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Abstract—We consider a wiretap channel and use previously
transmitted messages to generate a secret key which increases the
secrecy capacity. This can be bootstrapped to increase the secrecy
capacity to the Shannon capacity without using any feedback or
extra channel while retaining the strong secrecy of the wiretap
channel.

Index Terms—Secret key, Physical Layer Security, Secrecy
Capacity.

I. I NTRODUCTION

Shannon in 1948 in his seminal paper [17] considered the
problem of secure communication where he assumed that
the legitimate receiver and the eavesdropper receive the same
information. Wyner [18] assumed that the legitimate receiver
and the eavesdropper receive different information due to
channel differences and hence provided a coding scheme
which achieves secrecy without using a key. In [4] the authors
studied the Broadcast channel with a secret message in a more
general setting. The first work on secret key generation is
reported in [15]. In this paper the authors assume a public
discussion channel for exchanging functions, and then to agree
on a key. The eavesdropper “hears” the whole conversation. [1]
discusses two types of models: Source type model and Channel
type model. Secret key generation with multiple terminals was
studied in [5].

Secret key generation via the sources and channels was
investigated in [6] and[16].

Wiretap channel with rate-distortion has been studied in
[19]. In [7] the authors have considered the wiretap channel
with secure rate limited feedback. This feedback is used to
agree on a secret key. Wiretap channel with shared key was
studied in [12].

Strong secrecy based secret key agreement was introduced
in [14]. For a detailed survey of Information theoretic security
reader can refer to [13]. A Slow fading Wiretap channel with
a secret key buffer was studied in [9]. The authors study the
scenario where different secret messages are being transmitted
in different slots and consider the equivocation of a message
with only the outputs of the channel to the eavesdropper in the
same slot. In [10] the authors compute the equivocation of each
message with the outputs of the channel to the eavesdropper
in all these slots considered.

In this paper we study a model in which multiple messages
are being transmitted by Alice in different slots. The equivoca-
tion of the messages in a slot is computed with all the channel

Fig. 1. The Wiretap channel

outputs to the eavesdropper, as in [10]. In the first slot Alice
transmits a codeword using wiretap coding, as in [18]. Only
Bob can decode this message but not the eavesdropper. Thus,
in the next slot, we can use this message as a key to transmit
the next message and also use wiretap coding. This increases
the secret message rate to twice the secrecy capacity of the
wire-tap channel. This whole message can be used as a key
for the next slot. This we repeat till we achieve the secret key
rate equal to the capacity of the main channel, and then the
rest of the communication takes place using secret key at that
rate. We will show that this does not increase the information
leakage rate to eve.

The rest of the paper is organised as follows: Channel
model and the problem statement are provided in Section II. In
Section III we provide our coding and decoding scheme and
show that it can provide Shannon capacity without sacrificing
secrecy. In Section IV we apply our coding scheme on a
Gaussian wiretap channel. Section V concludes this paper.

A note about the notation: capital letters, likeW will
denote a random variable and the corresponding small letter
w its realization. Ann-length vector(A1, A2, . . . , An)will be
denoted asAn. Information theoretic notation will be same as
in [8].

II. CHANNEL MODEL AND PROBLEM STATEMENT

We consider a discrete time, memoryless, degraded wiretap
channel, where Alice wants to transmit messages to Bob. There
is an eavesdropper (Eve) who is passively “listening”(Fig.1).
We want to keep Eve ignorant of the messages.

Formally, Alice wants to communicate messagesW ∈ W =
{1, 2, . . . , 2nRs} reliably over the Wiretap channel to Bob,
while ensuring that Eve is not able to decode them. HereRs

is the secrecy capacity of the wiretap channel defined as

Rs = max
p(x)

[I(X ;Y )− I(X ;Z)] . (1)
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We assumeRs > 0. The transition probability matrix of the
channel isp(y, z|x). At time i, Xi is the channel input and the
legitimate receiver (Bob) and Eve receive the channel outputs
Yi and Zi respectively, whereXi ∈ X , Yi ∈ Y, Zi ∈ Z.
The messagesWk are generated uniformly fromW and
{Wm,m ≥ 1} is an independent sequence. One or more
message is encoded into ann length codeword. A mini-slot
consists ofn channel uses. In our scheme, the first slot consists
of only one mini-slot. Then uptoλ slots, each slot consists of
2 mini-slots where

λ ,

[
C

Rs

]
, (2)

and C is the capacity of Alice-Bob channel and[x] is the
integer part ofx. For simplicity, we takeC

Rs
as integer. Finally,

afterλ slots each slot has only one mini-slot. The messageWk

to be transmitted in slotk consists of one or more messages
Wm. The codeword for messageW k (for 1 < k ≤ λ) is
denoted byX2n

k = {Xk1, . . . , X2kn} or Xn
k depending on the

length of the slot. To increase the secrecy rate, the transmitter
uses the secret messageW k transmitted in slotk as the key
for transmitting the message in slotk + 1.

A. Encoder:

To transmit messageW k+1 in slot k + 1, the encoder has
two parts

fs :W → X
n, fd :W ×K → Xn, (3)

whereX ∈ X , andK is the set of secret keys generated andfs
is the Wiretap encoder, as in [18]. Forfd one can use various
encoders studied for transmission with secret key. We use the
following: Take binary version of the message andXOR with
the binary version of the key. Encode the resulting encrypted
message with an optimal usual channel encoder.

In the first slot, a message is encoded using the wiretap
code only. From second slot onwards (till slotλ), both wiretap
encoderfs and deterministic encoderfd are used. Thus in
slot k, we can say thatk messages fromW are sent, 1 using
wiretap coding andk − 1 using a key of rate(k − 1)Rs. Of
course the overall coding rate should not exceed capacityC of
the main channel (Alice→ Bob). After slotλ only one mini-
slot is used with a key of rateC (assumingC is multiple of
Rs, otherwise the key rate will be

[
C
Rs

]
Rs).

Decoder

For the first slot of communication, the decoder function at
Bob is

φ1 : Y2n →W . (4)

From second slot onwards, the decoder also has a secret key
(which is generated in the previous slot). Thus, the decoderis

φi : Y
n ×K →Wj (5)

for time slot i, with j = min(i, C
Rs

). The probability of error
for this code is:

P (n)
e = Pr{Ŵ 6= W} (6)

whereŴ is the decoded message.
Leakage rateis Rn

L = 1
n
I(W ;Z2n). This is the rate at

which information is getting leaked to Eve.
Definition 1: A Leakage-rate pair(RL, R) is said to be

achievable if there exists a sequence of(2nR, n)-codes such
that P (n)

e → 0 and lim supn→∞
Rn

L ≤ RL as n → ∞.
Actually in slot k ≥ 2 we will consider the leakage rate
1
2nI(Wm;Zn

1 , Z
2n
2 , . . . , Z2n

k ).
We will be concerned about the rate achievable whenRL =

0.

III. C APACITY OF WIRETAP CHANNEL

Theorem 3.1:The rate(0, C) is achievable for all slotsk ≥
λ.
Proof of Achievability: In the first slot of communication, Alice
picks messageW1 fromW and transmits this message using
(n, 2nRs)-Code. Bob decodes this message asŴ1.

In the second slot using the previous message,W 1 = W1,
as a key (with key rateRk = Rs) Alice transmits message
W 2 = (W21,W22), whereW21 = W2,W22 = W3 are taken
from theiid sequence{Wk, k ≥ 1}. To transmit this message,
we use the following coding strategy:
The first messageW21 is encoded toXn

21 using wiretap code.
The second messageW22 is first encrypted to produce the
cipher using one-time pad with the previous message as secret
key, i.e., K = W1 and the cipher is̃W22 = W22

⊕
W1.

We encode this encrypted message toXn
22 using a point-to-

point optimal channel code, to transmit it over the channel
(practically, one can use LDPC or Turbo Codes). Hence
the overall codeword that is transmitted over the channel is
Xn

21X
n
22 = X2n

2 with the overall rateRs.
In slot 3,W 3 = (W31,W32) is transmitted whereW31 =

W4 andW32 is (W5,W6), i.e.,W32 consists of two messages
fromW . W31 is encoded asXn

31 using wiretap coding.W32 is
encoded via the keyW 2: Using usual optimal channel code at
rate2Rs, encodeW 2

⊕
W32, provided of course2Rs < C.

We continue this tillλ− 1 slots. In slotλ− 1, we transmit
message(Wλ−1,1,Wλ−1,2, . . . ,Wλ−1,λ−1). We will use the
previous message(Wλ−2,2, . . . ,Wλ−2,λ−2) as the key with
the key rateRk = (λ − 1)Rs. MessageWλ−1,1 is sent via
wiretap coding and the rest via the secret key. Now we achieve
the total rate,

1

2
(Rs + (λ− 1)Rs) =

1

2
(Rs + C) . (7)

In the next slot we will only haven channel uses and use only
the key with rateC and no wiretap coding. This provides us the
secret rate ofC. From then onward we repeat this codebook
with the key as the previous message and obtain a secrecy rate
of C.

Bob decodes the message as follows. In slotk, (for 1 <

k < λ) Y n
k1 is decoded via usual wiretap decoding whileY n

k2

is decoded first by the channel decoder and thenXORed with
Ŵk−1. The probability of error for Bob goes to zero asn→
∞. There is a small issue of error propagation due to using
the previous message as key: Letǫn be the message error



probability for the wiretap encoder and letδn be the message
error probability due to the channel encoder forWk. Then
ǫn → 0 and δn → 0 as n → ∞. For the kth slot, 1 <

k < λ − 1, we haveP (W k 6= Ŵk) ≤ Pr(Error in decoding
Wk1) + Pr(Error in decoding̃Wk2) + Pr(Error in decoding
W k−1) ≤ kǫn + (k − 1)δn. Thus the error increases withk.
But restarting (as in slot 1) after somek slots (somewhat large
compared toλ) as in slot 1 will ensure thatP (W k 6= Ŵk)→ 0
asn→∞.

Next we compute the leakage rate for Eve. In slot 1, wire-
tap coding is used. Therefore,1

n
I(W 1;Z

n
1 ) → 0, as n →

∞. In the following we fix anǫ > 0 and taken such that
I(W 1;Z

n
1 ) ≤ nǫ.

In slot 2 we want to show that
1

n
I(W 1;Z

n
1 , Z

2n
2 )→ 0 (8)

and
1

n
I(W 2;Z

n
1 , Z

2n
2 )→ 0, (9)

asn→∞. We have,

I(W 1;Z
n
1 , Z

2n
2 ) = I(W 1;Z

n
1 ) + I(W 1;Z

2n
2 |Z

n
1 ). (10)

SinceW 2 = (W21,W22

⊕
W 1) ⊥ W 1, Z2n

2 ⊥ (W 1, Z
n
1 )

(X ⊥ Y will denoteX is independent ofY ). Therefore,

I(W 1;Z
2n
2 |Z

n
1 ) = 0. (11)

Also, I(W 1;Z
n
1 ) ≤ nǫ and hence

I(W 1;Z
n
1 , Z

2n
2 ) ≤ nǫ. (12)

Next consider

I(W 2;Z
n
1 , Z

2n
2 )

= I(W 2;Z
n
1 ) + I(W 2;Z

2n
2 |Z

n
1 ). (13)

SinceW 2 ⊥ Zn
1 , I(W 2;Z

n
1 ) = 0. Now consider the second

term in (13),

I(W 2;Z
2n
2 |Z

n
1 ) = I(W21,W22;Z

2n
2 |Z

n
1 )

= I(W21;Z
2n
2 |Z

n
1 ) + I(W22;Z

2n
2 |Z

n
1 ,W21). (14)

Also,

I(W21;Z
2n
2 |Z

n
1 )

= I(W21;Z
n
22|Z

n
1 ) + I(W21;Z

n
21|Z

n
1 , Z

n
22). (15)

SinceW21 ⊥ (Zn
22, Z

n
1 ),

I(W21;Z
n
22|Z

n
1 ) = 0. (16)

Furthermore,(W21, Z
n
21) ⊥ (Zn

1 , Z
n
22), implies

I(W21;Z
n
21|Z

n
1 , Z

n
22) = I(W21;Z

n
21) ≤ nǫ. (17)

From (15), (16) and (17)

I(W21;Z
2n
22 |Z

n
1 ) ≤ nǫ. (18)

Now we consider second term of (14),

I(W22;Z
2n
2 |Z

n
1 ,W21) = I(W22;Z

n
21, Z

n
22|Z

n
1 ,W21)

= I(W22;Z
n
21|Z

n
1 ,W21) + I(W22;Z

n
22|Z

n
1 , Z

n
21,W21).

(19)

SinceW22 ⊥ (Zn
21, Z

n
1 ,W21),

I(W22;Z
n
21|Z

n
1 ,W21) = 0.

Also (Zn
21,W21) ⊥ (W22, Z

n
22, Z

n
1 ), implies,

I(W22;Z
n
22|Z

n
21, Z

n
1 ,W21) = I(W22;Z

n
22|Z

n
1 ). (20)

But W22 ⊥ Zn
1 implies

I(W22;Z
n
22|Z

n
1 ) = I(W22;Z

n
1 , Z

n
22)

= I(W22;Z
n
22) + I(W22;Z

n
1 |Z

n
22)

= I(W22;Z
n
1 |Z

n
22), (21)

becauseI(W22;Z
n
22) = 0. Now observe that the following

Markov relationship holds

Zn
1 ←→W1 ←→ (W1,W22)←→ Zn

22. (22)

Therefore,

I(Zn
1 ;W22|Z

n
22) ≤ I(Zn

1 ;W22,W1|Z
n
22) ≤ I(Zn

1 ;W22,W1)

= I(Zn
1 ;W1) + I(Zn

1 ;W22|W1). (23)

Because of wiretap codingI(Zn
1 ;W1) ≤ nǫ. Also from (22),

I(Zn
1 ;W22|W1) = 0.

Hence,
I(Zn

1 ;W22|Z
n
22) ≤ nǫ. (24)

Along with (18), this implies thatI(W 2;Z
n
1 , Z

2n
2 ) ≤ 2nǫ.

Next we use mathematical induction to show that
1
n
I(Wm;Zn

1 , Z
2n
2 , . . . , Z2n

k+1)→ 0 for all m ≤ k + 1, k ≥ 1.
We use the notation,

Z(m) = (Zn
1 , Z

2n
2 , . . . , Z2n

m ), m = 1, 2, . . . (25)

We show
1

n
I(Wm;Z(k+1)) ≤ 2ǫ, (26)

for m = 1, . . . k + 1 given,

1

n
I(Wm;Z(k)) ≤ 2ǫ, (27)

for m = 1, . . . , k.

For m = 1, . . . k,

I(Wm;Z(k+1)) = I(Wm;Z(k))+ I(Wm;Z2n
k+1|Z

(k)). (28)

From (27)I(Wm;Z(k)) ≤ nǫ.



The second term,

I(Wm;Z2n
k+1|Z

(k))

= I(Wm;Zn
k+1,1, Z

n
k+1,2|Z

(k))

= I(Wm;Zn
k+1,1|Z

(k)) + I(Wm;Zn
k+1,2|Z

(k), Zn
k+1,1).

(29)

Also,

I(Wm;Zn
k+1,1|Z

(k)) = I(Wm1,Wm2;Z
n
k+1,1|Z

(k))

= I(Wm1;Z
n
k+1,1|Z

(k))

+ I(Wm2;Z
n
k+1,1|Z

(k),Wm1). (30)

Now since(Wm1, Zk+1,1) ⊥ Z(k),

I(Wm1;Z
n
k+1,1|Z

(k)) = I(Wm1;Zk+1,1) = 0. (31)

Next consider the second term of (30),
I(Wm2;Z

n
k+1,1|Z

(k),Wm1). SinceZn
k+1,1 ⊥ (Z(k),Wm),

I(Wm2;Z
n
k+1,1|Z

(k),Wm1) = 0. (32)

Hence from (30), (31) and (32), we get

I(Wm;Zn
k+1,1|Z

(k)) = 0. (33)

Now we consider

I(Wm;Zn
k+1,2|Z

(k), Zn
k+1,1), m = 1, . . . , k.

Whenm = k the following Markov relation holds,

(Z(k), Zn
k+1,1)↔ (Wk1,Wk2)

↔ (Wk1,Wk2,Wk+1,2)↔ Zn
k+1,2. (34)

Thus, by Markov inequality,

I(W k;Z
n
k+1,2|Z

(k), Zn
k+1,1) ≤ I(Wk1,Wk2;Z

n
k+1,2)

= I(Wk2;Z
n
k+1,2) = 0. (35)

Therefore from (28), we getI(W k;Z
(k+1)) ≤ nǫ. Now

for m < k, sinceZ(m−1) ⊥ (Wm, Z2n
k+1, Z

2n
m , . . . , Z2n

k ), we
have

I(Wm;Zn
k+1,2|Z

(k), Zn
k+1,1)

= I(Wm;Zn
k+1,2|Z

2n
m , . . . Z2n

k , Zn
k+1,1). (36)

From the following Markov relation

(Z2n
m , . . . , Z2n

k , Zn
k+1,1)↔ (Wm,Wm+1, ...,W k+1)↔ Zn

k+1,2,

(37)
we get

I(Wm;Zn
k+1,2|Z

2n
m , . . . , Z2n

k , Zn
k+1,1)

≤ I(Wm,Wm+1, . . . ,W k+1;Z
n
k+1,2|Z

2n
m , . . . , Z2n

k , Z2
k+1,1)

≤ I(Wm,Wm+1, . . . ,W k;Z
n
k+1,2) = 0. (38)

Thus we obtain

I(Wm;Z(k+1)) ≤ nǫ, (39)

for m = 1, . . . , k.

Now consider

I(W k+1;Z
(k+1)) = I(Wk+1,1,Wk+1,2;Z

(k+1))

= I(Wk+1,1;Z
(k+1)) + I(Wk+1,2;Z

(k+1)|Wk+1,1). (40)

We consider the first term of (40),

I(Wk+1,1;Z
(k+1))

= I(Wk+1,1;Z
(k)) + I(Wk+1,1;Z

2n
k+1|Z

(k)). (41)

SinceWk+1,1 ⊥ (Zn
1 , . . . , Z

2n
k ),

I(Wk+1,1;Z
(k)) = 0. (42)

Also,

I(Wk+1,1;Z
2n
k+1|Z

(k))

= I(Wk+1,1;Z
n
k+1,2|Z

(k)) + I(Wk+1,1;Z
n
k+1,1|Z

(k), Zn
k+1,2)

= 0 + nǫ. (43)

Thus,
I(Wk+1,1;Z

(k+1)) ≤ nǫ. (44)

Now we consider second term in (40),

I(Wk+1,2;Z
(k+1)|Wk+1,1)

= I(Wk+1,2;Z
(k), Zn

k+1,1, Z
n
k+1,2|Wk+1,1)

= I(Wk+1,2;Z
n
k+1,1|Wk+1,1)

+ I(Wk+1,2;Z
(k), Zn

k+1,2|Wk+1,1, Z
n
k+1,1). (45)

SinceWk+1,2 ⊥ (Wk+1,1, Z
n
k+1,1),

I(Wk+1,2;Z
n
k+1,1|Wk+1,1) = 0.

Also we note that(Wk+1,1, Z
n
k+1,1) ⊥ (Wk+1,2, Z

(k), Zn
k+1,2)

andWk+1,2 ⊥ Z(k) and hence (45) becomes

I(Wk+1,2;Z
(k), Zn

k+1,2|Wk+1,1, Z
n
k+1,1)

= I(Wk+1,2;Z
(k), Zn

k+1,2)

= I(Wk+1,2;Z
(k)) + I(Wk+1,2;Z

n
k+1,2|Z

(k))

= I(Wk+1,2;Z
n
k+1,2|Z

(k)). (46)

Also sinceZ(k−1) ⊥ (Wk+1,2, Z
n
k+1,2, Z

2n
k ),

I(Wk+1,2;Z
n
k+1,2|Z

(k)) = I(Wk+1,2;Z
n
k+1,2|Z

2n
k ). (47)

But Wk+1,2 ⊥ Z2n
k implies

I(Wk+1,2;Z
n
k+1,2|Z

2n
k ) = I(Wk+1,2;Z

n
k+1,2, Z

2n
k )

= I(Wk+1,2;Z
n
k+1,2) + I(Wk+1,2;Z

2n
k |Z

n
k+1,2)

= I(Wk+1,2;Z
2n
k |Z

n
k+1,2). (48)



Now note that the following Markov relationship holds

Z2n
k ←→ W k ←→ (W k,W k+1,2)←→ Z2n

k+1,2 (49)

and alsoWk+1,2 ⊥ (W k, Z
2n
k ). Therefore,

I(Wk+1,2;Z
2n
k |Z

n
k+1,2) ≤ I(Wk+1,2W k;Z

2n
k |Z

n
k+1,2)

≤ I(Wk+1,2,W k;Z
2n
k )

≤ I(W k;Z
2n
k ) + I(Wk+1,2;Z

2n
k |W k) ≤ nǫ+ 0. (50)

From (40) and (44), now we obtain

I(W k+1;Z
(k+1)) ≤ 2nǫ. � (51)

Comment: We can obtain Shannon capacity even withstrong
secrecy. To do that we have to useinformation reconciliation
and privacy amplificationin the first slot after transmitting
messageW 1 using wiretap coding, as is done in [14] and [3].
In the subsequent blocks we use both the wiretap encoder and
the deterministic encoder. Wiretap encoder is used to trans-
mit one message using wiretap coding and the deterministic
encoder is used for transmitting the other message (which
is encrypted with the secret key generated in strong secure
sense in the previous slot) using usual channel codes. Here
also we need to modify the wiretap encoder by incorporating
information reconciliation and privacy amplification for the
message which we transmit using wiretap code. In this way
we ensure that in every slot we generate the secret key for the
next slot which is strongly secure, i.e, inkth slot, we have

I(Wm;Zn
1 , . . . , Z

2n
k )→ 0,m = 1, . . . , k. (52)

Proof of (52) follows as in Theorem 3.1

IV. EXAMPLES

A. Gaussian Wiretap Channel

Consider Additive White Gaussian Noise Channel (AWGN)
wiretap channel with average power constraintP . The noise
variance at Bob and Eve areσ2

b andσ2
e respectively, withσ2

b <

σ2
e . The channel codes are chosen from Gaussian codebooks

asX ∼ N (0, P ). Then, from [11]

Rs =
1

2
log

(
1 +

P

σ2
b

)
−

1

2
log

(
1 +

P

σ2
e

)
. (53)

The key rateRK in slot 2 isRs, in slot 3 is2Rs and so on.
After slot λ, where

λ =

1
2 log

(
1 + P

σ2

b

)

1
2 log

(
1 + P

σ2

b

)
− 1

2 log
(
1 + P

σ2
e

) , (54)

the capacity will reach12 log
(
1 + P

σ2

b

)
provided C

Rs

is integer
valued.
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VI. CONCLUSION

In this paper we have achieved secrecy rate equal to the
main channel capacity by using previous secret messages as
key for transmitting the current message. This can be done
while still retainingstrong secrecy.
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