM Transactions on Graphics (ToG),
36(4):1, 2017. 2

[16] Carlo Dal Mutto, Pietro Zanuttigh, and Guido Maria Corte-

lazzo. Probabilistic tof and stereo data fusion based on mixed

pixels measurement models. IEEE transactions on pattern
analysis and machine intelligence, 37(11):2260–2272, 2015.

2

[17] Yong Deng, Jimin Xiao, and Steven Zhiying Zhou. Tof

and stereo data fusion using dynamic search range stereo

matching. IEEE Transactions on Multimedia, 24:2739–

2751, 2021. 2

[18] Wei Dong, Qiuyuan Wang, Xin Wang, and Hongbin Zha.

Psdf fusion: Probabilistic signed distance function for on-

the-fly 3d data fusion and scene reconstruction. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 701–717, 2018. 3

[19] Yong Duan, Mingtao Pei, and Yucheng Wang. Probabilistic

depth map fusion of kinect and stereo in real-time. In 2012
IEEE International Conference on Robotics and Biomimetics
(ROBIO), pages 2317–2322. IEEE, 2012. 3

[20] Yong Duan, Mingtao Pei, Yucheng Wang, Min Yang, Iameng

Qin, and Yunde Jia. A unified probabilistic framework for

real-time depth map fusion. J. Inf. Sci. Eng., 31(4):1309–

1327, 2015. 3

[21] Georgios D Evangelidis, Miles Hansard, and Radu Horaud.

Fusion of range and stereo data for high-resolution scene-

modeling. IEEE transactions on pattern analysis and ma-
chine intelligence, 37(11):2178–2192, 2015. 2

[22] Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio

Criminisi. Real-time rgb-d camera relocalization. In 2013
IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 173–179. IEEE, 2013. 6, 7

[23] S Burak Gokturk, Hakan Yalcin, and Cyrus Bamji. A time-

of-flight depth sensor-system description, issues and solu-

tions. In 2004 conference on computer vision and pattern
recognition workshop, pages 35–35. IEEE, 2004. 1

[24] Panlong Gu, Fengyu Zhou, Dianguo Yu, Fang Wan, Wei

Wang, and Bangguo Yu. A 3d reconstruction method using

multisensor fusion in large-scale indoor scenes. Complexity,

2020, 2020. 2

[25] Ankur Handa, Thomas Whelan, John McDonald, and An-

drew J Davison. A benchmark for rgb-d visual odometry, 3d

reconstruction and slam. In 2014 IEEE international confer-
ence on Robotics and automation (ICRA), pages 1524–1531.

IEEE, 2014. 6

[26] Heiko Hirschmuller. Stereo processing by semiglobal match-

ing and mutual information. IEEE Transactions on pattern

4545



analysis and machine intelligence, 30(2):328–341, 2007. 6,

7, 8

[27] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-

Min Hu. Di-fusion: Online implicit 3d reconstruction with

deep priors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8932–

8941, 2021. 2

[28] Olaf Kähler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin

Sun, Philip H. S. Torr, and David William Murray. Very high

frame rate volumetric integration of depth images on mobile

devices. IEEE Trans. Vis. Comput. Graph., 21(11):1241–

1250, 2015. 2

[29] Alex Kendall and Yarin Gal. What Uncertainties Do We

Need in Bayesian Deep Learning for Computer Vision? In

the proceedings of the Advances in Neural Information Pro-
cessing Systems (NeurIPS). NeurIPS Foundation, 2017. 4,

5

[30] Sunok Kim, Seungryong Kim, Dongbo Min, and

Kwanghoon Sohn. Laf-net: Locally adaptive fusion

networks for stereo confidence estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 205–214, 2019. 2

[31] Young Min Kim, Christian Theobalt, James Diebel, Jana

Kosecka, Branislav Miscusik, and Sebastian Thrun. Multi-

view image and tof sensor fusion for dense 3d reconstruction.

In 2009 IEEE 12th international conference on computer vi-
sion workshops, ICCV workshops, pages 1542–1549. IEEE,

2009. 2

[32] Maria Klodt and Andrea Vedaldi. Supervising the new with

the old: learning sfm from sfm. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pages 698–

713, 2018. 2

[33] Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver

Erdler, and Friedrich Fraundorfer. Deepc-mvs: Deep con-

fidence prediction for multi-view stereo reconstruction. In

2020 International Conference on 3D Vision (3DV), pages

404–413. Ieee, 2020. 2

[34] Damien Lefloch, Tim Weyrich, and Andreas Kolb.

Anisotropic point-based fusion. In 2015 18th International
Conference on Information Fusion (Fusion), pages 2121–

2128. IEEE, 2015. 3

[35] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 6

[36] Will Maddern and Paul Newman. Real-time probabilistic

fusion of sparse 3d lidar and dense stereo. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 2181–2188. IEEE, 2016. 2

[37] Mohammad Mahdi Johari, Camilla Carta, and François

Fleuret. Eslam: Efficient dense slam system based on hy-

brid representation of signed distance fields. arXiv e-prints,

pages arXiv–2211, 2022. 1

[38] Giulio Marin, Pietro Zanuttigh, and Stefano Mattoccia. Reli-

able fusion of tof and stereo depth driven by confidence mea-

sures. In European Conference on Computer Vision, pages

386–401. Springer, 2016. 2

[39] Ricardo Martin-Brualla, Noha Radwan, Mehdi S.M. Sajjadi,

Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. NeRF in the Wild: Neural Radiance Fields for Uncon-

strained Photo Collections. In the proceedings of the Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
IEEE/CVF, 2021. 5

[40] Diogo Martins, Kevin Van Hecke, and Guido De Croon. Fu-

sion of stereo and still monocular depth estimates in a self-

supervised learning context. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 849–

856. IEEE, 2018. 2

[41] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4460–4470, 2019. 1

[42] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing Scenes as Neural Radiance Fields for View

Synthesis. In the proceedings of the European Conference
on Computer Vision (ECCV). CVF, 2020. 1

[43] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,

David Molyneaux, David Kim, Andrew J Davison, Push-

meet Kohli, Jamie Shotton, Steve Hodges, and Andrew W

Fitzgibbon. Kinectfusion: Real-time dense surface mapping

and tracking. In ISMAR, volume 11, pages 127–136, 2011.

2, 5

[44] Richard A Newcombe, Steven J Lovegrove, and Andrew J

Davison. Dtam: Dense tracking and mapping in real-time.

2011. 2

[45] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
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