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Abstract—Scheduling multicast traffic in input-queued
switches requires solving a hard combinatorial optimization
problem in a very short time. This task advocates the design of
algorithms that are simple to implement and efficient in terms
of performance. We propose a new scheduling algorithm, based
on message passing and inspired by the belief propagation
paradigm, meant to approximate the provably optimal scheduling
policy. Our main finding is that our algorithm outperforms
other centralized greedy scheduling policies, achieving abetter
tradeoff between complexity and performance.

I. I NTRODUCTION

In the last decade, input-queued (IQ) switches have been
the reference switching architecture for the design of high
speed routers in the Internet [1]. Furthermore, at a much
smaller spatial scale, they are widely employed to switch data
flits in Network-on-Chips [2]. The main reason is that IQ
switches offer a convenient tradeoff between computational
complexity and memory speed. Indeed, input queues run at a
speed equal to the line rate, so that the performance bottleneck
due to the limited memory access time is minimized. In IQ
switches, a scheduling algorithm must choose the packets to
be transferred from input to output ports while satisfying the
switching fabric constraints, which allow at most a single
transfer from each input port and to each output port. Note
that the same packet can be transferred to any subset of
output ports, given that the switching contraints are satisfied.
Solving the scheduling problem for unicast traffic requiresto
compute a maximum weight matching in a bipartite graph,
and this model represents the prototype for a large class of
resource allocation problems in telecommunication networks.
In the same way, we expect that the relevance of the multicast
scheduling problem, addressed in this paper, goes beyond the
classical framework of IQ switches.

Unicast traffic has been the predominant traffic in the
Internet for a long time, but, nowadays, new applications have
been arising, based on multicast traffic, in which packets are
sent to a set of destinations, rather than a single one. Examples
of such applications are IP video broadcasting, P2P networks
and financial networks supporting high-speed trading. So far,
the support of multicast traffic in IQ switches has been very
naı̈ve and inefficient, since based on simple “patches” to
unicast scheduling algorithms.

In this work we specifically address the problem of schedul-
ing multicast packets in an IQ switch. We propose a new

scheduling algorithm, inspired by the belief propagation (BP)
paradigm, and designed to approximate a provably throughput-
optimal scheduling policy.

The paper is organized as follows. In Sec. II we define the
multicast scheduling problem in IQ switches and the related
optimal policy [3]. In Sec. III we introduce the BP approach,
and describe the new algorithm. In Sec. IV we compare the
performance of the algorithm with other centralized greedy
algorithms for multicast scheduling. Conclusions are drawn in
Sec. V.

II. M ULTICAST TRAFFIC IN INPUT QUEUED SWITCHES

We consider an IQ switch of sizeN ×M (Fig. 1), where
N = |I| and M = |O|, with I and O denoting the sets of
input and output ports, respectively. Afanout setis defined as
a subset of output ports, so that a multicast packet can be de-
scribed by the fanout set of its output destinations. The adopted
queueing architecture is MC-VOQ [3], i.e., onelogical queue
is present for each possible fanout set and each input port.
This architecture is optimal, because it avoids the head-of-
line blocking problem. Combined with optimal queueing, we
consider a throughput-optimal scheduling policy for multicast
traffic. Such a policy is called “fanout-splitting” [3], since it
allows for partial packet transmissions: A packet can be sent
to just a subset of its destination ports, leaving some residual
destinations for future transmissions. In this case, the packet is
re-enqueued to the queue corresponding to the residual fanout
set. Such a behavior may introduce out-of-sequence packet
transmissions, whose impact can be controlled and mitigated
by the techniques discussed in [4].

Let S denote the set of all possible fanout sets, whose
cardinality is|S| = 2M , where we have artificially added the
null ∅ fanout set just for notational reasons. As one logical
queue is present for each nonempty fanout set, the set of
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Fig. 1. IQ switch with MC-VOQ supporting multicast traffic.



all possible logical queues can be represented byS. We now
define a set ofN × (2M − 1) matrices:

• Let Y (t) = [yiq(t)], with i ∈ I andq ∈ S, be thequeue
length matrixat timeslott; we assume that, by definition,
the queue corresponding to the null fanout is always
empty:yi∅(t) = 0.

• Let A(t) = [aiq(t)] be thearrival matrix at timeslott:
aiq(t) = 1 if a new arrival occurs at inputi for queueq,
andaiq(t) = 0 otherwise.

• Let D(t) = [diq(t)] be theservice matrixat timeslott:
diq(t) = 1 if queueq is served at inputi, diq(t) = −1 if
a packet is re-enqueued toq (at input i), anddiq(t) = 0
otherwise.

The queue length evolution can be described by the usual
relation:

Y (t+ 1) = Y (t) +A(t)−D(t) (1)

with t ∈ N.
A traffic scenario, described by a stochastic matrix process

A(t), is said to beadmissibleif E{A(t)} does not overload
any input nor any output port [3]. As shown in [3], an output-
queued switch obtains 100% throughput under any admissible
multicast traffic, whereas an IQ switch does not.

The optimal scheduling decision̂D(t) for the service matrix
at timeslott, capable of maximizing the achievable throughput
under any admissible multicast traffic pattern1 was proposed
in [3] and can be formalized as a constrained maximization
problem for the linear functional

w(D,Y (t)) =
∑

i∈I

∑

q∈S

diqyiq(t) (2)

In the following section, we will introduce a new notation
more suitable to formalize this problem in terms of belief
propagation. Furthermore, we will discuss the meaning of (2)
when commenting (5).

The feasibility constraintsfor D(t), imposed by the switch-
ing hardware, have also been described formally in [3] and
will be also discussed in the next section. In conclusion,
the resulting combinatorial optimization problem is NP-hard,
so that only approximate algorithms are viable to solve this
problem.

III. B ELIEF PROPAGATION APPROACH

A preliminary observation is that a service matrixD can be
equivalently represented byN pairs of fanout setsσi, τi ∈ S,
one for each inputi ∈ I:

D ⇔ [σi, τi]i∈I

Note that suchN pairs depends onD, but we prefer to neglect
it in the notation for the sake of simplicity; furthermore, since
the algorithm has to run at each timeslot, we neglect also the
time indext.

As previously mentioned, a nonempty fanout set identifies
a queue. In particular, we shall assume thatσi represents the

1More precisely, the traffic is generated according to a generalization of
the standard Bernoulli i.i.d. model defined for unicast.

served queue,τi the subset of outputs to which the packet is
actually transmitted (transmissionfanout set), andσi \ τi the
queue in which the packet is in case re-enqueued (residual
fanout set). Since the residual fanout set is, by construction, a
subset of the original transmission fanout set, it holds:

σi ⊇ τi ∀i ∈ I (3)

Moreover, in order to complete the feasibility constraints, we
must avoid conflicting packets at each output, namely, we have
to impose that no more than one packet is transferred to each
output port and hence:

∑

i∈I

χ{τi ∋ j} ≤ 1 ∀j ∈ O (4)

whereχ{·} denotes a characteristic function, equal to1 if the
condition denoted by the argument is verified (i.e., inputi

transmits to outputj), and0 otherwise.
To clarify the notation, let us report here a toy example.

Consider a2× 3 switch with a packet at input1 destined
to outputs1, 2, and a packet at input2 destined to outputs
1, 2, 3. Assume that the scheduler, adopting a fanout-splitting
discipline, sends completely the first packet to its destinations,
whereas it sends just one copy of the second packet to
output 3. Thus, the second packet is re-enqueued to the
queue corresponding to the residual fanout set{1, 2}. This
scheduling decision can be described byσ1 = τ1 = {1, 2},
whereasσ2 = {1, 2, 3} andτ2 = {3}.

It is possible to rewrite function (2) to minimize as a
function of the fanout set variablesσi, τi in the following form

w
(

[σi, τi]i∈I , Y
)

=
∑

i∈I

(

yiσi
− yi(σi\τi)

)

(5)

Equation (5) clearly shows that the “weight” functionw
represents the difference between the length of all the served
queues (yiσi

) and the length of all the queues where the
residual fanout sets are re-enqueued (yi(σi\τi)). This is an
extension of the well known max-pressure policy [5], in which
the weight of serving one queue is computed as the local queue
length minus the (downstream) queue length where the packet
is sent. In our case, the downstream queue corresponds to the
queue where the residual fanout set is re-enqueued.

Now, it is important to observe that the “matching” con-
straints (4) involve variablesτi associated to different inputs,
whereas, for a given inputi, the variableσi is only coupled to
the correspondingτi, by the condition (3). As a consequence,
the optimalσi for a given choiceτi = τ , which we shall denote
as σ̂iτ , can be determined by a local optimization procedure
at each inputi, namely

σ̂iτ = arg max
σ∈S |σ⊇τ

{

yiσ − yi(σ\τ)
}

(6)

Defining also the optimized “local” weights

wiτ , max
σ∈S |σ⊇τ

{

yiσ − yi(σ\τ)
}

(7)

the original problem is reduced to a (constrained) optimization
over the soleτi variables (transmission fanout sets). The
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Fig. 2. Factor graph. Circles and rectangles denote variable and func-
tion nodes, respectively. In the toy example of the text, we would have
x11 = x12 = x23 = 1 andx13 = x21 = x22 = 0.

optimal values can be written as

[τ̂i]i∈I = arg
X

max
[τi]i∈I

∑

i∈I

wiτi (8)

where the check mark recalls that the optimization is con-
strained by (4).

We can conveniently describe the constrained optimization
problem in terms of afactor graph[6]. The latter is in general
a bipartite graph, whose two species of nodes (calledvariable
nodesand function nodes) are associated respectively to the
decision variables and to the couplings among them. An arc
between a function node and a variable node means that the
corresponding variable is involved in the corresponding cou-
pling. In our problem, a convenient set of decision variables
is that of “characteristic” variablesxij , χ{τi ∋ j} ∈ {0, 1},
appearing in the matching contraints (4), which completely
specify any transmission fanout set asτi = {j ∈ O |xij = 1}.
In terms of these variables, we can identify two different kinds
of couplings, namely, the local weightswiτi , appearing in
(8), and the contraints (4) themselves. Each local weight is
associated to an inputi and involves variablesxi1, . . . , xiM ,
whereas each matching constraint is associated to an outputj

and involves variablesx1j , . . . , xNj . In conclusion, the factor
graph associated to our problem is of the type sketched in
Fig. 2.

As shown in [6], given the formulation of a combinatorial
optimization problem in terms of a factor graph, the construc-
tion of BP equations is conceptually a well-established issue,
even though non-trivial manipulations are often required to put
them in a conveniently simple form. Due to limited space, here
we give only the final equations, and we shall report the full
derivation elsewhere. Let us only mention the fact that, even
though we generically speak of BP, our algorithm is indeed
of the min-sumtype [6], which can be regarded as a special
case of BP, specifically suited for computing MAP (maximum
a posteriori probability) estimates. We can define thebeliefs,
associated to each transmission fanout set variableτi, as

miτ = wiτ −
∑

j∈τ

bj→i (9)

These quantities represent, apart from an irrelevant additive
constant, an estimate of the weight that can be obtained by
choosing a specific valueτi = τ . Moreover, the “backward”
messagesbj→i are an estimate of the weight degradation due to
possible conflicts generated at outputj by the choicexij = 1,

DEC-BPn (input: [yiσ]i∈I,σ∈S
; output: [σi, τi]i∈I

)

0. for i ∈ I and τ ∈ S, compute wiτ and σ̂iτ by

(7) and (6)
1. set Ĩ = I and Õ = O

2. while Ĩ 6= ∅

3. for i ∈ Ĩ and j ∈ Õ, set bj→i = 0

4. repeat n times

for i ∈ Ĩ and j ∈ Õ, compute fi→j by (11) and (9)
for i ∈ Ĩ and j ∈ Õ, compute bj→i by (10)

5. for i ∈ Ĩ and τ ∈ S | τ ⊆ Õ, compute miτ by (9)
6. choose i ∈ Ĩ and τ ∈ S | τ ⊆ Õ that maximize miτ

7. if miτ = 0, set τ = ∅

8. set τi = τ and σi = σ̂iτ

9. set Ĩ = Ĩ\i and Õ = Õ\τi

Fig. 3. DEC-BPn algorithm (decimation withn BP iterations).

i.e., j ∈ τi (transmission fromi to j). These messages are
defined by suitable self-consistency equations, namely

bj→i = max
i′∈I\i

fi′→j (10)

fi→j = max
{

0 , max
τ∈S | τ∋j

miτ + bj→i − max
τ∈S | τ/∋j

miτ

}

(11)

where the “forward” messagesfi→j can be finally regarded
as an estimate of the weight gain that can be obtained by
the single choicexij = 1 (rather than0). The solution of
these self-consistency equations by iterative refinement is an
instance of BP, as it involves message passing from input
to output ports (forward messages) and vice versa (backward
messages). It is a well known fact that BP likely converges, if
the underlying factor graph is treelike (equations are exact if
the graph is rigorously a tree). In our case, the factor graphis
densely connected, and, consistently, we find several instances
of the problem in which BP does not converge. Because of
this problem, it is not possible to use directly the beliefs (9)
to fix the decision variables, since this may lead to unsatisfied
constraints. This is why we have resorted to use BP with
a fixed number of iterations, in conjunction with a simple
decimation algorithm, which at each step fixes a given variable
τi = τ with the maximum beliefmiτ , simplifies the equations
to be compatible with the choice taken, and then reruns BP.
The resulting algorithm may be described by the pseudocode
reported in Fig. 3.

The algorithm takes as input the queue length matrixY at
timeslott and returns the scheduling decision, in terms of the
fanout set variablesσi, τi for each inputi. Step 0 performs
the local optimization procedure, defined by equations (6)
and (7). The “lists” Ĩ and Õ of “unreserved” inputs and
outputs, respectively, are initialized at step 1, assumingthat all
the ports are initially available. Step 2 begins the decimation
loop, which continues until every input has taken a decision,
i.e., as far as̃I is not empty. Steps 3–5 represent three different
phases of BP, namely, initialization of backward messages,
computation of forward messages as a function of backward
messages and vice versa (for a number of iterations), and



GR-LQF (input: [yiσ]i∈I,σ∈S
; output: [σi, τi]i∈I

)

1. set Ĩ = I, Õ = O, and σi = τi = ∅ for i ∈ I

2. while Ĩ 6= ∅

6. choose i ∈ Ĩ and σ ∈ S |σ ∩ Õ 6= ∅ that

maximize yiσ

7. if not found or yiσ = 0, break

8. set σi = σ and τi = σ ∩ Õ

9. set Ĩ = Ĩ\i and Õ = Õ\τi

GR-RND (input: [yiσ]i∈I,σ∈S
; output: [σi, τi]i∈I

)

1. set Ĩ = I, Õ = O, and σi = τi = ∅ for i ∈ I

2. while Ĩ 6= ∅

6. choose random i ∈ Ĩ and σ ∈ S | σ ∩ Õ 6= ∅

such that yiσ > 0

7. if not found, break

8. set σi = σ and τi = σ ∩ Õ

9. set Ĩ = Ĩ\i and Õ = Õ\τi

Fig. 4. Greedy algorithms GR-LQF (longest queue first) and GR-RND
(randomly chosen queue).

computation of beliefs (as a function of backward messages).
Step 6 chooses an inputi and a transmission fanout setτ ,
such thati is available andτ contains only available outputs,
maximizing the beliefmiτ (since the maximum may be not
unique, a random choice among the equivalent maxima turns
out to improve the scheduling fairness). Step 7 states that,
if the maximum belief found is zero, the algorithm assigns a
null transmission fanout set (which corresponds to a vanishing
belief as well). The transmission fanout set at inputi and the
corresponding optimal queue to be served are fixed at step 8.
Step 9 updates the lists of available inputs and outputs. Finally,
it is understood that, when the decimation loop is over, the
current values of the fanout set variables are returned.

IV. PERFORMANCE EVALUATION

In this section, we compare the performance of the DEC-
BPn algorithm with other centralized scheduling algorithms,
designed to support multicast traffic, under different traffic
conditions. These algorithms are based on a greedy approach,
with two slightly different strategies, described by the pseu-
docodes in Fig. 4. Note that the overall structure of both
algorithms is similar to that of DEC-BPn, even though the
steps typical of BP (0 and 3–5) are missing. The characterizing
step is in fact only 6: GR-LQF tries to serve the longest
queue, whereas GR-RND chooses a random queue, provided,
in both cases, that the corresponding fanout set includes some
available outputs.

The input traffic is generated according to a Bernoulli
i.i.d. arrival process, in whichρ is the average input load
(i.e., the probability that a packet arrives at an input port
during a timeslot). The corresponding fanout set is chosen at
random in a possible set of candidate ones, as described below.
Traffic admissibility impliesρ ≤ ρmax, whereρmax = M

Nf is
the maximum admissible input load andf is the averagefanout
(i.e., the average cardinality of the fanout set). We consider
two different families of candidate fanout sets. The first one is

TABLE I
FANOUT SETS FOR EACH CONCENTRATED TRAFFIC SCENARIO.

Traffic ρmax Input 1 Input 2 Input 3

Conc-1
1.00

{1, 2} {1, 3}
not used

2× 4 {3, 4} {2, 4}
Conc-2

0.67
{1, 2, 3} {1, 2, 4}

not used
2× 4 {2, 3, 4} {1, 3, 4}

Conc-3 1.00 {1, 2, 3, 4} {1, 5, 9, 10} {3, 7, 9, 11}
3× 12 {5, 6, 7, 8} {2, 6, 11, 12} {4, 8, 10, 12}

referred to asuniform trafficand derived from [7]: The fanout
set of each packet is chosen at random among all possible
2M − 1 ones. For this case, it can be shown that

f =
M 2M−1

2M − 1
and ρmax =

2M − 1

N 2M−1
(12)

Note that, sinceρmax ≈ 2
N , the input load becomes very small

for large switches, which does not allow to create critical (even
though admissible) traffic patterns. This observation motivates
the other traffic family, which has been devised in such a way
to keepρmax independent of the switch size. The latter family
is referred to asconcentrated trafficand corresponds to the
worst-case traffic model presented in [3]. Such a model has
been designed to create extensive contention among inputs and
was crucial in [3] to show the intrinsic throughput limitations
of IQ switches under multicast traffic. Without going into
the details of their construction, in Table I we describe three
different concentrated traffic scenarios (denoted as “Conc-1”,
“Conc-2”, and “Conc-3”), reporting the correspondingρmax

and the list of all fanout sets for each input.
In order to compare the algorithms, we have evaluated both

the throughput and the average delay. Throughput is evaluated
in terms of maximum sustainable load at the outputs; this is a
value between 0 and 1, representing the maximum fraction of
timeslots exploited to transmit a packet at the outputs. Even
though the traffic is admissible, the throughput may be less
than unity, even for the optimal scheduling algorithm, because
of the aforementioned intrinsic throughput limitations [3]. The
delay is evaluated as the average time interval between the
timeslot when a packet enters the switch and the one when its
copies leave the switch; the average is evaluated taking into
account all the copies.

A. Numerical results

Let us start by comparing the performances under uniform
traffic. Table II shows the maximum achievable throughput
under three uniform scenarios. When considering the symmet-
ric traffic scenario (second column), all the algorithms behave
exactly in the same way and achieve maximum throughput.
This is due to the low input load (always less thanρmax,
to be admissible), which does not generate “critical” loading
conditions. Conversely, when concentrating the traffic on few
inputs (4 and 2), performances are different, and, in both
scenarios, DEC-BP outperforms the other two centralized
greedy approaches. Let us note that increasing the number
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Fig. 5. Average delay under uniform traffic: (a)10× 10, (b) 4× 10, (c) 2× 10.

TABLE II
MAXIMUM THROUGHPUT UNDER UNIFORM TRAFFIC.

Traffic Uniform Uniform Uniform
10× 10 4× 10 2× 10

ρmax 0.20 0.50 1.00

Algorithm Throughput
GR-LQF 1.00 0.86 0.64
GR-RND 1.00 0.92 0.75
DEC-BP0 1.00 0.98 0.95
DEC-BP1 1.00 0.98 0.95
DEC-BP2 1.00 0.97 0.95
DEC-BP4 1.00 0.97 0.95

of iterationsn in DEC-BPn seems not to improve the per-
formance at all. A deeper investigation about the reasons
underlying this rather unexpected result is beyond the scope
of this short paper. Here, we simply suggest to promote DEC-
BP0 as the best candidate algorithm for multicast scheduling.

Fig. 5 shows the average delays under the three uniform
scenarios. Here, we do not report the curves for DEC-BPn

for n ≥ 1, as they turn out to be fully overlapped with
that of DEC-BP0. Fig. 5(a) shows that, under symmetric
traffic, all the algorithms achieve maximum throughput (for
ρ = ρmax) but the delay in the low load regime is worst
for DEC-BP0. This effect is to be ascribed to the peculiar
form of the weight function (recall the explanation of (5)),
which does not equalize and minimize the queue sizes, and
trades higher delays at low load with higher throughput.
Note however that the higher delays experienced by DEC-
BP0 are negligible in absolute terms. The other two uniform
scenarios highlight some relevant differences among the three
algorithms, especially in terms of throughput. Table II shows
that DEC-BP0 always outperforms both greedy approaches,
with a gain between6% and up to48%. In terms of delays,
Fig.s 5(b) and 5(c) display a behavior similar to Fig. 5(a)
for low load, but different when the load is higher, due to
the different maximum throughput. Let us finally note that,
when the traffic is no longer sustainable, the delays are still
finite because of the finiteness of the queues and/or of the
simulation; otherwise they would have grown to infinity.

Let us now consider the concentrated traffic scenarios.
Table III displays the achievable throughput for all the policies

TABLE III
MAXIMUM THROUGHPUT UNDER CONCENTRATED TRAFFIC.

Traffic Conc-1 Conc-2 Conc-3
2× 4 2× 4 3× 12

ρmax 1.0 0.67 1.0

Algorithm Throughput
OPTIMAL 0.75 0.99 -
GR-LQF 0.70 0.91 0.63
GR-RND 0.69 0.89 0.61
DEC-BP0 0.75 0.97 0.66
DEC-BP1 0.75 0.97 0.66
DEC-BP2 0.75 0.97 0.66
DEC-BP4 0.75 0.98 0.66

considered so far, with the addition of the OPTIMAL algo-
rithm, which simply maximizes the weight function (5) by an
exhaustive search. OPTIMAL has not been run for a number
of outputs larger than4, due to the large computational effort
required. Our results show that, even in this case, the effect
of the number of iterations in DEC-BPn is negligible, which
again promotes DEC-BP0 as the best scheduling algorithm. In
both Conc-1 and Conc-2 traffic scenarios, DEC-BP0 achieves
the optimal throughput. As in the previous scenarios, DEC-
BP0 outperforms the other greedy approaches, with throughput
gains between5% and10%.

In terms of delays, all the curves in Fig. 6 exhibit a
quite similar behavior, coherent with the maximum achievable
throughput. Furthermore, we can observe an interesting prop-
erty of the optimal policy: In the low load regime, the delay is
much larger than for the other policies. As already observed
when discussing uniform traffic, we argue that such an effect
is just due to the metric based on the weights in (5), which
does not minimize and equalize the queue lengths. The latter
observation corroborates our previous argument, namely, that
the higher delays experienced by DEC-BP0 are mainly due to
the fact that this algorithm approximates the optimal policy.

V. CONCLUSION

We have proposed a new algorithm, DEC-BPn, aimed at
approximating the optimal scheduling policy for the trans-
mission of multicast packets in IQ switches. Our algorithm
has two main advantages. First, the proposed message-passing
approach is amenable to an efficient hardware implementation.
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Fig. 6. Average delay under concentrated traffic: (a) Conc-1, (b) Conc-2, (c) Conc-3.

Second, we have shown that it outperforms other greedy
approaches, even when the number of iterationsn is zero or
very small. These encouraging findings allow us to conclude
that our approach provides a very convenient tradeoff between
implementation complexity and performances.
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