
Effects of Spatial Randomness on
Locating a Point Source with Distributed Sensors

Mohammad Fanaei, Matthew C. Valenti, and Natalia A. Schmid
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV, U.S.A.
E-mail: mfanaei@mix.wvu.edu, valenti@ieee.org, and natalia.schmid@mail.wvu.edu.

Abstract—Most studies that consider the problem of estimating
the location of a point source in wireless sensor networks
assume that the source location is estimated by a set of spatially
distributed sensors, whose locations are fixed. Motivated by
the fact that the observation quality and performance of the
localization algorithm depend on the location of the sensors,
which could be randomly distributed, this paper investigates
the performance of a recently proposed energy-based source-
localization algorithm under the assumption that the sensors are
positioned according to a uniform clustering process. Practical
considerations such as the existence and size of the exclusion
zones around each sensor and the source will be studied. By
introducing a novel performance measure called the estimation
outage, it will be shown how parameters related to the network
geometry such as the distance between the source and the closest
sensor to it as well as the number of sensors within a region
surrounding the source affect the localization performance.

Index Terms—Distributed source localization, distributed esti-
mation, spatial randomness, binomial point process with repul-
sion, uniform clustering process, energy detector, fusion center,
wireless sensor networks.

I. INTRODUCTION

The problem of energy-based source localization using a
set of spatially distributed, randomly located, limited-power
sensors forming a wireless sensor network (WSN) has recently
attracted a lot of attention in the research community [1–
6]. An effective source localization can be a first step in a
broad range of other applications such as navigation, tracking,
and geographic routing. In this context, the local sensors
make noisy observations of the energy transmitted by, for
example, an RF or acoustic source at their locations, process
their noisy observations locally by, for instance, quantizing
them, and send their processed data to a central entity in
the network, known as the fusion center (FC), for further
processing. The FC will then combine the received signals
from local sensors, which are potentially corrupted by the
communication channels between the sensors and itself, to
estimate the location of the energy-transmitting source. As
is common in the literature, it is reasonable to assume that
the locations of the local sensors are known at the FC, which
can be achieved using any form of cooperative localization
schemes (e.g., [7–10]).

The analyses and performance assessments in most of the
works proposed in the literature for source localization can
easily be generalized to a generic case in which the sensors are
randomly located within the surveillance region covered by the

network. Of course, the realization of the network geometry
after its deployment should be known at the FC. However, the
results of the performance analysis are usually presented for a
fixed network topology such as a regular grid deployment [1]
or for an average behavior of a number of random network
realizations [4]. To the best of our knowledge, the effect of
randomness of the sensor placement on the performance of
source-localization schemes has been relatively unexplored,
beyond analyzing the network’s average behavior [11, 12].
Srinivasa and Haenggi [11] have considered the problem of
distributed estimation of the path-loss exponent in an environ-
ment in which an RF signal is broadcasted, where the sensors
are distributed according to a Poisson point process and sensor
transmissions can interfere with each other.

The goal of this paper is to assess the performance of a
typical source-localization scheme under different scenarios
of random network realizations using numerical simulations.
In other words, the question that we are trying to answer is
as follows: Given a specific localization scheme, how does a
randomly deployed WSN within a fixed surveillance region
perform in terms of the localization accuracy? Note that
answering this question gives significantly more insight into
the design of a network than predicting only the average
behavior of a randomly deployed system. Therefore, we are
not proposing a new localization scheme, but rather we are
applying concepts from stochastic geometry and point pro-
cesses [13–16] to investigate the performance of a refined
and special version of a recently proposed source-localization
algorithm [1]. A novel performance measure called the local-
ization outage will be introduced to assess the performance
of a typical localization algorithm. Numerical methods will
be used to determine what parameters affect the performance
of the given localization scheme when the sensors are placed
according to a binomial point process with repulsion, which
is also known as a uniform clustering process. The results of
this analysis could be used to guide network deployment. If
these guidelines are followed, a randomly formed network can
be guaranteed (with some confidence) to achieve a minimum
performance in terms of the localization accuracy.

The rest of this paper is organized as follows: Section II
describes the system model considered in this paper. In
Section III, the source-localization scheme proposed in [1] is
summarized and the Cramér-Rao lower bound (CRLB) for the
location estimator based on the binary quantized data at local
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sensors is derived. The effects of the random realization of the
network geometry on the aforementioned localization scheme
are shown through numerical simulations in Section IV.
Section V introduces the concept of localization outage for
a random network realization and discusses the effects of
exclusion zones around local sensors on the performance of an
arbitrary random realization of the network geometry. Finally,
the paper is concluded in Section VI.

II. SYSTEM MODEL

Suppose that a WSN is composed of a fusion center (FC)
and K sensors arbitrarily located in the two-dimensional space
R2 within a circular surveillance region S ⊆ R2 with radius
R and spatially distributed according to any point process.
Assume that a point source located at (xT, yT) ∈ S emits
energy omni-directionally and that its power received by an
arbitrary sensor i located at (xi, yi) ∈ S is

Pi = P0

(
d0

di

)α
, di ≥ d0, i = 1, 2, . . . ,K, (1)

where P0 is the received power from the source at the
reference distance d0, α is the power-decay exponent, and di
is the distance between the source and sensor i defined as

di =

√
(xT − xi)2

+ (yT − yi)2
, i = 1, 2, . . . ,K. (2)

An example of the random realization of such network topol-
ogy is shown in Fig. 1, where K = 50 sensors are randomly
distributed in a circular region with radius R = 50. Other
parameters shown in the figure are introduced later in this
paper. It should be mentioned that in addition to RF point
sources, one of the most well-studied sources that satisfies
the above power-decay model is the acoustic source, whose
localization has widely been studied in the literature [3].

Let θ
def
= [P0, xT, yT]

T denote the vector of deterministic
parameters associated with the source, where [·]T represents
the transpose operation. The ultimate goal of the WSN is to
estimate these parameters. More specifically, the focus of this
paper is on the estimation of the source location. Figure 2
shows the functional diagram of the WSN. Based on the above
power-decay model, the received noisy signal at sensor i is

ri =
√
Pi + wi, i = 1, 2, . . . ,K, (3)

where wi is spatially independent additive white Gaussian
noise (AWGN) with zero mean and variance σ2

i , i.e., wi ∼
N
(
0, σ2

i

)
. We define the observation SNR at sensor i as

µi
def
= P0

σ2
i

, i = 1, 2, . . . ,K. Upon observing the received
noisy signal, each sensor uses a binary quantization scheme
to quantize its local observation as

ui =

{
0, if ri < βi

1, if ri ≥ βi
, i = 1, 2, . . . ,K, (4)

where βi is the binary quantization threshold at sensor i. Note
that local sensors can process their noisy observations using
various processing schemes. The simple binary quantization
method considered as an example does not limit the generality
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Fig. 1: The network topology of an example WSN consisting
of K = 50 sensors denoted by ‘×’, whose objective is
to localize a source target denoted by ‘∗’ and located at
(xT, yT) = (5, 10). The sensors are randomly placed in the
circular surveillance region with radius R = 50 and centered at
the origin according to a uniform clustering process. Each sen-
sor is surrounded by an exclusion zone with radius Rex = 5,
shown by a dotted circle around the sensor. A dashed circle
with radius RT = 14 is depicted around the source target,
within which there is KT = 1 sensor enclosed.
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Fig. 2: Functional system model of a WSN in which the FC
localizes a source of energy.

of the following discussions and has only been used to
emphasize the main objective of this paper, which is to study
how spatial randomness affects the performance of a typical
localization scheme.

Each sensor will use an on-off keying (OOK) scheme to
send its quantized data to the FC through orthogonal channels
corrupted by fading and AWGN. The received signal from
sensor i at the FC is

zi = hi
√
Ebi ui + ni, i = 1, 2, . . . ,K, (5)

where
√
Ebiui is transmitted by the ith sensor, hi is the

multiplicative fading coefficient of the channel between sensor
i and the FC, and ni is the spatially independent, zero-mean,



complex Gaussian random variable with variance τ2
i , i.e.,

ni ∼ CN
(
0, τ2

i

)
. In this paper, it is assumed that the channels

between local sensors and the FC experience Rayleigh fading
and therefore, the random variable hi is assumed to be
spatially independent, zero-mean, complex Gaussian with unit
power, i.e., hi ∼ CN (0, 1). It is also assumed that the FC does
not have access to the instantaneous channel gains and that it
only knows their distribution. We define the channel SNR for
sensor i as ηi

def
=
Ebi
τ2
i

, i = 1, 2, . . . ,K. Note that the above
channel model implicitly assumes that the distance-dependent
path-loss in the communication channels is fully compensated
for all sensors using an appropriate power control scheme [17].
Such power control makes the location of the FC irrelevant
to the analysis. It should, however, be noted that sensor nodes
that are farther from the FC will deplete their energy resources
faster.

Upon receiving the signal from sensor i, the FC finds the
energy of the received signal as ti = |zi|2, i = 1, 2, . . . ,K,
where |·| denotes the absolute-value operation. Having access
to t

def
= [t1, t2, . . . , tK ]

T , the FC finds the maximum-likelihood
(ML) estimate of the vector of unknown parameters θ as
explained in the following section.

III. DERIVATION OF ML ESTIMATOR AND CRLB
As mentioned in the previous section, the sensors are

arbitrarily located in the surveillance region S . However, it
is assumed that the FC knows their exact locations after the
deployment of the WSN. This assumption could in practice be
satisfied using any localization scheme [7–10]. Note that the
method and criteria for the localization of distributed sensors
would in general be quite different from those of a single
energy-emitting source, as considered in this paper.

Let Ω be a variable denoting a realization of the net-
work geometry, when the WSN is deployed and the set of
{(xi, yi)}Ki=1 (and consequently, the set of {di}Ki=1) is fixed.
It is intuitive that the performance of any source-localization
scheme, including the one studied in this paper, depends on the
specific realization of the network geometry. The main goal of
this paper is to study the effect of variable Ω as the network
geometry on the performance of a source-localization scheme
similar to the one proposed in [1]. In the rest of this section, the
ML estimator and its corresponding CRLB proposed in [1] are
summarized in order to assess the effect of network geometry
on their performance.

A. Derivation of ML Estimator
Based on the observation model introduced in (3) and the

binary quantization rule specified in (4), the probability density
function (pdf) of each sensor’s quantized data parameterized
by the vector of unknown parameters to be estimated, given a
realization of the network geometry Ω, can be found as

fUi|Ω (ui : θ|Ω) = Q

(√
Pi − βi
σi

)
δ [ui]

+Q

(
βi −

√
Pi

σi

)
δ [ui − 1] , (6)

where δ [·] denotes the discrete Dirac delta function, and Q(·)
is the complementary cumulative distribution function (CCDF)
of the standard Gaussian random variable defined as

Q(x)
def
=

1√
2π

∫ ∞
x

e−
t2

2 dt. (7)

Based on the channel model introduced in (5), given any
binary sensor decision ui, the signal received from sensor i at
the FC is a complex Gaussian random variable with zero mean
and variance Ebiu2

i + τ2
i , i.e., zi|ui ∼ CN

(
0, Ebiu2

i + τ2
i

)
.

Note that the channel fading coefficient and the channel
AWGN are assumed to be independent. Based on this result,
the energy of the received signal from sensor i at the FC,
given the sensor’s binary decision, is exponentially distributed
with parameter λi

def
= 1
Ebiu

2
i+τ

2
i

, i.e., ti|ui ∼ E
(

1
Ebiu

2
i+τ

2
i

)
.

Therefore, given a realization of the network geometry Ω,
the joint pdf of the vector of received energies from different
sensors at the FC, parameterized by the vector of unknown
parameters to be estimated can be written as

fT|Ω (t : θ|Ω) =

K∏
i=1

fTi|Ω (ti : θ|Ω) , (8)

where

fTi|Ω (ti : θ|Ω) =

∫
fTi|Ui (ti|ui) fUi|Ω (ui : θ|Ω) dui

(a)
=

1

τ2
i

e
− ti
τ2
i Q

(√
Pi − βi
σi

)
(9)

+
1

Ebi + τ2
i

e
− ti
Ebi+τ

2
i Q

(
βi −

√
Pi

σi

)
where (a) is based on the sifting property of the Dirac delta
function. It is well known that the ML estimate of the vector of
unknown parameters at the FC using the vector of the received
energies from local sensors can be found as [18, Chapter 7]

θ̂Ω = arg max
θ

ln
(
fT|Ω (t : θ|Ω)

)
, (10)

where the subscript Ω for the ML estimator signifies that it
depends on the realization of the network geometry.

B. Derivation of CRLB
The performance of any estimator can be quantified by its

variance. The Cramér-Rao lower bound (CRLB) expresses a
lower bound on the variance of any unbiased estimator θ̂Ω

as [18, Chapter 3]

E
[(

θ̂Ω − θ
)(

θ̂Ω − θ
)T]

� I−1
Ω (θ) , (11)

where E [·] represents the expectation operation with respect
to the joint pdf of the vector of received energies from
different sensors at the FC, Φ � Λ means that the matrix
Φ−Λ is positive semi-definite, and IΩ (θ) denotes the Fisher
information matrix (FIM) for the given realization of the
network geometry Ω, whose element in row m and column
n is defined as

[IΩ (θ)]m,n = −E

[
∂2 ln

(
fT|Ω (t : θ|Ω)

)
∂θm∂θn

]
. (12)



Based on the joint pdf of the vector of received energies from
different sensors at the FC defined in (8)–(9), the FIM for the
given observation and channel models and given a realization
of the network geometry Ω can be found as follows [1]:

IΩ (θ) =

K∑
i=1

GiPi
8πσ2

i P0
e
− (
√
Pi−βi)

2

σ2
i

∫ ∞
0

g (ti) dti
fTi|Ω (ti : θ|Ω)

(13)

where g (ti) is defined as

g (ti)
def
=

(
1

Ebi + τ2
i

e
− ti
Ebi+τ

2
i − 1

τ2
i

e
− ti
τ2
i

)2

, (14)

fTi|Ω (ti : θ|Ω) in found in (9), and Gi
def
= Gi,Ω (θ) is a

symmetric 3-by-3 matrix, whose elements are defined as
follows:

[Gi,Ω (θ)]1,1 =
1

P0
[Gi,Ω (θ)]2,2 =

P0α
2

d4
i

(xT − xi)2

[Gi,Ω (θ)]1,2 = [Gi,Ω (θ)]2,1 =
α

d2
i

(xi − xT)

[Gi,Ω (θ)]1,3 = [Gi,Ω (θ)]3,1 =
α

d2
i

(yi − yT) (15)

[Gi,Ω (θ)]2,3 = [Gi,Ω (θ)]3,2 =
P0α

2

d4
i

(xT − xi) (yT − yi)

[Gi,Ω (θ)]3,3 =
P0α

2

d4
i

(yT − yi)2

Note that the matrix Gi,Ω (θ) and consequently, the FIM and
CRLB depend on the realization of the network geometry.

C. Performance-Assessment Metric for Localization Schemes

One of the main measures used to assess the performance
of any source-localization scheme is the geometric location-
estimation error (GLE) defined as [5]

GLEΩ
def
=

√
(x̂T,Ω − xT)

2
+ (ŷT,Ω − yT)

2
, (16)

where the subscript Ω signifies that the GLE depends on the
realization of the network geometry. Note that given a specific
realization of the network geometry Ω, the following lower
bound can be established on the mean squared GLE using the
CRLB as defined in (11):

SGLEΩ
def
= E

[
GLE2

Ω

]
= E

[
(x̂T,Ω − xT)

2
+ (ŷT,Ω − yT)

2
]

≥
[
I−1

Ω (θ)
]
2,2

+
[
I−1

Ω (θ)
]
3,3
, (17)

where SGLEΩ denotes the mean squared GLE, given a specific
realization of the network geometry Ω, and the expectation
operation is calculated with respect to the distributions of the
observation noise, channel fading coefficients, and channel
noise.

Since there is no closed-form equation for finding SGLEΩ,
we resort to a Monte-Carlo approach for its calculation as fol-
lows. For a fixed arbitrary realization of the network geometry
Ω, the set of sensors’ locations {(xi, yi)}Ki=1 and consequently,
the sets of their distances to the source target {di}Ki=1 and
the received power from the source at their locations {Pi}Ki=1

(defined in (1)) are fixed. In order to find the empirical mean
squared GLE, NMC Monte-Carlo trials are performed for the
given network geometry by generating random observation
noises, channel fading coefficients, and channel noises based
on their respective distributions introduced in Section II. The
empirical mean squared GLE for the given network realization
can then be found as

SGLEΩ =
1

NMC

NMC∑
m=1

SGLE
(m)
Ω (18)

=
1

NMC

NMC∑
m=1

(
x̂

(m)
T,Ω − xT

)2

+
(
ŷ

(m)
T,Ω − yT

)2

,

where SGLEΩ
def
= GLE2

Ω and GLEΩ is defined in (16), and the
superscript (m) denotes the result obtained in the mth Monte-
Carlo trial.

D. Derivation of Optimal Local Quantization Thresholds

Note that the performance of both empirical mean squared
GLE and its corresponding CRLB for any fixed network real-
ization is a function of the local sensors’ binary quantization
thresholds. In this paper, the optimal set of local quantization
thresholds are found based on the approach proposed in [2].
According to this method, since the main focus of this paper is
the accurate localization of the source target and not so much
the accurate estimation of P0 as the received power from the
source at the reference distance d0, the binary quantization
thresholds are found such that the CRLB on the mean squared
GLE as defined in (17) is minimized. In other words, the
optimal set of binary quantization thresholds for the optimal
source-localization scheme can be found as [2]{
βOPT
i

}K
i=1

= arg min
{βi}Ki=1

([
I−1

Ω (θ)
]
2,2

+
[
I−1

Ω (θ)
]
3,3

)
, (19)

where the conditional FIM IΩ (θ), given the current network
realization Ω is found using (13)–(15).

IV. NUMERICAL PERFORMANCE ASSESSMENT

Ozdemir et al. [1] have reported the performance of their
proposed source-localization scheme summarized in Subsec-
tions III-A and III-B for a WSN deployed in a regular grid
configuration. As mentioned previously, the performance of
the source-localization method is heavily affected by the
realization of the network geometry. In order to observe this
dependence, suppose that a WSN consisting of K = 50
sensors is randomly deployed to estimate the location and
parameter P0 of a source target located at (xT, yT) = (5, 10),
for which P0 = 10, 000, d0 = 1, and the power-decay
exponent is α = 2. The sensors are randomly placed in the
circular surveillance region with radius R = 50 and centered at
the origin according to a uniform clustering process. The local
observation noises are assumed to be identically distributed
with the same variance σ2 ≡ σ2

i = P0

µ , where µ ≡ µi is
the common observation SNR. Similarly, the local channel
noises are assumed to be identically distributed with the same
variance τ2 ≡ τ2

i = Eb
η , where Eb ≡ Ebi = 1 dB is the



common transmit energy when ui = 1 is sent, and η ≡ ηi is
the common channel SNR. Due to the homogeneous nature
of the network, all of the binary quantization thresholds are
assumed to be identical to β ≡ βi. The results have been
found by averaging over NMC = 10, 000 Monte-Carlo trials
as explained in Subsection III-C.

Figure 3 shows the empirical root mean-squared error
(RMSE) for the source-location estimation, plotted by solid
lines, and its corresponding CRLB, plotted by dashed lines,
as functions of the channel SNR η for three different random
network realizations, when the observation SNR is fixed at
µ = 40 dB. Details of generating each random network
geometry are explained in the next section. The first and sec-
ond network realizations corresponding to the curves without
marker and with the circle marker, respectively, are shown
in the corners of Fig. 3, where sensors are denoted by ‘×’.
In these two network realizations, there is no exclusion zone
considered around the sensors (i.e., Rex = 0) and therefore,
they can be placed very close to each other. The network
realization corresponding to the curves shown by the square
marker ‘2’ is depicted in Fig. 1. In this case, each sensor
is surrounded by an exclusion zone with radius Rex = 5
and therefore, all of the sensors will be apart from each
other by at least 5 units of length. It can be seen in this
figure that the performance of the source-localization scheme
highly depends on the realization of the network geometry.
It also shows that as the channel SNR increases, the error
in the localization decreases and gets closer to its CRLB, as
expected. Similar results could be found by considering the
localization performance as a function of the observation SNR.

A close look at all network configurations shown in Fig. 1
and the corners of Fig. 3 reveals that a circle with radius
RT = 14 is centered at the source target and shown by a
dashed line. In Network 1 shown at the top of Fig. 3, there
are only two sensors located within this region surrounding
the target, while in Network 2 shown at the bottom of this
figure, there are six such sensors in the same vicinity of
the target. This difference would partially explain why the
performance of the localization scheme using the two different
network realizations is completely different. When there are
more sensors within the immediate vicinity of the target, the
localization error will be lower since the observations are of
higher quality. This point will further be discussed with more
details in Subsection V-B.

V. SPATIAL DEPENDENCE OF SOURCE LOCALIZATION

In this section, we study the effects of spatial randomness,
i.e., random realization of the network geometry, on the perfor-
mance of the source-localization scheme proposed in [1] and
summarized in Section III, through a numerical Monte-Carlo
approach. Note that the performance evaluations presented
here can easily be extended to any other source-localization
method.

Let the localization outage event in the space of random
realizations of network geometry be defined as

A (γ)
def
=

{
Ω : SGLEΩ > γ2

}
. (20)
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Fig. 3: Empirical RMSE of the source-location estimation,
shown by solid lines, and its corresponding CRLB, shown by
dashed lines, vs channel SNR in dB for three different random
realizations of the network geometry, when the observation
SNR is µ = 40 dB.

Based on the above definition, a localization outage occurs
when the root mean squared distance between the estimated
location of the source (x̂T, ŷT) and its true value (xT, yT)
exceeds a prespecified threshold γ. In other words, a realiza-
tion of the network geometry Ω is said to be in outage if
on average, the source-location estimation using that network
deployment produces an error beyond an acceptable threshold
γ.

It can be observed that the localization outage is a ran-
dom variable depending on the distribution of the network
geometry. In order to assess the dependence of the localization
outage on the realization of the network geometry, we will use
the complementary cumulative distribution function (CCDF)
of the random variable SGLEΩ defined as

F SGLE (γ)
def
= P

[
SGLEΩ > γ2

]
, (21)

where the right-hand side of the equation is the probability
that an arbitrary network geometry is in outage, as defined
above.

In the following discussions, the performance assessments
will be based on a Monte-Carlo approach with 500 simulation
trials ran as follows. In each simulation trial, a realization
of the network geometry is obtained by randomly placing K
sensors within the circular region of radius R. There could
be an exclusion zone around each sensor within which no
other sensors can be placed. The sensors are located within
the surveillance region successively according to a uniform
clustering process as follows. A pair of independent random
variables (xi, yi), i = 1, 2, . . . ,K, is selected from a uniform
distribution over [−R,R]. If the sensor falls outside of the
circular disk of radius R, i.e., x2

i + y2
i > R2, this process is

repeated until the sensor falls inside the surveillance region.
If an exclusion zone of radius Rex is considered around each
sensor, the distances between the ith sensor and all i−1 other
sensors are found, and the above process of assigning new
random location to the ith sensor is repeated as many times
as necessary until the sensor is located outside of the exclusion
zones of all other previously located sensors in the network.



In the next step, the empirical mean squared GLE (i.e.,
SGLEΩ) is found for a fixed random realization of the network
geometry Ω using the Monte-Carlo approach described in
Subsection III-C with NMC = 1, 000 trials per network
realization. The CRLB on the mean squared GLE is found
only once for each network realization as defined in (17). The
optimal local binary quantization threshold is fixed and found
only once for any network realization, using the approach
discussed in Subsection III-D. All of the simulation parameters
are exactly the same as those summarized in Section IV. The
observation SNR and channel SNR are fixed at µ = 40 dB
and η = 0 dB, respectively.

A. Effect of Sensor Exclusion Zones on Source Localization

One of the parameters affecting the performance of any
source-localization scheme, which is based on the assumption
of random sensor placement, is the exclusion zone around
each sensor. The exclusion zone is a circular disk around
each sensor within which no other sensors can be placed.
It could be the result of a physical limitation that does not
allow such proximity of two sensors or it could be controlled
by the network administrator during the network deployment
in order to guarantee a proper coverage of the surveillance
region. Figure 4 depicts the CCDF of the empirical RMSE
of the source-location estimation, as defined by (21), and its
corresponding CRLB as functions of the outage threshold γ
for different values of the radius of sensor exclusion zones
Rex. The results were obtained using 500 Monte-Carlo trials
for generating random network realizations as described in the
previous subsection.

As it can be seen from Fig. 4, the probability of an empirical
localization outage increases as the radius of the sensor
exclusion zones increases. In other words, as the exclusion
zone around each sensor expands, the probability that the
average GLE of an arbitrary random network deployment
exceeds a prescribed threshold increases, due to the fact that
the expansion of the exclusion zones around sensors results
in them being located farther apart. Therefore, the number
of sensors that can be located close to a target decreases on
average. This will result in a lower number of strong local
measurements, which in turn decreases the quality of the data
available at the FC as more sensors are likely to have sent
zeros. It should be mentioned that for lower probabilities of
localization outage, i.e., higher values of outage threshold γ,
the exclusion zones around sensors do not have much effect
as almost any network realization can on average satisfy the
required accuracy of location estimation. The same argument
applies to the CCDF for the CRLB values on the root mean
squared location estimation error.

B. Effect of the Closest Sensors to Source on Localization

It is intuitive that the performance of any source-localization
scheme depends mainly on the observation and channel qual-
ities of the closest sensors to the target. In order to inves-
tigate this effect, consider a scenario in which there is no
exclusion zone around the sensors, i.e., Rex = 0. Note that

10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Outage Threshold (γ)

C
C

D
F 

of
 R

M
SE

 o
f

L
oc

at
io

n 
E

st
im

at
io

n

 

 

Empirical, R
ex

=10

Empirical, R
ex

=5

Empirical, R
ex

=0

CRLB, R
ex

=10

CRLB, R
ex

=5

CRLB, R
ex

=0

Fig. 4: CCDF of the empirical RMSE of the source-location
estimation and its corresponding CRLB vs the outage thresh-
old γ for different settings of the network geometry. The
observation SNR and channel SNR are fixed at µ = 40 dB
and η = 0 dB, respectively.

similar results and discussions could be found for the network
realizations with an arbitrary exclusion zone around sensors.
Let RT denote the radius of a circular region around the target
within which we assume the most important sensors to the
performance of the source-localization scheme are located.
Let KT denote the number of sensors located within this
region. In the network realization depicted in Fig. 1, the
region around the target is shown by a dashed line as a circle
with radius RT = 14, and the number of sensors within this
region is KT = 1. Note that in general, 0 ≤ RT ≤ 2R and
0 ≤ KT ≤ K, where R is the radius of the surveillance
region. Figure 5 depicts the CCDF of the empirical RMSE
of the source-location estimation, as defined by (21), and its
corresponding CRLB as functions of the outage threshold γ
for different values of RT and KT, when there is no exclusion
zone around the sensors. The results were obtained in a similar
way to the procedure explained at the beginning of this section.

As it can be seen in Fig. 5, for a given RT, the probability
of localization outage decreases as KT increases. In other
words, if in the random realizations of the network geometry,
the number of sensors located within a fixed radius around
the target increases, the probability that an arbitrary network
deployment is in outage drastically decreases. In a similar
discussion, for a given KT, the probability of outage decreases
as the radius RT decreases. In other words, if we need to
expand the region around the target to have a specific, fixed
number of sensors located close to it, the probability of outage
increases as the region expands. Figure 5 shows that the
effect of increasing KT for a fixed RT is always noticeable,
while the effect of decreasing RT for a fixed KT is more
noticeable when the number of sensors considered within the
neighborhood of the target is larger. The important implication
of this discussion in practical network design is that the density
of the randomly deployed network should be above a threshold
to guarantee that the sensors are so closely located that if
the target location is anywhere within the surveillance region,
there are enough number of sensors in its proximity.
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old γ for different values of RT and KT. The observation SNR
and channel SNR are µ = 40 dB and η = 0 dB, respectively.

VI. CONCLUSIONS

The main focus of this paper was to quantify the effects of
spatial randomness on the performance of source-localization
schemes. To this end, a recently proposed approach based
on the quantized versions of the received energies from a
point source was investigated for demonstration purposes. The
random realization of the network geometry was assumed to
be according to a uniform clustering process. The concept
of localization outage was defined to be a realization of the
network geometry that on average fails to satisfy a required
threshold on the localization accuracy. The numerical results
verified that the source-localization performance is heavily
affected by the realization of sensor deployment and that it
highly depends on the number of sensors that are within a close
proximity of the source. This conclusion suggests a guideline
that the sensor density in the network should appropriately be
chosen such that enough number of sensors will be close to
a target arbitrarily located within a random realization of the
network geometry. As the network density increases, resulting
in a higher number of sensors in a fixed disk around the
source, the performance of the localization scheme improves
drastically. The effect of exclusion zones around sensors was
also studied based on which increasing the minimum sensor
separation increases the localization-outage probability, i.e., if
the sensors are forced to be farther separated, it is more likely
that a random network realization will be in outage.
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