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Abstract—Scheduling multicast traffic in input-queued scheduling algorithm, inspired by the belief propagatiBR)
switches requires solving a hard combinatorial optimizaton paradigm, and designed to approximate a provably throughpu
problem in a very short time. This task advocates the designfo optimal scheduling policy.

algorithms that are simple to implement and efficient in terms Th . >ed foll Ins I defi h
of performance. We propose a new scheduling algorithm, base .e paper I1s or_ganlze as (_) OWS. n ec. Il we define the
on message passing and inspired by the belief propagation multicast SChedUllng problem in 1Q switches and the related
paradigm, meant to approximate the provably optimal schedling ~ optimal policy [3]. In Sec. Il we introduce the BP approach,
policy. Our main finding is that our algorithm outperforms  and describe the new algorithm. In Sec. IV we compare the
other centralized greedy gchedullng policies, achieving aetter performance of the algorithm with other centralized greedy
tradeoff between complexity and performance. . . . . .
algorithms for multicast scheduling. Conclusions are draw

|. INTRODUCTION Sec. V.

In the last decade, input-queued (IQ) switches have beenll. MULTICAST TRAFFIC IN INPUT QUEUED SWITCHES

the reference switching architecture for the design of high\ne consider an IQ switch of siz& x M (Fig. 1), where
speed routers in the Internet [1]. Furthermore, at a mugh _ II| and M = |O], with T and O denoting the sets of
smaller spatial scale, they are widely employed to switda danpyt and output ports, respectively.fAnout setis defined as

flits in Network-on-Chips [2]. The main reason is that 1Qy sypset of output ports, so that a multicast packet can be de-
switches offer a convenient tradeoff between computaliongiped by the fanout set of its output destinations. Theib
complexity and memory speed. Indeed, input queues run atﬁl?eueing architecture is MC-VOQ [3], i.e., ofegical queue
speed equal to the line rate, so that the performance bet#en;s present for each possible fanout set and each input port.
due to the limited memory access time is minimized. In IQpjs architecture is optimal, because it avoids the head-of
switches, a scheduling algorithm must choose the packets;tp blocking problem. Combined with optimal queueing, we
be transferred from input to output ports while satisfyihg t -,nsider a throughput-optimal scheduling policy for mualsit
switching fabric cor_15traints, which allow at most a singlgaffic. Such a policy is called “fanout-splitting” [3], sie it
transfer from each input port and to each output port. NOfgioys for partial packet transmissions: A packet can be sen
that the same packet can be transferred to any subsetpfyst a subset of its destination ports, leaving some uesid
output ports, given that the switching contraints are 8ats gestinations for future transmissions. In this case, thoketds
Solving the scheduling problem for unicast traffic requI@S ye_engueued to the queue corresponding to the residuaitano
compute a maximum weight matching in a bipartite grapRet. Such a behavior may introduce out-of-sequence packet

and this model represents the prototype for a large classiefnsmissions, whose impact can be controlled and mitigate
resource allocation problems in telecommunication neftsior by the techniques discussed in [4].

In the same way, we expect that the relevance of the multicaS{ ot g denote the set of all possible fanout sets, whose
scheduling problem, addressed in this paper, goes beyend finajity is|S| = 2, where we have artificially added the

classical framework of 1Q switches. null ¢ fanout set just for notational reasons. As one logical

Unicast traffic has been the predominant traffic in thgueye is present for each nonempty fanout set, the set of
Internet for a long time, but, nowadays, new applicationsgeha

been arising, based on multicast traffic, in which packegs ar

sent to a set of destinations, rather than a single one. Heamp 1 %} 1
of such applications are IP video broadcasting, P2P netvork - —
and financial networks supporting high-speed trading. $o fa

the support of multicast traffic in IQ switches has been very

naive and inefficient, since based on simple “patches” to XN %} crossbar
unicast scheduling algorithms.

In this work we specifically address the problem of schedul-

. . . . Fig. 1. 1Q switch with MC-VOQ supporting multicast traffic.
ing multicast packets in an 1Q switch. We propose a new



all possible logical queues can be represented bWe now served queues; the subset of outputs to which the packet is
define a set ofV x (2 — 1) matrices: actually transmittedtfansmissionfanout set), and; \ 7; the

o Let Y (t) = [yiy(t)], with i € T andq € S, be thequeue queue in which the packet is in case re-enqueuesidual
length matrixat timeslott; we assume that, by definition,fanout set). Since the residual fanout set is, by constroct
the queue corresponding to the null fanout is alwaygsibset of the original transmission fanout set, it holds:
empty:y;p(t) = 0. 5 -

o Let A(t) = [a;,(t)] be thearrival matrix at timeslot¢: oi2m Vel ®)
a;q(t) = 1 if a new arrival occurs at inputfor queueg, Moreover, in order to complete the feasibility constraime
anda,,(t) = 0 otherwise. must avoid conflicting packets at each output, namely, we hav

o Let D(t) = [d;q(t)] be theservice matrixat timeslott: to impose that no more than one packet is transferred to each
diq(t) = 1 if queueq is served at input, d;,(t) = —1if output port and hence:

a packet is re-enqueued go(at inputi), andd;,(t) =0

otherwise. Y x{risajt<1t Vjeo (4)
The queue length evolution can be described by the usual el
relation: wherex{-} denotes a characteristic function, equal td the
Y(t+1)=Y(t)+ A(t) — D(t) (1) condition denoted by the argument is verified (i.e., input
. transmits to outpuj), and0 otherwise.
with ¢ € N. To clarify the notation, let us report here a toy example.

A traffic scenario, described by a stochastic matrix proceggnsider a2 x 3 switch with a packet at input destined
A(t), is said to beadmissibleif E{A(t)} does not overload {5 gutputs1,2, and a packet at inpu2 destined to outputs
any input nor any output port [3]. As shown in [3], an output; 5 3 Assume that the scheduler, adopting a fanout-splitting
queued switch obtains 100% throughput under any admissibigcipline, sends completely the first packet to its detitina,
multicast traffic, whereas an IQ switch does not. whereas it sends just one copy of the second packet to

The optimal scheduling decisidn(t) for the service matrix output 3. Thus, the second packet is re-enqueued to the
at timeslott, capable of maximizing the achievable throughpté}ueue corresponding to the residual fanout &§e2}. This

under any admissible multicast traffic pattemas proposed scheduling decision can be described dy= 7 = {1,2},
in [3] and can be formalized as a constrained maximizatiQphereasr, — {1,2,3} and 7, = {3}.

problem for the linear functional It is possible to rewrite function (2) to minimize as a
w(D,Y (1)) = Z Z diqyia(t) ) function of the fanout set variables, ; in the following form
i€l q€5 w ([UhTi]ig[v Y) = Z (yiai - yz(al\‘rl)) (5)
In the following section, we will introduce a new notation i€l

more suitable to formalize this problem in terms of belie@quaﬂon (5) clearly shows that the “weight” function
propagation. Furthermore, we will discuss the meaning df (gepresents the difference between the length of all theeserv
when commenting (5). queues 4;,,) and the length of all the queues where the

Thefeasibility constraintor D(t), imposed by the switch- rasidual fanout sets are re-enqueugg(\,)). This is an
ing hardware, have also been described formally in [3] argtension of the well known max-pressure policy [5], in whic
will be also discussed in the next section. In conclusiofpe weight of serving one queue is computed as the local queue
the resulting combinatorial optimization problem is NR<ha length minus the (downstream) queue length where the packet
so that only approximate algorithms are viable to solve this sent. In our case, the downstream queue corresponds to the
problem. queue where the residual fanout set is re-enqueued.

Now, it is important to observe that the “matching” con-
straints (4) involve variables; associated to different inputs,
whereas, for a given input the variabler; is only coupled to
the corresponding;, by the condition (3). As a consequence,
the optimalo; for a given choice; = 7, which we shall denote
D & |oi,7lier asd;,, can be determined by a local optimization procedure

, at each input, namely
Note that suchV pairs depends of, but we prefer to neglect

I1l. BELIEF PROPAGATION APPROACH

A preliminary observation is that a service matfixcan be
equivalently represented hy pairs of fanout sets;, 7; € S,
one for each input € I:

it in the notation for the sake of simplicity; furthermoriee 0ir = arg max {yw — yi(U\T)} (6)
the algorithm has to run at each timeslot, we neglect also the o€S|o2r
time indext. Defining also the optimized “local” weights

As previously mentioned, a nonempty fanout set identifies L ) )
a queue. In particular, we shall assume thatepresents the T eS8 |oor Yie = Yi(o\7)

IMore precisely, the traffic is generated according to a geization of the orlglnal problem '_S reduced to a_(C(_)nStramed) optitroza
the standard Bernoulli i.i.d. model defined for unicast. over the soler; variables (transmission fanout sets). The



DEC- BPn (i nput : [yia]iel,ges; out put: [o;,7),c;)
0. for i€l and 7€ S, conpute w;; and &;; by

(7) and (6)
set =1 and O=0
while T#£0

for icl and j€O, set bj; =0

Fig. 2. Fact h. Circl d tangles denot iaold f repeat n tines

ig. 2. Factor graph. Circles and rectangles denote vari unc- .= . A -

tion nodes, respectively. In the toy example of the text, weuld have for ZE{ and ‘Ze Q’ conpute fi—; by (11) and (9)
211 = 212 = T23 = 1 andx13 = x21 = x99 = 0. for iel and j € O, conpute b;j-; by (10)

e

5. for iel and 7€ S| CO, conpute m by (9)
_ _ 6. choose i€l and 7€ 5|7 CO that maxinze mi,
optimal values can be written as 7. if mi—=0 set r=0
~ v 8. set 7,=7 and o; = 6ir
[Filier = arg ITn]ai(I Zw” ®) | set 7= I\i and O =0\n
€l el

where the check mark recalls that the optimization is con- 79 3- DEC-BR: algorithm (decimation with BP iterations).

strained by (4).

We can conveniently describe the constrained optimizatipg. j € (transmission fromi to j). These messages are

problem in terms of dactor graph[6]. The latter is in general yefined by suitable self-consistency equations, namely
a bipartite graph, whose two species of nodes (calthble

nodesand function nodesare associated respectively to the bj_; = max fi_; (10)
decision variables and to the couplings among them. An arc veld
between a function node and a variable node means that thg_—.; = maX{O, max mir + bj; — max _miT} (11)
. . .. . . TES| T3] TES|TH)

corresponding variable is involved in the corresponding-co
pling. In our problem, a convenient set of decision variablevhere the “forward” messagef_,; can be finally regarded
is that of “characteristic” variables;; = x{r; > j} € {0,1}, as an estimate of the weight gain that can be obtained by
appearing in the matching contraints (4), which completethe single choicer;; = 1 (rather than0). The solution of
specify any transmission fanout setas= {j € O |z,;; = 1}. these self-consistency equations by iterative refinenmeani
In terms of these variables, we can identify two differemdd instance of BP, as it involves message passing from input
of couplings, namely, the local weights;.,, appearing in to output ports (forward messages) and vice versa (backward
(8), and the contraints (4) themselves. Each local weight izessages). It is a well known fact that BP likely converdes, i
associated to an inputand involves variables;, ..., z;y, the underlying factor graph is treelike (equations are eXac
whereas each matching constraint is associated to an outpthe graph is rigorously a tree). In our case, the factor gisaph
and involves variables,;, ..., zx;. In conclusion, the factor densely connected, and, consistently, we find severalriossa
graph associated to our problem is of the type sketched afhthe problem in which BP does not converge. Because of
Fig. 2. this problem, it is not possible to use directly the beliédy (

As shown in [6], given the formulation of a combinatoriato fix the decision variables, since this may lead to unsedsfi
optimization problem in terms of a factor graph, the corstruconstraints. This is why we have resorted to use BP with
tion of BP equations is conceptually a well-establisheddss a fixed number of iterations, in conjunction with a simple
even though non-trivial manipulations are often requicedut decimation algorithm, which at each step fixes a given vigiab
them in a conveniently simple form. Due to limited spacegher; = 7 with the maximum beliefn;,, simplifies the equations
we give only the final equations, and we shall report the fuid be compatible with the choice taken, and then reruns BP.
derivation elsewhere. Let us only mention the fact thathevd he resulting algorithm may be described by the pseudocode
though we generically speak of BP, our algorithm is indegéported in Fig. 3.
of the min-sumtype [6], which can be regarded as a special The algorithm takes as input the queue length maitiat
case of BP, specifically suited for computing MAP (maximurtimeslott and returns the scheduling decision, in terms of the
a posteriori probability) estimates. We can define ietiefs fanout set variables;, r; for each inputi. Step 0 performs

associated to each transmission fanout set varigblas the local optimization procedure, defined by equations (6)
and (7). The “lists"] and O of “unreserved” inputs and
Mir = Wir — Z bj—i ©) outputs, respectively, are initialized at step 1, assurtfiagall
JET the ports are initially available. Step 2 begins the dediomat

These quantities represent, apart from an irrelevant isdditloop, which continues until every input has taken a decision

constant, an estimate of the weight that can be obtained ity., as far ad is not empty. Steps 3-5 represent three different
choosing a specific valug; = 7. Moreover, the “backward” phases of BP, namely, initialization of backward messages,
messages;_,; are an estimate of the weight degradation due tmmputation of forward messages as a function of backward
possible conflicts generated at outguty the choicer;; =1, messages and vice versa (for a number of iterations), and



GR-LQF (input: [yiol;cs,ecq: OUtPUL: [od,7Ti];c)) TABLE |
1. set i _ [’ é _ O, and oi=Ti = 0 f or iel FANOUT SETS FOR EACH CONCENTRATED TRAFFIC SCENARLO
2. while T#£0 :
6. choose icl and o€ S|onNO#0 that | (I::z?l [_pmax ]| '?f“;}l | '?f“;}z | [Input3 ]
maxi m ze yio 9 % 4 1.00 {3: 4 {2:4} not used
7. if not found or y,, =0, break Conc-2 {1,2,3} {1,2,4}
R 5 A onc-
9. set I=1I\i and O =0\ 3x12 | 199 || (5.6.7.8) | {2,6,11,12} | {4,8,10,12}
GR-RND (i nput : [yi"]iel,oes; out put: [o;, 7l,c;)
1. set =1, O=0, and os=7.=0 for iel
2. while I#0 oL . referred to asiniform trafficand derived from [7]: The fanout
6. choose randomic/ and o€ S[oNO#0 set of each packet is chosen at random among all possible
such that yic >0 2M _ 1 ones. For this case, it can be shown that
7. if not found, break Mt u
8. set o,=0 and 7, =0cnN0O f:]VIQ B and p _ 2% —1 (12)
9. set I=1I\i and O=0\n; oM _ 1 max T N oM-—1

Fig. 4. Greedy algorithms GR-LQF (longest queue first) and-R30 Note that, SinC@pax ~ % the input load becomes very small
(randomly chosen queue). for large switches, which does not allow to create critieain
though admissible) traffic patterns. This observation nadéis

computation of beliefs (as a function of backward message ekother traﬁ'%fam"ﬁ’ wh|cfh kf:as bger? d_ewse;i Irl] SUChf a V}:ay
Step 6 chooses an inputand a transmission fanout set 10 keeppmax independent of the switch size. The latter family

such thati is available and- contains only available outputs, 'S referred to asoncentrated traffiand corresponds to the

maximizing the beliefm;, (since the maximum may be notWorst-case traffic model presented in [3]. Such a model has

unique, a random choice among the equivalent maxima turk?fasen designed to create extensive contention among inpats a
s crucial in [3] to show the intrinsic throughput limitatis

out to improve the scheduling fairness). Step 7 states th4F itch q " i th e

if the maximum belief found is zero, the algorithm assigns IQ SV_\:'tC fesh under mu t|(.:ast.tra 'C'I Without going Into

null transmission fanout set (which corresponds to a vamish t € details of their constru_cuon, n '_I'abe | we describeeéhr
different concentrated traffic scenarios (denoted as “€dnc

belief as well). The transmission fanout set at inpand the | . o ; . .
corresponding optimal queue to be served are fixed at step @"¢2"» and “Conc-3"), reporting the correspondipg.ax

Step 9 updates the lists of available inputs and outputsllgjin @nd the list of all fanout sets for each input.
it is understood that, when the decimation loop is over, the N Order to compare the algorithms, we have evaluated both

current values of the fanout set variables are returned. Fhe throughput qnd the average delay. Throughputis e‘@ugt
in terms of maximum sustainable load at the outputs; this is a
IV. PERFORMANCE EVALUATION value between 0 and 1, representing the maximum fraction of
In this section, we compare the performance of the DE@meslots exploited to transmit a packet at the outputs.nEve
BPn algorithm with other centralized scheduling algorithmghough the traffic is admissible, the throughput may be less
designed to support multicast traffic, under differentfizaf than unity, even for the optimal scheduling algorithm, hesea
conditions. These algorithms are based on a greedy approadtihe aforementioned intrinsic throughput limitation. [Bhe
with two slightly different strategies, described by theeps delay is evaluated as the average time interval between the
docodes in Fig. 4. Note that the overall structure of botimeslot when a packet enters the switch and the one when its
algorithms is similar to that of DEC-BP even though the copies leave the switch; the average is evaluated takirg int
steps typical of BP (0 and 3-5) are missing. The charactgyiziaccount all the copies.
step is in fact only 6: GR-LQF tries to serve the longest )
queue, whereas GR-RND chooses a random queue, providedNumerical results
in both cases, that the corresponding fanout set includeg so Let us start by comparing the performances under uniform
available outputs. traffic. Table 1l shows the maximum achievable throughput
The input traffic is generated according to a Bernoullinder three uniform scenarios. When considering the symmet
i.i.d. arrival process, in whiclp is the average input loadric traffic scenario (second column), all the algorithmsdh
(i.e., the probability that a packet arrives at an input poeixactly in the same way and achieve maximum throughput.
during a timeslot). The corresponding fanout set is chosenTis is due to the low input load (always less thagp.x,
random in a possible set of candidate ones, as described.beto be admissible), which does not generate “critical” loadi
Traffic admissibility impliesp < ppax, Where ppax = J{,‘—I is conditions. Conversely, when concentrating the traffic em f
the maximum admissible input load ajfids the averagéanout inputs ¢ and 2), performances are different, and, in both
(i.e., the average cardinality of the fanout set). We carsidscenarios, DEC-BP outperforms the other two centralized
two different families of candidate fanout sets. The first @ greedy approaches. Let us note that increasing the number
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Fig. 5. Average delay under uniform traffic: (&) x 10, (b) 4 x 10, (c) 2 x 10.

TABLE Il TABLE Il
MAXIMUM THROUGHPUT UNDER UNIFORM TRAFFIC. MAXIMUM THROUGHPUT UNDER CONCENTRATED TRAFFIC
) Uniform | Uniform | Uniform ) Conc-1 | Conc-2 | Conc-3
Traffic | 1610 | 4x10 | 2x 10 Traffic 2x4 | 2x4 | 3x12
Pmax 0.20 0.50 1.00 Prmax 1.0 0.67 1.0
Algorithm Throughput Algorithm Throughput
GR-LQF 1.00 0.86 0.64 OPTIMAL 0.75 0.99 -
GR-RND 1.00 0.92 0.75 GR-LQF 0.70 0.91 0.63
DEC-BPO 1.00 0.98 0.95 GR-RND 0.69 0.89 0.61
DEC-BP1 1.00 0.98 0.95 DEC-BPO 0.75 0.97 0.66
DEC-BP2 1.00 0.97 0.95 DEC-BP1 0.75 0.97 0.66
DEC-BP4 1.00 0.97 0.95 DEC-BP2 0.75 0.97 0.66
DEC-BP4 0.75 0.98 0.66

of iterationsn, in DEC-BP: seems not to improve the Peconsidered so far, with the addition of the OPTIMAL algo-

formance at all. A deeper investigation about the réasof$m which simply maximizes the weight function (5) by an

undgrlying this rather unexpegted result is beyond the esco§<haustive search. OPTIMAL has not been run for a number
of this short paper. Here, we simply suggest to promote DE f outputs larger thad, due to the large computational effort

BPO as the best candidate algorithm for multicast SChequIir]‘equired. Our results show that, even in this case, the teffec

Fig. 5 shows the average delays under the three unifogpine number of iterations in DEC-BPis negligible, which

scenarios. Here, we do not report the curves for DE@BF,qain hromotes DEC-BPO as the best scheduling algorithm. In

for n>1, as they turn out to be fully overlapped withyoi Conc-1 and Conc-2 traffic scenarios, DEC-BPO achieves
that of DEC-BPO. Fig. 5(a) shows that, under symmetrige ontimal throughput. As in the previous scenarios, DEC-

traffic, all the algorithms achieve maximum throughput (fo‘gpo outperforms the other greedy approaches, with thrautghp
P = pmax) but the delay in the low load regime is WorStgains between% and 10%.

for DEC-BPO. This effect is to be ascribed to the peculiar |, terms of delays, all the curves in Fig. 6 exhibit a

form of the weight function (recall the explanation of (5))qyite similar behavior, coherent with the maximum achiéeab
which does not equalize and minimize the queue sizes, gty ,ghput. Furthermore, we can observe an interesting-pro

trades higher delays at low load with higher throughpulyy of the optimal policy: In the low load regime, the delay i

Note however that the higher delays experienced by DEfgch jarger than for the other policies. As already observed

BPO are negligible in absolute terms. The other two uniforfy,en discussing uniform traffic, we argue that such an effect
scenarios highlight some relevant differences among treeth;q just due to the metric based on the weights in (5), which

algorithms, especially in terms of throughput. Table I1\880 a5 not minimize and equalize the queue lengths. The latter
that DEC-BPO always outperforms both greedy approachggseryation corroborates our previous argument, nantedy, t
with a gain betweers% and up t048%. In terms of delays, e higher delays experienced by DEC-BPO are mainly due to

Fig.s 5(b) and 5(0) display a behavior sir_nilar to Fig. 5(ghe fact that this algorithm approximates the optimal polic
for low load, but different when the load is higher, due to

the different maximum throughput. Let us finally note that, V. CONCLUSION

when the traffic is no longer sustainable, the delays are stil We have proposed a new algorithm, DECsBRiimed at

finite because of the finiteness of the queues and/or of thgproximating the optimal scheduling policy for the trans-

simulation; otherwise they would have grown to infinity.  mission of multicast packets in 1Q switches. Our algorithm
Let us now consider the concentrated traffic scenaridgas two main advantages. First, the proposed messagepassi

Table Il displays the achievable throughput for all theigies  approach is amenable to an efficient hardware implementatio
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Fig. 6. Average delay under concentrated traffic: (a) Can(b)L Conc-2, (c) Conc-3.

Second, we have shown that it outperforms other greefdy M. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardid & Neri,
approaches, even when the number of iteratioris zero or “Multicast traffic in input-queued switches: optimal schédg and maxi-

L Th . findi I lud mum throughput,JEEE/ACM Transaction on Networkingol. 11, no. 3,
very small. These encouraging findings allow us to conclude ,, 465 477, 2003

that our approach provides a very convenient tradeoff batwe4] S. Sarkar and L. Tassiulas, “A framework for routing amgestion con-

implementation complexity and performances. trol for multicast information flows, 1EEE Transactions on Information
Theory vol. 48, no. 10, pp. 2690-2708, 2002.
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