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Abstract

Machine-learning models can be fooled by adversar-
ial examples, i.e., carefully-crafted input perturbations that
force models to output wrong predictions. While uncer-
tainty quantification has been recently proposed to detect
adversarial inputs, under the assumption that such attacks
exhibit a higher prediction uncertainty than pristine data,
it has been shown that adaptive attacks specifically aimed
at reducing also the uncertainty estimate can easily bypass
this defense mechanism. In this work, we focus on a differ-
ent adversarial scenario in which the attacker is still inter-
ested in manipulating the uncertainty estimate, but regard-
less of the correctness of the prediction; in particular, the
goal is to undermine the use of machine-learning models
when their outputs are consumed by a downstream mod-
ule or by a human operator. Following such direction, we:
(i) design a threat model for attacks targeting uncertainty
quantification; (ii) devise different attack strategies on con-
ceptually different UQ techniques spanning for both classi-
fication and semantic segmentation problems; (iii) conduct
a first complete and extensive analysis to compare the differ-
ences between some of the most employed UQ approaches
under attack. Our extensive experimental analysis shows
that our attacks are more effective in manipulating uncer-
tainty quantification measures than attacks aimed to also
induce misclassifications.

1. Introduction

Machine Learning (ML) covers nowadays multiple ap-
plications, including safety-critical domains such as med-
ical diagnosis, self-driving cars, and video surveillance.
Leaning towards ML-based systems tailored to cope with
such scenarios, the research community also focused on en-
hancing the trustworthiness of such systems. In this re-

gard, Uncertainty Quantification (UQ) methods have been
fostered throughout the years, establishing themselves as
methods capable of assessing the degree of uncertainty of
the predictions made by an ML-based system [12]. Unfor-
tunately, ML models have been found to be susceptible to
carefully-crafted input samples aimed at causing wrong pre-
dictions, known as adversarial examples [1, 24]. Several
defensive countermeasures have been developed, aiming to
build robust models, including adversarial training [21] and
also uncertainty quantification. In particular, UQ has been
proposed as a defense technique for adversarial attack de-
tection at test time, based on the rationale that attack sam-
ples aimed at causing wrong predictions are characterised
by high uncertainty. However, analogously to other defense
techniques, some works have shown that it is indeed possi-
ble to generate adaptive attacks capable of causing wrong
predictions and at the same time of evading detection, in
this case by reducing the corresponding uncertainty mea-
sure [4, 11].

In this work, we focus on a different adversarial scenario
in which the attacker is still interested in manipulating the
uncertainty estimate, but regardless of the correctness of the
prediction; in particular, the goal is to undermine the use of
UQ techniques for ML models when their outputs are con-
sumed by a downstream module or by a human operator.
For instance, in the medical domain, a doctor may avail of
uncertainty for distinguishing if an ML prediction (i.e., a
tumor segmentation) is reliable enough or requires more at-
tention from the doctor. Having an estimate about the reli-
ability of the system’s predictions would allow a healthcare
operator to accurately weigh its time, giving an additional
effort when interpreting more uncertain cases. Another ex-
ample is a crowd counting tool that processes in real-time
video streams coming from a video surveillance network
to support law enforcement agency officers in crowd mon-
itoring. Such a system may provide an estimate of the un-
certainty of the predicted crowd count (e.g., in terms of a
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95% confidence interval) to make its users aware of the re-
liability of its predictions. This may allow detecting out-
of-distribution (OOD) frame sequences (e.g., due to ex-
treme lighting conditions) that are likely to be characterized
by high uncertainty, whose corresponding predicted count
would be disregarded by the users. We argue that, in appli-
cation scenarios like the ones described above, an attacker
may be interested in undermining only the UQ component,
regardless of the predictions. For the medical domain case,
e.g., an attacker may target an ML system to increase the
uncertainty associated with its predictions, resulting in an
unnecessary additional workload for the operator in charge
(e.g., evaluating a tumor diagnosis). On the crowd counting
side, lowering the level of uncertainty may lead the LEA
operator to think the count is always correct, even in the
presence of under-estimated predictions caused, e.g., by in-
adequate illumination or extreme weather conditions (and,
hence, increasing the odds of casualties).

We thus believe that focusing on attacks targeting the
sole uncertainty can be highly relevant for safety applica-
tions and that a proper understanding of such attacks, to the
best of our knowledge, is still missing. Consequently, the
state of the art lacks a practical implementation and empiri-
cal evaluation of UQ techniques under attack. In this work,
we move the first steps towards this direction by providing
the following contributions:

• We design a threat model for attacks targeting UQ and
yielding wrong uncertainty estimates;

• We develop and implement different attack strate-
gies on conceptually different UQ techniques span-
ning over both classification and semantic segmenta-
tion tasks;

• We conduct a first complete and extensive analysis to
compare the differences between some of the most em-
ployed UQ approaches under attack.

2. Background and Related Work
We summarize here the essential concepts of UQ tech-

niques, adversarial machine learning, and overview existing
work on attacks against UQ.

2.1. Uncertainty Quantification

In classification problems characterized by a d-
dimensional feature space X ⊆ Rd and a L-dimensional
output space Y ⊆ RL being L the number of classes, an
ML-based predictor implements a decision function fθ :
X 7→ Y mapping an input vector to an output categorical
distribution, where the parameters θ are obtained by mini-
mizing a given loss function on a training set D of (x,y)
pairs. Predictions are subject to two kinds of uncertainty:
aleatoric uncertainty (a.k.a. data uncertainty), due to the

inherent randomness of the class label (i.e., overlapping
class-conditional distributions), and epistemic uncertainty
(a.k.a. model uncertainty), due to a lack of knowledge on
the “correct” prediction model (such as the DNN’s weights),
which can be caused, e.g., by a training set that is not en-
tirely representative for a given task. UQ techniques aim
to associate with each prediction a numerical estimate of its
uncertainty [12].
Probabilistic approaches – Bayesian Neural Networks
(BNNs) are a well-known probabilistic model, which nat-
urally allow assessing the uncertainty of their predic-
tions [20]. They assume a prior p(θ) over the model’s pa-
rameters and marginalize over it to compute a predictive
distribution on a given training set D by Bayesian Model
Averaging (BMA):

fBMA = p(y|x,D) =

∫
θ

p(y|x, θ) · p(θ|D)dθ (1)

Since Eq. 1 is intractable in practice, an approximating dis-
tribution q(θ) is commonly used, minimizing its divergence
from the actual distribution. In this work we focus on two
common approximations: Monte-Carlo Dropout and Deep
Ensemble.

Monte-Carlo (MC) dropout approximation [8] consists
of activating dropout at test time, either in an ad hoc way [8]
(namely embedded dropout), using the dropout rate found
during training (where dropout is also used for regulariza-
tion), or in a post hoc way [19, 16] (namely dropout injec-
tion), i.e., on already trained networks. An alternative solu-
tion, which has been shown capable of outperforming MC
dropout, is based on Deep Ensembles [15], which trains
multiple DNNs starting from random weights and approxi-
mate BMA by combining the corresponding predictions ob-
tained from the different instances of θ. In both cases, for
a given sample x one can compute its corresponding un-
certainty U(x) by computing a statistic (e.g., the variance)
over the Monte-Carlo predictions.

In addition, we recall many other state-of-the-art
Bayesian methods. Among them, we can find Concrete
Dropout [9] (an improvement of MC-dropout for finding the
dropout rate during training), BayesByBackprop [3], and
the whole class of Laplace Approximations [20, 14] (which
are one of the most prominent post hoc UQ techniques).
Deterministic approaches – A drawback of Bayesian mod-
els is their computational cost due to the multiple forward
passes required to obtain a point-wise prediction. Sev-
eral deterministic approaches have been proposed to deal
with this issue, such as Deterministic Uncertainty Quantifi-
cation (DUQ) [25], Spectral-normalized Neural Gaussian
Process (SNGP) [17] and Deep Deterministic Uncertainty
(DDU) [22].

For instance, for L-class classification problems, DUQ
learns L centroids in the feature space X and, for any in-



put x, it returns a L-dimensional vector with the distance
between the feature vector (defined as fθ(x) with abuse of
notation) and the centroids, computed using a Radial Basis
Function (RBF) kernel. The predicted class is the one as-
sociated to the closest centroid, and the corresponding dis-
tance is interpreted as the uncertainty measure U(x).

2.2. Adversarial Machine Learning

ML models have been found to be susceptible to adver-
sarial attacks [24], i.e., input samples carefully crafted to be
misclassified. Several attacks and defenses have been pro-
posed so far. Two seminal yet still widely used attack strate-
gies are the Fast-Gradient Sign Method attack (FGSM) [10]
and the Projected Gradient Descent attack (PGD) [21]. Un-
der a “standard” untargeted ℓ∞ threat model with a pertur-
bation budget ϵ, FGSM crafts an adversarial example x∗

by adding to a given sample x an ℓ∞ norm perturbation of
magnitude ϵ, pointing to the steepest ascent direction of the
loss L from the point x:

x∗ = x+ ϵ · sgn (∇xL (fθ(x),y)) , (2)

where ∇ denotes the gradient operator. The PGD attack
implements an iterative version of FGSM by projecting af-
ter each iteration the obtained perturbation to the feasible
domain Γ = {xt ∈ X : ||xt − x0||∞ < ϵ}:

xt+1 = ProjΓ(xt + α · sgn (∇xtL (fθ(xt),y))), (3)

On the defense side, the par excellence technique is Adver-
sarial Training [21]:

min
θ

E(x,y)∼D

[
max

δ∈B(x,ε)
L(θ,x+ δ,y)

]
, (4)

where B(x, ε) denotes the set of allowed adversarial pertur-
bations, bounded by ϵ. Eq. 4 amounts to solve a min-max
optimization problem, where the worst-case loss L (inner
problem) has to be minimized (outer problem). The goal is
to train the model to be robust to adversarial examples.

2.3. Evasion Attacks Involving Uncertainty

Previous work in the adversarial machine learning field
has considered UQ only as a defense strategy, as a means
for detecting adversarial samples crafted for evading a clas-
sifier, i.e., to cause wrong predictions. For instance, the au-
thors of [7] proposed to assess uncertainty as the variance
computed using embedded MC dropout (with a dropout
rate of 0.5 after each convolutional layer). Using a detec-
tion threshold τ = 0.02, such that samples whose variance
is below it are rejected as adversarial, 96% of adversar-
ial examples were correctly identified and rejected on the
CIFAR-10 dataset, with a false-positive rate of 1%. Follow-
ing the usual arms race approach, subsequent works devised

evasion attacks capable of bypassing uncertainty-based de-
fenses. The attack presented in [4] manipulates a given sam-
ple to reduce the corresponding MC sample variance below
the detection threshold and consequently induces a misclas-
sification. On the same CIFAR-10 dataset, it bypassed the
above defense with a success rate of 98%. However, this
result was attained at the expense of a notably large pertur-
bation size.

The authors of [11], proposed the “High-Confidence
Low-Uncertainty” attack. For a given sample x, the under-
lying idea is to craft an adversarial example x + δ pushing
the prediction confidence for the target (wrong) class over
95% and simultaneously keeping the corresponding uncer-
tainty not higher than the one of the original sample.

Previous work involving UQ considered only evasion
attacks aimed at causing wrong predictions, where uncer-
tainty measures were used and manipulated only as detec-
tion tools. In this work, we focus instead on a different at-
tack scenario where the goal is to manipulate uncertainty
measures per se, i.e., to produce wrong uncertainty esti-
mates, thus undermining their original purpose of provid-
ing an assessment of the reliability of ML-based systems
predictions, to be used by a downstream processing mod-
ule or by a human operator, regardless of the correctness of
the predictions. Additionally, we extensively test attacks to
diverse UQ techniques to assess how such attacks are sup-
posed to mutate depending on the given uncertainty-related
scenario.

3. Uncertainty Quantification Under Attack
In this section we formally present our threat model,

where the attacker’s goal is to produce wrong uncertainty
estimates regardless of the correctness of the prediction, de-
velop a possible implementation for classification tasks, and
show how it can be extended to other tasks using semantic
segmentation as a case study.

3.1. Threat Model

Evasion attacks aim at getting a given sample misclas-
sified, with respect to its ground-truth label. However, UQ
techniques do not have a ground truth, and thus it is not
straightforward to define what a “wrong” uncertainty esti-
mate is. Ideally, higher uncertainty values should be associ-
ated with higher misclassification probability. The stronger
such statistical correlation is, the more “correct” the uncer-
tainty measure will get. Accordingly, the considered attack
against UQ should result in breaking this statistical corre-
lation up.
Taxonomy of attacks to uncertainty quantification – Ac-
cording to the above threat model, two possible kinds of
attacks can be identified:

• Overconfidence Attack (O-attack): Its goal is to re-



duce the uncertainty measure of a given predictor, thus
tricking an ML-based system into being overconfident.
This will impact in particular wrong predictions and
out-of-distribution (OOD) samples, resulting in under-
mining the UQ module integrity.

• Underconfidence Attack (U-attack): The goal of this
attack, conversely, is to increase the uncertainty mea-
sure, which would result in considering all the predic-
tions as unreliable, which in turn would lead the down-
stream modules or human operators to disregard the
outputs of an ML-based system. We, therefore, clas-
sify the U-attack as a threat undermining the availabil-
ity of an ML-based system.

Theoretically, one can formulate the problem as the
search for the perturbation δ, bounded by ϵ, minimizing (O-
attack) or maximizing (U-Attack) the uncertainty estimate
U(x+ δ):

argmin
δ

γ · U(x+ δ), s.t.∥δ∥p < ϵ , (5)

where γ ∈ {−1, 1} controls the attack objective: γ = −1
corresponds to the U-attack, whereas γ = 1 corresponds
to the O-attack. While the threat model encompasses both
attacks, in the rest of our work we focus on the O-Attack,
being the latter (just like “standard” evasion attacks [2]) a
violation of the integrity of the ML-based system. There-
fore, in the following section, we propose a possible imple-
mentation of the O-Attack.

3.2. Attacking Probabilistic Models

The attack strategy of Eq. 5 can be implemented both for
probabilistic and deterministic UQ models.
Minimum Variance Attack – In probabilistic models, the
prediction and uncertainty value for a given sample are ob-
tained by combining a set of predictions. Such models
commonly leverage uncertainty measures such as predic-
tive variance (epistemic), entropy (aleatoric) or, less fre-
quently, mutual information [23] (either epistemic or pre-
dictive). The intrinsic probabilistic nature of such methods
requires attacks to rely on expectations over a set of MC
samples. In this context, a first possible solution consists
of modifying a given input sample x in such a way that the
predictor’s probabilistic outcomes are as concordant as pos-
sible. This can be formulated as a direct minimization of
the predictive variance; accordingly, we refer to this attack
as Minimum Variance Attack (MVA):

argmin
δ

ES [(x + δ)2]− ES [(x + δ)]2, s.t.∥δ∥p < ϵ,

ES [(x + δ)2] :=
1

S

S∑
s=1

fθs(x + δ)⊺ · fθs(x + δ),

ES [(x + δ)]2 :=ES(x + δ)⊺ · ES(x + δ),

(6)

where δ denotes the perturbation, S the Monte-Carlo sam-
ple size, and fθs the predictor corresponding to the param-
eters θs obtained from the s-th Monte Carlo sample (see
Sect. 1). Finally, ES(x+δ) ≈ fBMA(x+δ) is the Monte-
Carlo approximation of the BMA using the set of size S.
Auto-Target Attack – Albeit the attack described above
aims at minimizing the uncertainty measure directly, there
are other ways to optimize Eq. (5). A simple yet effective
alternative idea has indeed been proposed in [4] to evade
the detection of adversarial examples (modeled as an un-
certainty threshold). To this aim, the authors proposed to
get the probabilistic model’s average prediction closer to the
most likely incorrect class; since it is equivalent to choosing
an automatic target, we refer to this attack as Auto-Target
Attack (ATA). A possible formulation can be obtained by
minimizing the Cross-Entropy (CE) loss [4]:

argmin
δ

− log(ES(x + δ)c) , s.t.∥δ∥p < ϵ , (7)

where c denotes the automatically chosen target class
and ES(x + δ) the expectation of the predictions over S
Monte-Carlo forward passes. Bringing the average of a pre-
diction’s set closer to a certain target corresponds to get-
ting all the predictions closer to a common target. Albeit
the above approach was originally formulated as a C&W
attack [5], we point out that it can be extended to several
attacks.

As mentioned in previous work [4], the above attack re-
quired a particularly large perturbation to be effective: such
a relatively high perturbation was necessary to evade the
model’s predictions, besides reducing the uncertainty mea-
sure. Indeed, using ATA with the primary goal of evad-
ing the predictions does not result in a sudden variance
minimization but will instead take two stages: in the first
stage, after a warm-up phase, the variance starts growing as
long as the prediction flips from correct to incorrect; in the
second stage, the probability of the class being maximized
overtakes the others, leading to a further stabilization and,
thus, to the variance minimization. Therefore, an attacker
interested in the efficacy of such an attack should favor cor-
rectly classified clean samples over misclassified adversar-
ial examples with higher uncertainty estimates.
Stabilizing Attack – We further improve this simple idea
by taking the most likely class indiscriminately (instead of
the most likely incorrect one) since we are not interested
in the correctness of the prediction. The effect of our for-
mulation, which we name Stabilizing Attack (STAB), is to
get every MC prediction closer to the mean basin of attrac-
tion, thus stabilizing the predictions, which results in turn
to lower variance and average prediction’s entropy.

3.3. Attacking Deterministic Models

Due to the nature of deterministic models, an attacker
can evade their associated uncertainty measure by focusing



on a single parameter configuration θ, without the need of
MC sampling. As an example, we show how our STAB
attack can be extended to the widely used DUQ tech-
nique [25] and other deterministic methods. For a deter-
ministic UQ model, it is sufficient to craft the adversarial
sample x∗ to make it approach a centroid ec associated to a
target class c:

argmin
δ

K(fθ(x), ec) , s.t.∥δ∥p < ϵ , (8)

where fθ(x) denotes the feature vector parameterized with
θ, and K the RBF kernel. As mentioned above about prob-
abilistic models, also the efficiency of attacks against deter-
ministic models is affected by the choice of a proper target.
In the case of DUQ, the attack can be crafted more eas-
ily by targeting the class nearest to the centroid. Due to
the deterministic nature of the considered models, we argue
that in the absence of an adversarial training technique, it is
quite easy for the attacker to craft the desired attack sam-
ple. Furthermore, the direct correspondence between the
uncertainty measure and the distance to the closest centroid
makes DUQ even less robust to attacks, since attacking the
prediction also results in minimizing the uncertainty, with
no additional perturbation required.

3.4. Case Study: Semantic Segmentation

We have shown how attacks targeting the uncertainty
measure can be formulated for standard classification prob-
lems. Here we show how they can be extended to complex
computer vision problems such as semantic segmentation,
which can be seen as a multivariate classification problem,
where a class label is assigned to each pixel. In this task, un-
certainty is computed in a pixel-wise manner. To this aim,
two commonly used metrics for aleatoric and epistemic un-
certainty are the average prediction entropy and the predic-
tion variance, respectively [13].

While recalling that it is common for segmented objects
to present high uncertainty along the edges, we directly ap-
ply our attack formulation of Eq. 6 to semantic segmen-
tation and, indeed, we find it challenging to decrease the
uncertainty measure around the edges of the segmented ob-
jects (see Sect. 4.2). We hypothesize this is due to the
fact that the network is “forced” to abruptly change predic-
tion around the edges, which are therefore inherently char-
acterised by high uncertainty. We, therefore, devised an
application-specific attack to semantic segmentation. The
underlying rationale is that a pixel closely surrounded by
several pixels from different classes exhibits a correlation to
each of such classes, whereas a pixel surrounded by a region
mostly belonging to a single class exhibits a high correlation
only with that specific class. Accordingly, we can force the
network to predict a single, identical class for all the image

pixels by minimizing the pixel-wise cross-entropy:

argmin
δ

−
∑
ω∈Ω

log(f(x + δ)ω,c) , s.t.∥δ∥p < ϵ , (9)

where c denotes the index of the target class, Ω the set of
pixels, and f(x + δ)ω the predicted probability vector for
the pixel ω. The target class c should be chosen as the one
that minimizes the uncertainty. To this aim, as a rule of
thumb, one can choose the most representative class, i.e.,
the class corresponding to the majority of pixels in the pre-
dicted segmentation map. The above criterion presents mul-
tiple advantages. First, the attacker will be trivially required
to flip the smallest number of pixels, as the majority of them
are already assigned to the target class. Secondly, consid-
ering the strong overall correlation induced by massive oc-
currences of pixels of the most representative class c on the
image, a pixel of a different class can be misled towards c
with much more ease compared to a different and less im-
pactful class. We refer to this attack with the name Uniform
Segmentation Target Attack (UST).

4. Experimental Analysis
We empirically evaluated the proposed O-Attack against

several UQ techniques both in classification and semantic
segmentation tasks, under two different operational scenar-
ios: the traditional setting of independent and identically
distributed (IID) data, which is practically implemented us-
ing training and testing data from the same data set, and
the case of out-of-distribution (OOD) data, which was sim-
ulated using different data sets for training and for testing.

4.1. Experimental Setup

Data sets – We used CIFAR-10 for IID experiments,
whereas for OOD experiments we used CIFAR-10 for train-
ing and CIFAR-100 for testing. To evaluate the perfor-
mance under the OOD setting, we used accuracy-rejection
curves evaluated on a mixed testing set made up of 600
CIFAR-10 samples and 900 CIFAR-100 samples.

We further assessed the O-Attack in a semantic segmen-
tation task, on the PASCAL VOC data set [6].
UQ techniques and models – We considered four differ-
ent UQ methods: MC dropout [8] (implemented both in
ad hoc and post hoc fashion), Deep Ensemble [15] and
DUQ [25]. We also considered three DNN architectures to
implement the models: ResNet18, ResNet34 and Resnet50.
We trained 9 different versions of ResNet34 and Resnet50
and 10 versions of ResNet18: one baseline version for the
post hoc dropout, 3 versions with ad hoc dropout (using a
dropout rate ϕ ∈ [0.1, 0.3, 0.5], and five classic ResNet’s
for constructing a deep ensemble. For models including MC
dropout-based architectures, we added the dropout rates af-
ter each convolutional and linear layer, thus obtaining a



probability distribution over each weight. For ResNet18,
we trained an additional network used as a feature extractor
for DUQ. For the semantic segmentation task, we used the
pre-trained Torch implementation of a Fully Convolutional
Network (FCN) [18]. We then applied post hoc dropout
with a dropout rate of 0.1 after each block of four convolu-
tions, since a too high randomization may induce prediction
deterioration when using injected dropout [16].
Attack implementation – We based the implementation of
our attack (see Sect. 3) on the PGD attack with ℓ∞ norm,
using 150 iterations, MC samples size of 30 and step size of
2 · 10−3 for the case of probabilistic UQ methods, and 10
iterations with a step size of 1 · 10−3 for the deterministic
method DUQ. For the MVA attack of Eq. 6, we minimize
the logarithm of the variance to attain better performances.
We implemented the attacks on CIFAR-10 with ϵ ranging
from 1/255 to 8/255. This allowed us to plot the associ-
ated security evaluation curves showing how the uncertainty
measure changes as a function of ϵ. For semantic segmenta-
tion, we still use the PGD attack with 100 iterations, a step
size of 1 · 10−3, set ϵ to 2/255 and MC sample size of 20.
Uncertainty measures – To attack probabilistic UQ meth-
ods, we use MC sample size of 100 (for both classification
and segmentation) to estimate the predictive variance and
the entropy as measures of epistemic and aleatoric uncer-
tainty, respectively. To attack DUQ, we use the distance
from the closest centroid to measure epistemic uncertainty.

4.2. Experimental Results

We first present and discuss the results attained by at-
tacking probabilistic UQ, for both IID and OOD data, then
the ones attained for the deterministic DUQ method, and
finally the results related to semantic segmentation.
Probabilistic UQ methods, IID setting – Fig. 1 shows the
results of the experiments conducted on CIFAR-10, in the
IID setup, for all the considered probabilistic UQ meth-
ods. The Minimum Variance Attack (MVA) and Stabiliz-
ing Attack (STAB) are conceived to minimize the uncer-
tainty measure. MVA focuses on minimizing epistemic un-
certainty, whereas STAB focuses on the predictive mea-
sure, thus minimizing both epistemic and aleatoric uncer-
tainty. Interestingly, although not surprisingly, we can see
that STAB turned out to be more effective in minimizing
aleatoric uncertainty. In fact, pushing towards more stable
predictions ultimately yields the double effect of increas-
ing the target class probability and minimizing the entropy.
However, for both attacks, the clean accuracy does not suf-
fer any decline.

Whereas ATA is initially less efficient than STAB (since
it attempts to induce misclassifications) both techniques sta-
bilize as the attack proceeds. Such ATA behavior is caused
by the initial warm-up phase described in Sect. 3.2, where
the predictions necessarily cross the boundary before being
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Figure 1. Behaviour of classification accuracy, aleatoric and epis-
temic uncertainty on CIFAR-10 under an IID setup, using a
ResNet18 model with MC-dropout (with a dropout rate of 0.3) and
Deep Ensembles, under different attacks, as a function of ϵ. More
architectures and dropout rates are present in the supplementary
material.

uniformly pushed towards the same class. However, there
are still some differences between the two techniques, in-
dicating that ATA does not necessarily converge to STAB’s
performances for ϵ = 8/255 (e.g., on post hoc dropout).

For what concerns the comparison between UQ meth-
ods based on ad hoc and post hoc dropout, we did not ob-
serve any significant difference. From a broader perspec-
tive, MVA attacks appear to better fit post hoc dropout,
whereas ATA seems more effective for ad hoc dropout.
However, in both cases, STAB outperforms MVA and ATA
for both aleatoric and epistemic uncertainty. Overall, post
hoc dropout attains a higher starting variance, which results
in more difficulties in zeroing the uncertainty.

Besides being Deep Ensembles widely recognized as
highly accurate techniques, in our experiments, we notice
a conflicting trend. Starting from comparable uncertainty
levels with respect to ad hoc dropout, we notice a consid-
erable decline in both aleatoric and epistemic uncertainty.
In fact, all the attacks easily reduce variance to the order
of magnitude of 10−6 with a perturbation of ϵ = 8/255,
conversely to the ad hoc dropout, which attains an order of
magnitude of 10−4.

As shown in Fig. 1 and already stated in [4], a “stan-
dard” attack aiming to cause wrong predictions (denoted as
ATA (acc)) can also reduce uncertainty. However, by look-
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Figure 2. Accuracy-rejection curves of a ResNet18 model under
the STAB and MVA attacks against MC-dropout (with a dropout
rate of 0.3) and against Deep Ensembles, as a function of ϵ, in a
OOD setting simulated with a mixture of 600 CIFAR-10 images
and 900 CIFAR-100 testing images.

ing at Fig. 1, we find out that the criterion for choosing the
best adversarial example at each iteration is crucial. Indeed,
in a traditional set-up, when we find an adversarial exam-
ple fooling the prediction (i.e., misclassified by the model),
we consider it a “success” and then save it. Nevertheless,
this strategy is sub-optimal when an attacker is interested in
evading the uncertainty measure. Indeed, we observe a first
warm-up phase where the sample’s uncertainty increases
and then a stabilization where it consistently decreases (as
hypothesized in Sect 3.2). Conversely, when always saving
the sample with lower uncertainty, the uncertainty measures
decrease consistently, as expected in this setting.
Probabilistic UQ methods, OOD setting – We focused on
the STAB and MVA attacks applied to post hoc dropout,
ad hoc dropout and Deep Ensemble. Fig. 2 shows the cor-
responding accuracy–rejection curves. The green line, for
ϵ = 0, shows that all UQ methods exhibit an adequate ca-
pability of detecting OOD samples. However, as the per-
turbation ϵ for OOD samples increases, their effectiveness
decreases, up to a point where they start rejecting IID sam-
ples before OOD ones, which indicates that the estimated
uncertainty is higher for OOD than for IID samples: this is
just the opposite behaviour to the desired one (i.e., indicates
an attack success).

The above results clearly show that the considered UQ
methods, including Deep Ensembles, are vulnerable to ad-
versarial attacks, also in the presence of OOD samples.
We also point out that for ad hoc dropout, the MVA at-
tack turned out to be less effective than STAB, which, with
ϵ = 8/255, completely breaks the other techniques.

We finally argue that the robustness of Deep Ensembles
could be improved by increasing the ensemble size (which
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Figure 3. Classification accuracy and uncertainty of a ResNet18 as
a feature extractor for the DUQ method on CIFAR10 in the IID
setting, under two different attacks, as a function of ϵ.

was set to 5 in our experiments), although at the expense of
an increase in processing cost.
Deterministic UQ methods – In Fig. 3 and Fig. 4 we
can see the results for IID and OOD (respectively) exper-
iments using DUQ. Since deterministic methods do not per-
form MC sampling, attacks against them can be designed
and implemented more easily. This leads to lower robust-
ness for attacks targeting both uncertainty and predictions
(where, as opposed to probabilistic attacks, no trade-off is
needed). Nevertheless, more interesting behaviors can be
observed when DUQ is used in the case of OOD samples, as
seen from Fig. 4. In this scenario, even small perturbations
quickly deteriorate the quality of the uncertainty measure.
Still, for larger perturbations, the accuracy does not drop to
zero: such behavior may indicate that deterministic meth-
ods assign larger uncertainty values to OOD samples, mak-
ing it challenging to get the perturbed samples very close to
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Figure 4. Accuracy-rejection curves attained in a OOD setting (see
Sect. 4.1) by a ResNet18 model using the DUQ method, under the
STAB attack.
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Figure 5. Two examples of attacks against UQ in a semantic segmentation task. In each of the two groups of columns, from left to right:
(i) the original clean image, (ii) the predicted segmentation maps, and the corresponding epistemic (iii) and aleatoric (iv) uncertainty maps.
In the rows, from top to bottom: results obtained under normal operating conditions (with no attacks), and under the MVA, UST (Fb), and
UST (Bg) attacks.

a target centroid.
Semantic segmentation – We finally show in Fig. 5 the
results obtained when attacking UQ methods used for a se-
mantic segmentation task. Using a clean image as input, we
see that the considered model is not very accurate in cor-
rectly segmenting the whole object. Nevertheless, high un-
certainty values are correctly assigned to regions where seg-
mentation errors occur, corresponding to the object edges
and to missing objects. MVA, albeit reducing the overall
epistemic uncertainty, is less effective in reducing the un-
certainty on the edges. On the other hand, the attack aimed
at obtaining a uniform segmentation map whose target is the
most representative class (usually, the “background” class),
which we refer to as UST (Bg) for convenience, turns out to
be effective in reducing both the epistemic and the aleatoric
uncertainty for each pixel. However, attacks aimed at evad-
ing the predictions using a similar strategy, i.e., assigning a
wrong label (referred to as UST (Fb), i.e. “Full Break”), did
not achieve a similar reduction in uncertainty, despite they
evaded a large region of the image.

5. Conclusions and Future Work
In this work, we first proposed and modeled adversar-

ial attacks against UQ techniques used by ML predictors,
aimed at producing wrong uncertainty estimates, regardless
of the correctness of the prediction. We formally defined a
taxonomy and a threat model and implemented several pos-
sible attacks against different UQ techniques, both in clas-
sification and in semantic segmentation tasks.

From our preliminary results on classification tasks we
can draw the following conclusions: Generally speaking,
UQ techniques are not robust to adversarial attacks:
they can be easily manipulated using attacks specifically
crafted to evade the uncertainty measure. Surprisingly,

Deep Ensemble turned out to be the less robust UQ tech-
nique against adversarial attacks targeting uncertainty. On
the other hand, MC dropout tends to be the most robust
among the analyzed methods (as we can see from the exper-
iments on OOD data). Our preliminary example on seman-
tic segmentation shows that attacks against UQ methods can
be effective also in other, more complex CV tasks.

We finally point out the following directions for future
work: (i) implementing and investigating under-confidence
attacks (U-attacks); (ii) exploring the proposed attacks
against a wider range of UQ methods; (iii) analyzing black-
box attacks; and (iv) exploring the attack transferability be-
tween different UQ methods; (v) investigating adversarial
training and other robust defense techniques to counter at-
tacks against UQ.
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