
Message-Passing Algorithms for Optimal Utilization
of Cognitive Radio Networks

Hamed Mahmoudi
Aston University, UK

h.mahmoudi@aston.ac.uk

Georgios Rodolakis
CERTH, Greece
rodolakis@iti.gr

Leonidas Georgiadis
Aristotle University of Th., Greece

leonid@auth.gr

David Saad
Aston University, UK
d.saad@aston.ac.uk

Abstract—Cognitive Radio has been proposed as a key technol-
ogy to significantly improve spectrum usage in wireless networks
by enabling unlicensed users to access unused resource. We
present new algorithms that are needed for the implementation of
opportunistic scheduling policies that maximize the throughput
utilization of resources by secondary users, under maximum
interference constraints imposed by existing primary users. Our
approach is based on the Belief Propagation (BP) algorithm,
which is advantageous due to its simplicity and potential for
distributed implementation. We examine convergence properties
and evaluate the performance of the proposed BP algorithms via
simulations and demonstrate that the results compare favorably
with a benchmark greedy strategy.

I. INTRODUCTION

Cognitive Radio Networks (CRNs) have recently been pro-
posed as a promising approach to improve spectrum usage,
by enabling unlicensed users to access unused wireless re-
sources [1]. The key technology is cognitive radio that can
dynamically adjust its channel allocation depending on spec-
trum availability. Therefore, in CRNs, we distinguish between:
Primary Users (PU), who have licensed rights to network
resources, and (unlicensed) Secondary Users (SU) equipped
with cognitive radios, who access underutilized spectrum
channels. A basic requirement is that secondary users must not
adversely impact the performance of primary users. This can
be ensured by a coordination mechanism, under the terms of an
agreement between users, but in many practical cases such ex-
tensive coordination is unfeasible. In contrast, an approach that
leverages the cognitive radio capabilities consists in secondary
users monitoring the spectrum and exploiting opportunistically
channels unemployed by primary users. Combined with the
dynamic wireless environment this poses important challenges
as the channel access algorithms must be very efficient for the
access to be updated continuously, and distributed to allow for
uncoordinated opportunistic operation.

In this paper, we present new algorithms needed for op-
portunistic scheduling, which maximize the utility of the
secondary users, under maximum interference constraints im-
posed by existing primary users. The utility can be a function
of actual or stochastic traffic and communication rates, or
corresponding queue lengths; such choices can be formulated
with the goal to maximize the achievable network throughput
using Lyapunov Optimization techniques (see the seminal
paper [9], and [10] for an application in CRNs). Our aim is to
select sets of links between secondary users and free primary

channels that can be activated simultaneously, such as to
maximize the total utility of secondary users, without causing
disruptive interference to existing primary users. Hence, the
optimization problem in our framework, which we describe in
Section II, is a generalization of Maximum Weight Matching
(MWM), with additional interference constraints.

Our approach is based on the Belief Propagation (BP)
algorithm, which is advantageous due to its simplicity and
potential for distributed implementation. BP is an iterative
message-passing algorithm, that was discovered independently
in the information theory [3], machine learning [7] and
statistical physics [6] communities. It has been used, with
spectacular experimental success, in many application areas,
for instance iterative decoding and combinatorial optimization,
which involve graphs with cycles. The physical interpretation
of message-passing algorithms and in particular belief prop-
agation was later explained by statistical mechanics studies
of disordered systems [4], [11], [5], consolidating BP and its
generalizations to a very powerful tool that provides practical
solutions to hard problems. Additionally, BP has been shown
to solve the classical Maximum Weight Matching exactly in
bipartite graphs with cycles [2].

Cognitive radio networks have attracted significant research
interest (see [1] for a survey), including work on optimal spec-
trum scheduling. However, the problem of efficient and fully
distributed throughput optimization under interference remains
challenging. A recent paper [8] proposes affinity propagation
based algorithms for spectrum access in CRNs, in the specific
case where primary users permit secondary users access as
long as they consent to act as relays. The study that is closest
to our approach is [10], which introduces a general frame-
work using the Lyapunov Optimization technique to design
a scheduling policy for flow control and resource allocation
in CRNs. It motivates the formulation of the optimization
problem we aim to address; specifically, the policy proposed
in [10] is required to solve a certain deterministic optimization
problem at each time slot, which imposes a computational
bottleneck when interference is taken into account. In this
paper, our contribution is complementary as we focus on a
more general algorithmic solution, and the problem we address
can be used to solve the optimization problem discussed above,
in contrast to [10] that merely presents a greedy algorithm for
the simplified case of no interference.

The paper is organized as follows: we present a general
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modeling framework for opportunistic cognitive radio net-
works and formulate the problem of optimal channel allocation
with interference control in Section II; in Section III, we
develop two new Belief Propagation algorithms, which can be
fully decentralized, to solve the optimization problem for hard
and soft interference constraints, respectively; in Section IV,
we show the convergence and evaluate the performance of the
proposed BP algorithms via simulation scenarios in a realistic
Signal to Interference plus Noise (SINR) based model of cog-
nitive radio networks and demonstrate that the results compare
favorably with a benchmark greedy scheduling strategy.

II. MODEL

The model adopts a hierarchical access structure with pri-
mary and secondary users. The basic idea is to open channel
frequencies to secondary users while considering the interfer-
ence experienced by primary users (licensees). Fig 1 illustrates
a CRN. Primary users (red colored) are first to be served by
channels. Secondary users, in non-cooperative scenario can not
access channels if they are occupied by a primary user. We

Fig. 1. A simple cognitive radio network, with two channels to serve users.
Primary users are shown in red, and cognitive users are while circles.

assume that information about primary user communications
are provided reliably. Each primary user has its own channel
frequency which is not shared with others. Thus, primary
users can send data over their own licensed channels to their
respective access points simultaneously. Secondary users do
not have such channels and opportunistically try to send their
data to receivers by utilizing idle primary channels. Formally
we define a CRN by N secondary users and M primary users.
Each secondary user may have access to a subset of primary
channels (see Fig. 1) according to their Euclidean distance.
Throughout this paper primary users are denoted by {a, b, ...}
and secondary users by {i, j, ..}. We define a binary metric
I(i, a) = {0, 1} for each secondary user i ∈ {1, ..., N} and
primary channel a ∈ {1, ...,M} where I(i, a) = 1 indicates
accessibility of primary channel a to secondary user i.

We present the problem in which message-passing technique
can be used to find optimal scheduling in CRNs. Consider a
CRN where a subset of primary users are inactive at each
time slot. Each cognitive user can access a primary channel
if the channel is accessible and if its corresponding primary
user is inactive. However, at the same time it should not
interfere with transmissions of other active primary users.
We define an interference matrix G(i, a) which measures the
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Fig. 2. A factor graph representation of CR network. Solid links represent
the accessibility of the idle primary channels to secondary users (I(i, a)).
Dashed lines represent possible interference experienced at active primary
users due to transmissions of secondary users (G(i, a)).

interfere experienced at primary user a when secondary user
i is connected to a free channel. Note that G(i, a) is different
from the accessibility matrix I(i, a) because a secondary user
might not have access to a primary channel (I(i, a) = 0)
but have a non-zero interference with (active) primary user a
(G(i, a) 6= 0) when it is connected to another free channel. To
each secondary user i, we assign a binary variable si where
si = 1 indicates secondary user i connected to a free channel
and si = 0 stands for the case where i is not connected
to any primary channel. We now introduce a factor graph
representation of the CRN (Fig. 2). It is a bipartite graph
which includes secondary and primary users as different factor
nodes, shown by circles and squares, respectively. Secondary
and primary users are connected to each other according to
the accessibility and interference matrices. We assume that
the first m primary users are idle at the time and only M −m
primary users are active (indexed by (m+ 1, ...,M)).

In order to distinguish which primary channel is assigned
to a secondary user, we introduce variable σi,a = {0, 1} for
user i ∈ {1, ..., N} and its accessible free primary channel
a ∈ {1, ...,m} such that σi,a = 1 when i is connected to a.
By definition we have

si = Θ

(
m∑
a=1

σi,a I(i, a)

)
(1)

where Θ is the step function. The ultimate goal is to efficiently
connect secondary users to free primary channels. Secondary
users might have different priority to be connected according
to their different tasks. The problem then can be expressed
as an optimization problem to find the best assignment ~s =
{s1, ..., sN} such that the following cost function is minimized

H(~s ) = −
N∑
i=1

sici (2)

Here ci is the task (priority) of secondary user i. Clearly
secondary users with higher priority have preference to be con-
nected. However the interference and accessibility constraints
must both be satisfied which makes the problem hard. Note
that it is possible to extend the current prior task vector to more



general cases where secondary users have different priorities
to access different unused channels.

In what follows we describe two different optimization
objectives in solving the CRN optimization problem. The first
approach is based on hard constraints induced by active pri-
mary users while the second is based on soft constraints where
interferences between secondary users and primary users are
tolerated but the cost function is modified accordingly.

A. Model A
To formulate the hard interference constraints imposed by

active primary users, we introduce a quenched variable for
every primary user ~θ={θ1, ..., θM} to indicate the maximum
interference tolerated. We assume that the sum over interfer-
ences from all secondary users connected to free channels
must be smaller than the active primary user threshold. The
optimization problem then is to minimize the cost function
Eq. 2 such that following conditions are satisfied, which must
be solved in conjunction with Eq. 1:
• hard interference constraints imposed by active primary
users

N∑
i=1

G(i, a)si ≤ θa for a ∈ {m+ 1, ...,M} (3)

• each secondary user is connected to at most one free channel
m∑
a=1

I(i, a) σi,a ≤ 1 for i ∈ {1, ..., N} (4)

• and each free channel to at most one secondary user
N∑
i=1

I(i, a) σi,a ≤ 1 for a ∈ {1, ...,m} (5)

B. Model B
An alternative approach is to relax the hard interference con-

straints between secondary users and active primary channels.
We modify the cost function such that the solution minimizes
the interference between secondary users and active primary
channels. We consider a quadratic cost of the interferences
between SUs and active PUs.

H(~s ) = −
N∑
i=1

sici +

M∑
a=m+1

1

θa

(
N∑
i=1

G(i, a)si

)2

H(~s ) = −
N∑
i=1

sici +

M∑
a=m+1

1

θa

N∑
i,j=1

G(i, a)G(j, a)sisj (6)

where the goal is to find ~s that minimizes the cost function
(Eq. 6), conditioned on constraints introduced in Eqs. 4 and 5.
This objective represents a trade-off between maximizing the
number of connected secondary users and minimizing the
induced interference.

In both models, we assume a stationary state described
by the Boltzmann distribution p(~s ) = 1

Z e
−βH(~s ), where the

parameter β is analogous to inverse temperature and is a
measure of how strictly the minimization in enforced. In the
limit β → ∞, it will be concentrated to the minimum of the
cost function.

III. BELIEF PROPAGATION

In a system with a given cost function, the problem of find-
ing the global minimum or calculating marginal probabilities
can be solved approximately by the BP algorithm.

1

m

m + 1

M

N

1

Ci→a(si) Da→i(si)

Ai→a(σi,a) Ba→i(σi,a)

Fig. 3. Messages are exchanged among secondary users and available
primary users and between secondary users and active primary users. They
fulfill a set of consistent equations and correspond to the BP approximation
of the corresponding CRN.

To implement BP we exchange a set of messages between
the different nodes in a factor graph. The type of messages
to be exchanged between secondary users and active primary
users are essentially different from those exchanged between
secondary users and inactive primary users. To an active
primary user the important information is whether a secondary
user with non-zero interference is connected to any free
channel, irrespective of the channel. On the other hand, for free
channels it is important to take into account the information
about the specific connections (see constraints 4 and 5). We
introduce four different messages as follows
• Ai→a(σi,a) is a messages sent from secondary user
i to free channel a with non-zero accessibility metric
I(i, a) 6= 0. It gives the probability of observing σi,a.

• Ba→i(σi,a) is the reverse message sent from available
primary user a to secondary user i.

• Ci→a(si) is a message sent from secondary user i to
active primary user a with non-zero interference metric
(G(i, a) 6= 0). It gives the probability of secondary user
to be connected (not-connected) to one of its available
free channel si = 1 (si = 0).

• Da→i(si) is the corresponding reverse message from
active primary user a to secondary user i.

These BP messages fulfill a set of closed equations (Eq. 7-11).
Belief propagation equations are to be solved iteratively.

We assign an initial (unbiased) condition to each message and
iterate all messages until a fixed point is reached. This is a
fully decentralized procedure and can be applied efficiently.
Once the fixed point is reached, the marginal probabilities for
each secondary user can be computed. Each marginal proba-
bility represents the probability of connecting corresponding
secondary users to a free channel.

Note that in order to update message Da→i we have to take
a summation over 2O(K) where K is the average connectivity
for active primary users. For sparse interference/connectivity



Ai→a(σi,a) ∝
∑

{σi,b}\σi,a

eβsici
m∏

b=16=a

Bb→i(σi,b)

M∏
b=m+1

Db→i(si) 1

σi,a + m∑
b=16=a

σi,b I(i, b) ≤ 1

 (7)

Ba→i(σi,a) ∝
∑

{σj,a}\σi,a

∏
j 6=i

Aj→a(σj,a) 1

σi,a +∑
j 6=i

σj,a I(j, a) = 1

 (8)

Ci→a(si) ∝
∑
{σi,b}

eβsici
m∏
b=1

Bb→i(σi,b)

M∏
b=m+16=a

Db→i(si) δsi,Θ(
∑m
c=1 σi,c I(i,c)) (9)

Da→i(si) ∝
∑
~s \si

N∏
j=16=i

Cj→a(sj) 1

(∑
j

G(j, a) sj ≤ θa

)
ModelA (10)

Da→i(si) ∝
∑
~s \si

N∏
j=16=i

Cj→a(sj) e
− β
θa
G(i,a)si(

∑N
j=1 G(j,a)sj) Model B (11)

matrices the algorithm provides a fast solution while for dense
matrices the corresponding computational complexity grows
exponentially and becomes infeasible.

For Model B, we will show that computational complexity
remains manageable even in the regime where active primary
users experience interference from many secondary users. To
simplify the BP equations we introduce the BP field messages
hi→a = 1

β ln
(
Ai→a(1)
Ai→a(0)

)
, ha→i = 1

β ln
(
Bi→a(1)
Bi→a(0)

)
, qi→a =

1
β ln

(
Ci→a(1)
Ci→a(0)

)
, qa→i = 1

β ln
(
Di→a(1)
Di→a(0)

)
. The corresponding

new BP equations for model B become

hi→a = − 1

β
ln

e−β(ci+
∑M
b=m+1 qb→i) +

m∑
b=16=a

eβhb→i


ha→i = − 1

β
ln

1 +
∑
j 6=i

eβhj→a

 (12)

qi→a = −ci −
M∑

b=m+16=a
qb→i −

1

β
ln

[
m∏
b=1

(
1 + eβhb→i

)
− 1

]

qa→i = − 1

β

∑
j 6=i

ln

[
exp(β(qj→a− G(i, a)G(j, a)/θa))+1

exp(βqj→a) + 1

]
The advantage of this new version of BP is that all equations
involve summations over a finite number of terms.

IV. SIMULATION RESULTS

In this section, we investigate the performance of BP and
compare it to a greedy benchmark algorithm. We show how
BP outperforms the latter in finding the better assignment of
secondary users to the available free channels.

We consider a cell-based simulation scenario, where base
stations are placed uniformly at random in a unit square
(accounting for irregular urban terrain) and each base station
has one associated channel allocated to a primary user. The
secondary users attempt to opportunistically send data to the
base-stations using idle primary channels; we thus concentrate
on uplink communication.

Power attenuation at distance r is g·r−α, where α ≥ 2 is the
path-loss exponent (we take α = 3.5) and g is a non-negative

random variable accounting for fading and shadowing, with
unit mean. We assume a Rayleigh fading inspired model,
where g is distributed exponentially and is i.i.d. for each
secondary user/base-station pair. We also consider a cut-off
value below which the received power is assumed to be
0 (this is realistic in practice, and the sum of interference
contributions below the threshold can be assumed to be
taken into account as background noise). Secondary users can
connect to a free channel if the SNR (signal to noise ratio)
from the corresponding base-station is above a predefined
threshold. Similarly the interference constraint is a different
predetermined threshold.

We also propose a greedy algorithm strategy as a simple
benchmark to compare with our message passing approach.
For Model A, the algorithm is the following: we iteratively
choose among the remaining links the one of largest weight
(i.e., largest ci) and mark it as active as long as the active
links constitute a matching and the interference constraints
are satisfied for all active primary users; otherwise, the link
is removed from the remaining link set. To solve model B,
we apply the same algorithm with a simple modification: for
each link we subtract from its weight the sum of squared
interference it generates and omit the interference constraints.

Through our simulations we set the priority of secondary
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Fig. 4. The number of connected secondary users versus the number of active
primary users in a CRN with N = 100 and M = 50. The blue line represents
the result obtained by BP while red line represents the performance of the
greedy algorithm. Results are averaged over 10 different network realizations
with the same set of parameters.
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Fig. 5. Performance of BP (Model A) for different values of β. The results
improve by increasing β as the optimal solution is expected to be found at
β →∞. Simulation results show convergence as β increases.

users to 1 for all users (ci = 1) therefore the absolute value
of cost function in model A is equivalent to the number of
connected secondary users (see Eq. 2). The higher this number
is the better the algorithm performs. All interference thresholds
are also set to 1 (θa = 1). Fig. 4 compares results obtained by
BP and the greedy algorithm for a cognitive radio networks
with N = 100 secondary and M = 50 primary users. As
we increase the number of active primary users (M − m),
we end up with less free channel frequency to be shared with
secondary users and hence the number of connected secondary
users decreases. For all values of active primary users BP
outperforms the greedy algorithm as is shown in the figure.

To investigate the optimal solution found by BP we plot the
results obtained for various values of β (Fig. 5). As mentioned
earlier, we expect to find the optimal solution by taking the
limit β → ∞. However, the number of connected secondary
users converges already for β ≥ 5.
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Fig. 6. The minimal cost achieved for model B (Eq. 6) in a cognitive
radio networks with N = 100 secondary and M = 50 primary users.
Results obtained by BP (blue red) show better performance compared to the
greedy algorithm (red line). Results are averaged over 10 different network
realizations with the same set of parameters.

Similar behavior is observed for Model B with soft interfer-
ence constraints. Fig. 6 compares results obtained by BP and
the greedy algorithm. It shows the optimal cost value obtained
by the different methods for various numbers of active primary
users. For all parameters BP finds a better solution (lower
minimal cost) compared to the greedy algorithm.

The performance of BP in model B is examined by mon-
itoring the two parts of cost function: interference and the
number of connected secondary users for different values
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Fig. 7. The interference between connected secondary and active primary
users in a cognitive radio networks with N = 100, M = 50 and M −m=5.
The results are obtained by running BP on 10 different networks realizations.
The inset shows the number of connected secondary users.

of β. As expected, the interference part of cost function
(
∑
i,j

∑
aG(i, a)G(j, a)sisj) vanishes as β increases. Fig-

ure 7 shows the average results for 10 realizations of cognitive
networks with N = 100, M = 50 and M − m = 5. As
we increase β the interference decreases and the number of
connected secondary users increases.

V. CONCLUSION

We have applied BP to find the optimal resource utilization
in cognitive radio networks. We have cast the task into a op-
timization problem where the number of connected secondary
users is to be maximized under hard and soft interference
constraints. A greedy algorithm is used as a benchmark for
the BP results; the latter outperforms the former in all the
experiments carried out and is computationally efficient.
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