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Fundamental Limits of Caching with Secure
Delivery

Avik Sengupta, Ravi Tandon, and T. Charles Clancy

Abstract

Caching is emerging as a vital tool for alleviating the severe capacity crunch in modern content-centric wireless networks.
The main idea behind caching is to store parts of popular content in end-users’ memory and leverage the locally stored content
to reduce peak data rates. By jointly designing content placement and delivery mechanisms, recent works have shown order-wise
reduction in transmission rates in contrast to traditionalmethods. In this work, we consider thesecure caching problemwith the
additional goal of minimizing information leakage to an external wiretapper. The fundamental cache memory vs. transmission rate
trade-off for the secure caching problem is characterized.Rather surprisingly, these results show that security can be introduced at
a negligible cost, particularly for large number of files andusers. It is also shown that the rate achieved by the proposedcaching
scheme with secure delivery is within a constant multiplicative factor from the information-theoretic optimal rate for almost all
parameter values of practical interest.

I. I NTRODUCTION

In modern content-centric wireless networks, caching helps in reducing the peak network load at times of high traffic
volume. Fractions of popular content are stored locally in end-users’ cache memories distributed across a given network. At
times of high demand, the users can be partly served locally from their cache, thereby reducing the network load. Caching
generally works in two phases - thestorage phaseand thedelivery phase. The general caching problem has been well studied
in literature [3]–[6]. Traditionally, the delivery phase of caching systems operate as a series of dedicated unicast transmissions
to individual users by transmitting fractions of requestedfiles which are not stored in their caches. However, this is not a
scalable solution as the number of users in the system increases. A more efficient solution is to deliver content simultaneously
to users through multicast transmissions. Most of the priorworks in this area tend to use a fixed delivery scheme and then
optimize the storage phase to suit the delivery scheme [5], [6]. Further, their investigations are mainly based on the gains
obtained from local content distribution, ignoring the global cache interactions and content sharing as a factor for extracting
caching gain.

More recently, [7]–[12] have proposed information theoretic formulations of the caching problem. In [7], a scheme is
proposed which, in addition to the local caching gain, is also capable of offering a global caching gain. The scheme takes
the cumulative size of the network cache memory into consideration andjointly designsthe cache storage phase and a coded
mutlicast delivery phase. This achieves a global caching gain which provides an order-wise improvement over local caching
gain. The fundamental concepts presented in [7] are extended to the case of decentralized storage in [8] and non-uniformZipF
[13] user demands in [9], [14]. Some extensions of the caching problem have been investigated in the case of Device-to-Device
(D2D) communications in [15]–[18], from the perspective ofcontent distribution networks in [19] and reinforcement learning
in [20]–[22].

In this paper, we investigate the fundamentalsecurityaspects of the caching problem in the presence of an externaladversary
(wiretapper). To this end, we introduce thesecure caching problemin which the multicast communication between the central
server and the users (delivery phase) occurs over apublic (insecure) channel. The defining feature of this problem is to
capture the tradeoff between the multicast rate of the insecure link and the size of the cache memory. To the best of our
knowledge, none of the works on cache storage and placement design deal with security issues. We consider a system with a
central server connected toK users through an error-free rate-limited link. The server has a database ofN files denoted by
(W1, . . . ,WN ), where each file is of sizeF bits. For the scope of this paper, we assume that a user can request access to
any one of the files at a given time. Each user has a cache memoryZk of sizeMF bits for any real numberM ∈ [0, N ].
Similar to [7], the system operates over two phases: a cachestorage phaseand adelivery phase. The storage phase can be
of two types:centralized storageor decentralized storage. In case of centralized storage, the central server stores the cache
Zk of userk with some content, which is a function of the files(W1, . . . ,WN ). In case of decentralized storage, the userk
is allowed to store any random combination of bits from each file without coordination from the central server. Userk (for
k=1, . . . ,K) then requests access to one of the filesWdk

in the database. In the delivery phase, the central server proceeds
by transmitting a signalX(d1,...,dK) of sizeRF bits over the shared link. Using the contentZk (of its cache) and the received
signalX(d1,...,dK), the k−th user intends to reconstruct the requested fileWdk

. A memory-rate pair(M,R) is achievableif
for a (per-user) cache size ofMF bits, and using rateRF bits, it is possible for each user to decode its requested filefor
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Fig. 1. System Model for Secure Caching.

any set of requests(d1, . . . , dK). LetR∗(M) denote the smallest rateR such that the pair(M,R) is achievable. The function
R∗(M) is the fundamentalmemory-ratetradeoff for the caching problem. An approximate characterization forR∗(M) was
provided in [7]–[9].

We consider this problem in the presence of an external wiretapper which can observe the multicast communication
X(d1,...,dK) i.e., the communication from the central server to the usersoccurs over aninsecure link. The wiretapper is
considered to be strictly out-of-network and is thus able toobserve only the multicast delivery which happens over a broadcast
channel. Thus, besides satisfying the users’ demands, we require thatX(d1,...,dK) must not reveal any information about
(W1, . . . ,WN ) i.e., I

(
X(d1,...,dK);W1, . . . ,WN

)
= 0. As is shown, the additional security constraint necessitates introducing

randomness in the form of keys, which occupy a part of the cache of each user. Subsequently, these keys are used in the
delivery phase to the keep the delivery information theoretically secure using a one-time-pad scheme [23]. In our system
model, the placement phase occurs over unicast channels to individual users and can be secured with the help of individual
keys e.g., secure unicast communications using a system similar to code-division-multiple-access (CDMA). As a result, security
is considered to be inherent in the placement phase. Thus, inthis work, we consider the security of only thedelivery phase
and not the cacheplacement phase. For this problem, a memory-rate pair(M,Rs) is securely achievableif, for a cache size of
MF and a transmission of rateRsF bits, it is possible for each user to decode its requested fileand the communication over
the shared link reveals no information about any file. Fig. 1 shows the caching system in the presence of a wiretapper. Let
R∗

s(M) denote the smallestRs such that(M,Rs) is achievable. Thus, the functionR∗
s(M) is the fundamental memory-rate

tradeoff for thesecurecaching problem. We investigate both the centralized cacheplacement as well as the decentralized
placement with secure file delivery without any assumptionson user demands and file popularity.

The main contribution of this paper is an approximate characterization ofR∗
s(M). We design centralized and decentralized

caching algorithms which make use of coded multicast delivery to extract global caching gain. The system has uniformly
distributed orthogonal keys which are stored across users for secure multicast delivery. We present novel upper and lower
bounds onR∗

s(M) and show that these bounds are within a constant multiplicative gap. Indeed, for a fixedM , it is intuitively
clear thatR∗

s(M) ≥ R∗(M), i.e., the minimum rate in presence of a wiretapper must be, in general, larger than in the absence
of a wiretapper. From our results, we show, rather surprisingly, that the cost for incorporating security in both the centralized
and decentralized caching schemes is negligible when the number of users and files are large.

II. SYSTEM MODEL

Let (W1,W2, . . . ,WN ) beN independent random variables each uniformly distributed over

[2F ] , {1, 2, . . . , 2F} (1)

for someF ∈ N. EachWn represents a file of sizeF bits. A (M,Rs) secure caching scheme comprises ofK randomcaching
functions,NK randomencoding functions andKNK decoding functions. TheK randomcaching functions map the files
(W1, . . . ,WN ) into the cache content:

Zk , φk
(
W1, . . . ,WN

)
(2)

for each userk ∈ [K] during the storage (or placement) phase. The maximum allowable size of the contents of each cache
Zk is MF bits. TheNK randomencoding functions map the files(W1, . . . ,WN ) to the input

X(d1,...,dK) , ψ(d1,...,dK)

(
W1, . . . ,WN

)
(3)
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Fig. 2. (a) Centralized Secure vs Non-Secure BoundsN = K = 20; (b) Multiplicative gap betweenRC
s (M) and lower bound onR∗

s(M).

of the shared link in response to the requests(d1, . . . , dK) ∈ [N ]K during the delivery phase. Finally, theKNK decoding
functions map the received signal over theinsecureshared linkX(d1,...,dK) and the cache contentZk to the estimate

Ŵ(d1,...,dK),k , µ(d1,...,dK),k

(
X(d1,...,dK), Zk

)
(4)

of the requested fileWdk
for userk ∈ [K]. The probability of error is defined as:

Pe , max
(d1,...,dK)∈[N ]K

max
k∈[K]

P(Ŵ(d1,...,dK),k 6=Wdk
). (5)

The information leaked at the wiretapper is defined as:

L , max
(d1,...,dK)∈[N ]K

I
(
X(d1,...,dK);W1, . . . ,WN

)
. (6)

Definition 1. The pair (M,Rs) is securely achievableif for any ǫ > 0 and every large enough file sizeF , there exists a
(M,Rs) secure caching scheme withPe ≤ ǫ andL ≤ ǫ. We define the secure memory-rate tradeoff

R∗
s(M) , inf{Rs : (M,Rs) is securely achievable}. (7)

III. C ENTRALIZED CACHING WITH SECURE DELIVERY

The first result gives an achievable rate which upper bounds the optimal memory-rate trade-offR∗
s(M) for the centralized

caching scheme with secure delivery. Security is incorporated by introducing randomness in the storage and delivery phase of
the achievable scheme in form of a set of uniformly distributed orthogonal keys (independent of the data) stored in the cache
of each user. The total cache memory (of sizeMF bits) is divided into two parts - data memory (of sizeMDF bits) and key
memory (of sizeMKF bits) such thatM = MD +MK . The server uses the keys stored at the users’ caches to encode the
delivery signalX(d1,...,dK) such that the transmission is secure from the wiretapper.

Theorem 1. For N files andK users, each with a cache size ofM ∈ (N−1)
K · t+ 1, for t ∈ {0, 1, 2, . . . ,K} we have

R∗
s(M) ≤ RC

s (M) , K ·

(
1−

M − 1

N − 1

){
1

1 +K · M−1
N−1

}
(8)

i.e., the rateRC
s (M) is securely achievable. For any1 ≤M ≤ N , the lower convex envelope of these points is achievable.

The algorithm achieving the rate in Theorem 1 is presented inAlgorithm 1 (Appendix A). Similar to [7], the achievable rate
in (8) consists of three factors. The first factorK is the worst case rate in the case when no data is cached(MD = 0). The

second factor in (8) is
(
1− M−1

N−1

)
. This is thesecure local caching gainand is relevant wheneverM is of the order ofN .

The third factor in (8) is1/
(
1 +K · M−1

N−1

)
, which is thesecure global caching gain. Comparing Theorem 1 to (Th.1, [7]),

we observe that the termsMN in (Th.1, [7]) have been replaced byM−1
N−1 . However, the combination of the global and local

gains leads to the rate in (8) being higher than the rate in (Th.1, [7]) for a given value ofM,N . This is the cost paid for
the security in the system. However, asK,N become large, the secure rate is asymptotically equal to thenon-secure case.
WhenN = K = 20, it can be seen from Fig. 2(a) that the secure and non-secure bounds almost coincide i.e., security from
a wiretapper can be achieved atalmost negligible costfor a large number of files and users.

Consider the case of conventional unicast content deliveryto each user. In contrast to the insecure scheme in [7], to make
the delivery phase secure, however, each user has to store a unique key (of the same size as a single file). During delivery,

3



Data

Key(s)

Central Server

A1

B1

User 1 User 2

Insecure Link

Wiretapper

MD

MK

A2

B2

Demand: d1 = A = (A1, A2) Demand: d2 = B = (B1, B2)

(M,Rs) =
(

3

2
, 1

2

)

1

2

1

2

1

2

K12K12

X(A,B) = A2 ⊕B1 ⊕K12

N = 2 files.

K = 2 users.

I(X(A,B);A,B) = 0

(a)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Cache Size (M)

R
at

e 
(R

)

Secure Bounds for N = 2 and K = 2

 

 

Insecure LB [Th. 2, 5]
Insecure UB [Th.1, 5]
Secure LB (Th. 2)
Secure UB (Th. 1)

(3/2,1/2)

  Conventional
  Secure
  Scheme

Secure

Insecure

(b)

Fig. 3. (a) Secure Caching Scheme and (b)(M,RC
s ) trade-off forN = K = 2.

the server encodes the user’s requested file with its key and transmits it. Thus, even with no data storage in cache, the cache
size has to be at leastF bits to store a key(MK = 1) i.e., in the secure problem,M = 0 is infeasible. The worst case rate
is achieved atM = 1 and the(M,RC

s ) pair (1,K) is achievable. At the other extreme whenM = N i.e., the case where all
files are stored in the user’s cache and no content delivery isrequired. In this caseMD = N,MK = 0 and the(M,RC

s ) pair
(N, 0) is achievable. We refer to a scheme which achieves points on the line joining(1,K) and (N, 0) as theconventional
secure scheme, where each user stores one unique key and encrypted files areunicast to each user based on their request.
On the other hand, the proposed scheme in Algorithm 1 jointlydesigns the placement of data and keys in the users’ caches
such thatcoded secure multicastingcan be achieved among users. Next, we present a lower bound onR∗

s(M) stated in the
following theorem.
Theorem 2. For N files andK users, each having a cache size1 ≤M ≤ N ,

R∗
s(M) ≥ max

s∈{1,...,min{N,K}}

(
s−

s(M − 1)(
⌊N

s ⌋ − 1
)
)
. (9)

The proof of Theorem 2 is presented in Appendix B. Next, we compare the achievable rate from Theorem 1 and the lower
bound on the optimal rate in Theorem 2, and show that a constant multiplicative gap exists betweenR∗

s(M) and the achievable
rateRC

s (M).

Theorem 3. For N files andK users, each having a cache sizemax
{

(K−N)(N−1)
KN + 1, 1

}
≤M ≤ N ,

1 ≤
RC

s (M)

R∗
s(M)

≤ 17. (10)

The proof of Theorem 3 is presented in Appendix C. The gap is unbounded and scales withK only for the case ofK > N
in the regime1 ≤ M < (K−N)(N−1)

KN + 1, which is negligibly small for largeK,N as discussed in Appendix C. While the
analytical constant of 17 is large for practical purposes, the gap can tightened numerically. Fig. 2(b) shows the maximum value
of the multiplicative gap betweenRC

s (M) and the lower bound onR∗
s(M) for values forN,K ranging from1 to 1000 and

all feasible values ofM in each case. It can be seen that the gap is generally less than4 whenK < N . However forK > N ,
and for smallN , the gap is larger i.e., around6.

A. Intuition behind Theorem 1 (Achievability)

We next present a series of examples to explain the intuitionbehind the achievable rate in Theorem 1 and highlight the
interesting features of the proposed secure delivery scheme.

Example1. We illustrate the achievable scheme in Theorem 1 for the caseof N = 2 files andK = 2 users. From Theorem
1 we haveM ∈ 2−1

2 {0, 1, 2} + 1 = {1, 32 , 2} are the possible cache sizes for each user. Let the two files beW1 = A and
W2 = B. The bounds in Theorems 1 and 2 are shown in Fig. 3(b) along with the bounds for the non-secure case from [7]. We
start with the upper bound in Theorem 1. Considering the extreme pointM = 1, the cache of both usersZ1, Z2 only stores two
unique keysK1,K2 and the server transmits both the filesA,B over the shared link XOR-ed with a key. Given the worst-case
demand(d1, d2) = (A,B), the server can transmitX(A,B) = {A⊕K1, B ⊕K2}. This system satisfies every possible request
with rateR = 2 and it is easily verified thatI

(
X(A,B);A,B

)
= 0. Thus (M,RC

s ) = (1, 2) is securelyachievable. At the
other extreme, whenM = 2, each user can cache both files and no transmission is necessary. Hence the(M,RC

s ) = (2, 0) is
securelyachievable.

Now we consider the intermediate case in whichM = 3/2. The scheme for this scenario is depicted in Fig. 3(a). Both the
files are split into2 equal parts:A = (A1, A2) andB = (B1, B2), whereA1, A2, B1, B2 are each of sizeF/2 bits. We also

4



Data

Key(s)

Central Server

A1

B1

User 1 User 2

Insecure Link

Wiretapper

MD

MK

C1

K12

K13

K12 K13

User 3

A2

B2

C2 C3

B3

A3

K23 K23

d1 = A d2 = B d3 = C

A2 ⊕B1 ⊕K12

A3 ⊕ C1 ⊕K13

B3 ⊕ C2 ⊕K23

1

3

(

Rs = 3×
1

3
= 1

)

= 1

=
2

3

(M,Rs) =
(

5

3
, 1

)

M = MD +MK

Demand(s):

X(A,B,C) :

K = 3 users.
N = 3 files.

I(X(A,B,C);A,B,C) = 0

(a)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Cache Size (M)

R
at

e 
(R

)

Secure Bounds for N = 3 and K = 3

 

 

Insecure LB [Th. 2, 5]
Insecure UB [Th. 1, 5]
Secure LB (Th. 2)
Secure UB (Th. 1)

(5/3,1)

Insecure

Conventional
Secure
Scheme

Secure

(b)

Fig. 4. (a) Secure Caching Scheme and (b)(M,RC
s ) trade-off forN = K = 3.

generate a keyK12 ∼ unif{1, . . . , 2(F/2)}, which is independent of both the filesA,B and has the same size as the sub-files
i.e., F/2 bits. In the storage phase, the server fills the caches as follows: Z1 = (A1, B1,K12) andZ2 = (A2, B2,K12) i.e.,
each user stores one exclusive part of each file and the key. ThusMD = 1/2 + 1/2 = 1 andMK = 1/2. Now, consider the
worst case request(d1, d2) = (A,B). In order to satisfy this request, user 1 requires the file fragmentA2 while user 2 requires
the file fragmentB1. In this case, the server transmitsX(A,B) = {A2 ⊕ B1 ⊕ K12} which is of rate1/2. User 1 can obtain
A2 by XOR-ing outB1,K12 while user 2 can getB1 by XOR-ing outA2,K12 from X(A,B). A wiretapper, on the other hand,
would gain no knowledge of either file from the transmission since I

(
X(A,B);A,B

)
= 0 which follows from the fact that the

key K12 is uniformly distributed. Thus,(M,RC
s ) = (3/2, 1/2) is securelyachievable. This can be seen in the secure upper

bound in Fig. 3(b). Given that the points(1, 2),(3/2, 1/2) and(2, 0) are achievable, the lines joining pairs of these points are
also achievable. Thus, this proves the achievability of thesecure upper bound in Fig 3(b). The gap between the insecure and
secure achievable bounds results from the storage of the keyin the users’ cache. ✸

In the two user example, there is only a single keyK12 in the system. Thus, if the key is compromised, the security of
the entire system fails. The scheme proposed in Theorem 1 forgeneral values of(N,K), however is more robust in its key
management when the number of files and users increase. We next illustrate this point through an example.

Example2. We consider the case forN = K = 3. For this case, from Theorem 1,M ∈ {1, 53 ,
7
3 , 3}. The system and

bounds for this case are illustrated in Fig. 4(a) and 4(b). Weconsider the case ofM = 5/3 and three filesA,B,C.
Each file is split into3 equal parts i.e.,A = (A1, A2, A3), B = (B1, B2, B3), C = (C1, C2, C3). We also have3
keys in the system,K12,K13,K23. In this case, each subfile and each key is of sizeF/3 bits. In general, the keyKij

is placed in the caches of usersi and j. The keys are chosen combinatorially and a general strategyis discussed in
Appendix A. The overall cache placement is as follows:Z1 = {A1, B1, C1,K12,K13}, Z2 = {A2, B2, C2,K12,K23} and
Z3 = {A3, B3, C3,K13,K23}. Thus each cache has sizeM = 5 × (1/3) = 5/3, whereMD = 1,MK = 2/3. Now
considering a worst case request where all users request different files,(d1, d2, d3) = (A,B,C), the server can make the
transmission,X(A,B,C) = {{A2 ⊕B1 ⊕K12}, {A3 ⊕ C1 ⊕K13}, {B3 ⊕ C2 ⊕K23}}, such that everyone can securely retrieve
their requested files. Thus(M,RC

s ) = (5/3, 1) is securelyachievable sinceI(X(A,B,C);A,B,C) = 0 i.e., a wiretapper would
gain no information about the files from the transmission. Itcan be seen from the cache contents that there are multiple keys in
the system thereby avoiding a single point of failure. In general, if we choose operating points(M,RC

s ) such thatMK > 1/K,
single points of failure in the system can be avoided. Thus the scheme forms an interesting memory-rate trade-off based on
users’ security constraints which is elaborated subsequently in Remark 1. ✸

Remark1 (Key Memory vs. Data Memory Trade-off). The trade-off between the fraction of cache memory occupiedby the
data and the keys in the secure caching system is shown in Fig.5 for N = 5 files andK = 5 users. Consider the cache
memory constraint in Theorem 1 i.e.,M ∈ N−1

K t+1, ∀t ∈ {0, 1, 2, . . . ,K}. Now, sinceM =MD +MK, from Appendix A,
we haveMK = 1− t/K andMD = Nt/K. From Fig. 5, it can be seen thatMK dominates at lower values ofM . Formally,
M ≥ 2N/(N + 1), data memory dominates key memory i.e.,MD > MK . From Appendix A, we have

(
K
t+1

)
unique keys in

the system. Thus the case for there being only one unique key in the system corresponds tot = K − 1 i.e.,MK = 1/K. Thus
for avoiding one shared key across all users i.e., a single point of failure in the system, we needMK > 1/K ⇒ t ≤ K − 1,
which corresponds toM ≤ (N − 1)(K − 1)/K + 1. It is also undesirable that new keys be redistributed to theentire system
each time a user leaves. The proposed scheme avoids this scenario by sharing keys. In case a user leaves or is compromised,
only the keys contained in that user’s cache need to be replaced, leaving the others untouched. Thus, a desirable region of
operation would be:

2N

(N + 1)
≤M ≤

(N − 1)(K − 1)

K
+ 1.
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In general, a close inspection of Algorithm 1 reveals that when t > (K − r) i.e., whenM > (N − 1)(K − r)/K + 1, a
wiretapper can obtain all the keys in the system if it gains access to anyr of theK user caches. This means that ifr users
are compromised, system security will be violated. It is a trivial fact that att = 0, M = 1 and each user has one unique key.
In this case, the wiretapper will need access to all caches inorder to violate the security of the system.
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From Fig. 5, we can see that Regime 5, i.e., whenr = 1, is the weakest regime from the security perspective as there is
only one key in the system. Thus operation in Regimes 1-4 is desirable for the case ofN = K = 5. Now, considering the
conventional secure scheme, it is seen that there is no sharing of keys as each transmission is useful to only one user. Thus
each user stores an unique key of size|K| = (1 − M−1

N−1 )F bits. This scheme thus requires the wiretapper to have access to
all the caches for the system security to be compromised. Comparing the conventional and proposed schemes from a security
perspective, we see that the proposed scheme is atrade-off between security and minimization of the rate over the shared link.
While the conventional scheme is more difficult to compromise for M ∈ N, the proposed scheme is able to improve on the
transmission rate significantly while still providing security. ✸

B. Intuition behind Theorem 2 (Converse)

We next present the main idea behind the proof of the conversestated in Theorem 2 through a novel extension of the cut-set
bound to incorporate the security constraint. To this end, we focus on the caching system withN = 2 files (denoted byA and
B) andK = 2 users (with cache contents denoted byZ1 andZ2). Consider the scenario where user1 demands fileA and user
2 demands fileB, i.e., the demand vector is(d1, d2) = (A,B). It is easy to check that using the communicationX(A,B) from
the central server along with the two cachesZ1, Z2, both files(A,B) can be recovered. This implies the following constraint:

H
(
A,B|X(A,B), Z1, Z2

)
≤ ǫ. (11)

Next, for the communicationX(A,B) to be secure, we also require the following security constraint to hold:

I
(
A,B;X(A,B)

)
≤ ǫ. (12)

Using these two constraints, we next show that for any scheme, M ≥ 1 must necessarily hold. From the constraints (11)-(12),
we have the following sequence of inequalities:

2F ≤ H(A,B) = I
(
A,B;X(A,B), Z1, Z2

)
+H

(
A,B|X(A,B), Z1, Z2

)

(11)

≤ I
(
A,B;X(A,B), Z1, Z2

)
+ ǫ

= I
(
A,B;X(A,B)

)
+ I

(
A,B;Z1, Z2|X(A,B)

)
+ ǫ

(12)

≤ I
(
A,B;Z1, Z2|X(A,B)

)
+ 2ǫ

≤ H
(
Z1, Z2|X(A,B)

)
+ 2ǫ ≤ H(Z1, Z2) + 2ǫ

≤ H(Z1) +H(Z2) + 2ǫ ≤ 2MF + 2ǫ.

This implies
M ≥ 1−

ǫ

F
. (13)

Taking the limit ǫ → 0, we arrive at the proof ofM ≥ 1. Now consider the fact that given the transmissions from theserver
X(A,B) for demands(d1, d2) = (A,B), X(B,A) for demands(d1, d2) = (B,A) and one cacheZ1, both the filesA,B can be
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recovered. Again, we have the following constraints for fileretrieval and security:

H
(
A,B|X(A,B), X(B,A), Z1

)
≤ ǫ (14)

I
(
A,B;X(A,B)

)
≤ ǫ. (15)

Thus we have,

2F ≤ H(A,B) = I
(
A,B;X(A,B), X(B,A), Z1

)
+H

(
A,B|X(A,B), X(B,A), Z1

)

(14)

≤ I
(
A,B;X(A,B), X(B,A), Z1

)
+ ǫ

= I
(
A,B;X(A,B)

)
+ I

(
A,B;X(B,A), Z1|X(A,B)

)
+ ǫ

(15)

≤ I
(
A,B;X(B,A), Z1|X(A,B)

)
+ 2ǫ

≤ H
(
X(B,A), Z1|X(A,B)

)
+ 2ǫ

≤ H
(
X(B,A)

)
+H(Z1) + 2ǫ

≤ R∗
sF +MF + 2ǫ.

This implies that

R∗
s +M ≥ 2−

2ǫ

F
. (16)

Taking the limit ǫ → 0, we arrive at the proof ofR∗
s +M ≥ 2. We can see that both (13) and (16) hold for all achievable

(M,Rs) pairs. Thus we have,R∗
s(M) ≥ 2−M andM ≥ 1 which gives the lower bound in Fig. 3(b).

IV. D ECENTRALIZED CACHING WITH SECURE DELIVERY

In this section, we extend the secure caching problem to a decentralized caching scheme as discussed in [8]. In the
decentralized caching scheme, each user is allowed to cacheany randomM−1

N−1 bits of each of theN files in the system.
In the coded delivery scheme, the central server maps the contents of individual users’ caches to fragments (which contain
non-overlapping combination of bits) in each file. The fragments reflect which user (or set of users) has cached bits contained
in the given fragment. This phase is followed by a centralized key placement procedure where the server stores shared keys
in each user’s cache. The key placement needs to be centralized to maintain key integrity and to secure the files from an
external wiretapper. In the delivery phase, the server receives a request(d1, . . . , dK) and forms coded multicast transmissions
to extract global caching gain from the system. It then encodes the transmissions with the shared keys and transmits themover
the multicast link. The decentralized algorithm is presented in Algorithm 2 in Appendix D.

In the case of decentralized caching, similar to the centralized case, theconventional secure schemeis one which stores only
one unique key per user and exploits only the local caching gain by using encrypted unicast delivery. The transmission rate in
this case is given byK(1 − M−1

N−1 ). After the cache placement, the server chooses the scheme which provides the minimum
rate over the shared link. The secure rate is then characterized by the following theorem.

Theorem 4. For N files andK users, each with a cache size ofM ∈ N−1
N · t+ 1, for t ∈ (0, N ],

RD
s (M) , K

(
1−

M − 1

N − 1

)
·min

{
N − 1

K(M − 1)
·

(
1−

(
1−

M − 1

N − 1

)K
)
, 1

}
(17)

is securely achievable. For any1 < M ≤ N , the lower convex envelope of these points is achievable.

The proof of Theorem 4 is given in Appendix D. The variablet =MD, represents the part of the cache memory used to store
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data at each user (as detailed in Appendix D). Theorem 4 is defined fort > 0. At t = 0, M = 1 i.e., the caches store a single
key of the size of each file. Entire files, XOR-ed with the keys,are then transmitted over the shared link. Thus the rate in this
case isRD

s (1) , K. As before, the same argument holds for the infeasibility ofthe secure scheme forM = 0. The following
example illustrates the caching scheme which achieves the rate in Theorem 4.

Example3. We consider the case forN = 3 files andK = 3 users, each with a cache of sizeMF bits. Let the three files
be denoted as(W1,W2,W3) = (A,B,C). Fig. 6(a) shows the rate achieved by the secure decentralized caching scheme
given by Theorem 4, the rate of the insecure decentralized scheme from [8] and the corresponding centralized bounds. In the
decentralized placement phase, each of the3 users caches a subset of(M − 1)F/2 bits of each file independently at random.
Thus, each bit of a file is cached by a specific user with probability (M − 1)/2. Considering the fileA, the server maps the
storage of fragments of fileA at the different users’ caches into splits,AT , such thatT ⊆ {1, 2, 3}, |T | = i for i = 0, 1, 2, 3.
Thus there are

∑3
i=0

(
3
i

)
= 23 = 8 splits of file A: (Aφ, A1, A2, A3, A12, A13, A23, A123), whereAφ consists of bits ofA

which are not stored in any users’ cache. On the other hand,A123 has bits which are stored in all users cache. In general, bits
in AT are stored in userk’s cache ifk ∈ T . By law of large numbers, we have:

|AT | ≈

(
M − 1

2

)|T |(
1−

M − 1

2

)3−|T |

F bits (18)

with probability approaching one for large enough file size F. The same analysis holds for filesB,C. Next, we consider
the generation of keysKS for S ⊆ {1, 2, 3}, |S| = j for j = 1, 2, 3. Thus the keys generated in the system are:
K1,K2,K3,K12,K13,K23,K123. It can be seen that there are2K − 1 = 7 unique keys in the system. Next we look at
the cache contents from the central server’s perspective after the centralized key placement phase and before the delivery
procedure begins. The cache placement forN = K = 3 is given in (19). The cache placement phase is entirely decentralized
as the users do not need to consider the number of other users in the system or their cache contents while storing file
fragments in their caches. Next, we consider the delivery procedure of the decentralized caching scheme. The system is
characterized based on the worst possible rate over the shared link. Thus we consider a request(Wd1

,Wd2
,Wd3

) = (A,B,C).
The server responds by transmitting the replyX(A,B,C). Let the setS ⊆ {1, 2, 3} : |S| = s for s = 3, 2, 1. Then we have

X(A,B,C) =
{
KS ⊕k∈S Wdk,S\{k} : k = 1, 2, 3

}3
s=1

, whereWdk,S\{k} corresponds to the fraction of the fileWdk
, requested

by userk which is not present in userk’s cache but is present in the cache of the others − 1 users inS. Thus, forK = 3
users in the system, the coded secure multicast delivery procedure has3 phases for each ofs = 3, 2, 1.
For s = 3 : We have|S| = 3 ⇒ S = {1, 2, 3} and |S \ {k}| = 2. The transmission is{A23 ⊕ B13 ⊕ C12 ⊕ K123}. It can be
seen thatK123 is associated with sub-filesA23, B13, C12. Thus the size of the key is|K123| = max{|A23|, |B13|, |C12|}. In
this case, each sub-file is zero padded to the size of the largest sub-file in the set. Considering user 1, we see thatZ1 contains
B13, C12 andK123. Thus user 1 can XOR outA23 from the transmission. It can be seen that the same holds for users 2 and
3. Thus the transmission is useful for all users and the key makes it secure from the wiretapper. Fors = 3, there is only one
transmission of the size of each of these sub-files. Thus, using (18), the rate over the shared link for this transmission is:

(
M − 1

2

)2(
1−

M − 1

2

)
F. (20)

For s = 2 : We have |S| = 2 ⇒ S ∈ {1, 2}, {2, 3}, {1, 3} and |S \ {k}| = 1. The transmission for each subsetS is
{{A2 ⊕B1 ⊕K12}, {B3 ⊕ C2 ⊕K23}, {A3 ⊕ C1 ⊕K13}}. Again for user 1, we can see thatZ1 containsB1, C1,K12,K13.
Thus it can extractA2, A3 from this transmission. Similarly the other users can extract fragments of their requested files. In
this case, there are three transmissions, each of the size offile fragment, say,A2. Thus the rate of this transmission is:

3 ·

(
M − 1

2

)(
1−

M − 1

2

)2

F. (21)

For s = 1 : We have |S| = 1 ⇒ S ∈ {1}, {2}, {3} and |S \ {k}| = 0. The transmission for each subsetS is
{{Aφ ⊕K1}, {Bφ ⊕K2}, {Cφ ⊕K3}}. These transmissions are sent to individual users, containing the residual fragments
not stored in each user. The size of each transmission is equal to the size of the file fragmentsAφ, Bφ, Cφ. Thus the rate of
this transmission is:

3 ·

(
1−

M − 1

2

)3

F. (22)

Z1 =











A1, A12, A13, A123

B1, B12, B13, B123

C1, C12, C13, C123

K1,K12,K13,K123











Z2 =











A2, A12, A23, A123

B2, B12, B23, B123

C2, C12, C23, C123

K2,K12,K23,K123











Z3 =











A3, A13, A23, A123

B3, B13, B23, B123

C3, C13, C23, C123

K3,K13,K23,K123











. (19)
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Again considering user 1, we can see that the fragments ofA not present in its cache i.e.,Aφ, A2, A3, A23 are extracted from
the entire transmission. The same holds true for the other users. The rate for the composite transmissionX(A,B,C) is obtained
by summing (20), (21) and (22):

RD
s (M)F = F

(
M − 1

2

)2(
1−

M − 1

2

)
+ 3F

(
M − 1

2

)
·

(
1−

M − 1

2

)2

+ 3F

(
1−

M − 1

2

)3

= 3

(
1−

M − 1

2

)
2

3(M − 1)

(
1−

(
1−

M − 1

2

)3
)
F, (23)

which is the expression given in Theorem 4 forN = K = 3. Now, we haveM ∈ N−1
N {1, 2, . . . , N} + 1 =

{
5
3 ,

7
3 , 3
}

.
Considering the pointM = 5/3, we haveRD

s (M) = 38/27. Thus the pair(M,RD
s ) = (5/3, 38/27), is securely achievable.

This is seen from the(M,RD
s ) trade-off in Fig. 6(a). Similarly other points on the trade-off curve can be evaluated using other

feasible values ofM . All points on the lines joining the achievable(M,RD
s ) points are also achievable. ✸

Next, we consider the centralized and decentralized trade-off for a large number of files and users. Fig. 6(b) illustrates the
case forN = K = 20. Compared to Fig. 6(a), we can see that as the number of files and users increase, the decentralized
scheme approaches the centralized caching. Thus for large number of files and users, the rates areasymptotically equal. This
also implies that in the decentralized case, similar to the centralized case, that the cost for security isalmost negligiblewhen
number of files and users increase [24]. The following theorem and corollary compares the rate of the achievable secure
decentralized scheme given in Theorem 4 to the lower bound onthe rate of the optimal secure scheme given in Theorem 2
and the rate of the achievable secure centralized caching scheme given in Theorem 1.

Theorem 5. GivenRD
s (M) be the rate of the secure decentralized caching scheme givenby Algorithm 2 andR∗

s(M) be the
rate of the optimal secure caching scheme, forN files andK users, each having a cache sizeN−1

N + 1 ≤M ≤ N ,

RD
s (M)

R∗
s(M)

≤ 17. (24)

The proof sketch of Theorem 5 is given in Appendix E. Theorem 5implies that no scheme, regardless of complexity can
improve by more than a constant factor upon the secure decentralized caching scheme presented in Algorithm 2 for the given
regime ofM . The gap is unbounded only for the case ofK > N in the regime1 ≤M ≤ N−1

N +1, which is negligibly small
for largeN,K as discussed in Appendix E.

Corollary 6. Let RC
s (M) be the rate of the secure centralized caching scheme given inTheorem 1 andRD

s (M) be the rate
of the secure decentralized caching scheme given in Theorem4. For N files andK users, forN−1

N + 1 ≤M ≤ N , we have

RD
s (M)

RC
s (M)

≤ 17. (25)

Corollary 6 is a direct outcome of Theorems 3 and 5. It shows that the decentralized scheme is at most a constant factor17
worse than the secure centralized scheme in the given regimeof M .

V. D ISCUSSION ANDOPEN PROBLEMS

In this section, we discuss some of the open problems and extensions of the current work:
• Extension to Non-Uniform File Popularities and Multiple Demands per User:The problem of caching with secure delivery
discussed in this paper assumes all files have uniform popularity. We presented an extension of the secure delivery scheme to
the case for non-uniform file popularities in [25]. Furthermore, in this paper, we consider the secure caching problem for the
case of single requests from users at a given time instant. However, an interesting case is when users demand multiple, say L,
files at a given instant. The non-secure problem was addressed from an graph based index coding perspective in [26], while
for the secure case, it is an interesting area for future work.
• Noisy Links & Multiple Eavesdroppers:In the current treatment of the security problem, it is also interesting to note that
the presence of multiple eavesdroppers would not alter the presented results since each eavesdropper would view the same
multicast transmission which leaks no information about the files. This is due to the fact that we consider noiseless delivery
in this model. The analysis of the problem for multiple eavesdroppers in the presence of noisy links is a direction of future
research.
• Extension to Multiple Requests over time:Another area for future work is the case of security in delivering content for
multiple requests over time i.e., security for an online coded caching scheme similar to the one in [10] which would require
a key generation technique such that collection of keys overtime by an eavesdropper cannot lead to information leakage.
• Closing the Gap in Small Buffer Case:Finally closing the gap between the achievable rate and the information theoretic
optimal secure rate forK > N in the regime1 < M < (K−N)(N−1)

KN + 1 for the centralized scheme and1 < M < N−1
N + 1

for the decentralized scheme, is an interesting open problem.
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Algorithm 1 Secure Centralized Caching Algorithm

Centralized Cache Placement:for files W1, . . . ,WN

1: t = K(M − 1)/(N − 1)
2: for n ∈ {1, 2, . . . , N} do
3: Split file Wn into equal sized fragmentsWn,T : T ⊆ {1, 2, . . . ,K}, |T | = t
4: end for
5: Generate keysKTk

such thatTk ⊆ {1, 2, . . . ,K}, |Tk| = t+ 1
6: for k ∈ {1, 2, . . . ,K} do
7: for n = 1, 2, . . . , N do
8: File Wn,T is place in cache,Zk, of userk if k ∈ T
9: Key KTk

is placed in cache,Zk, of userk if k ∈ Tk
10: end for
11: end for
Coded Delivery:
12: for S such thatS ⊆ {1, 2, . . . ,K}, |S| = t+ 1 do
13: Server sends

{
KS ⊕k∈S Wdk,S\{k}

}

14: end for

VI. CONCLUSION

In this paper, we have analyzed the problem ofsecurecaching in the presence of an external wiretapper for bothcentralized
anddecentralizedcache placement. We have proposed a key based secure cachingstrategy which is robust to compromise of
users and keys. We have approximated the information theoretic optimal rate of the secure caching problem with novel upper
and lower bounds. It has been shown that there is a constant multiplicative gap between the optimal and the achievable rates
for the given scheme in case of both centralized and decentralized caching scenarios for most parameters of practical interest.
We have shown that for large number of files and users, the secure bounds approach that of the non-secure case i.e., the cost
of security in the system is negligible when the number of files and users increase.

APPENDIX A
PROOF OFTHEOREM 1

In this section, we discuss the secure centralized caching strategy which achieves the upper boundRC
s (M) as stated in

Theorem 1. The algorithm achieving the rate in Theorem 1 is presented in Algorithm 1. These are two phases in the caching
strategy: the storage phase and the delivery phase. We consider a cache sizeM ≤ N andM ∈ N−1

K · {0, 1. . . . ,K}+ 1. Let
t ∈ {0, 1, . . . ,K} be an integer between0 andK. The cache memory size can then be parametrized byt as:

M =
N − 1

K
t+ 1 =

Nt

K
+ 1−

t

K
. (26)

From (26), we havet = K(M−1)
N−1 . Next, we break up the total cache memory into data memory andkey memory,M =

MD +MK , as follows:

MK = 1−
t

K
; MD =M −MK =

Nt

K
. (27)

From the discussion in Section III, we know that theconventional secure schemeachieves the(M,RC
s ) pair (1,K) and(N, 0).

ThusR∗
s(1) ≤ K andR∗

s(N) = 0. We therefore consider the case in which1 < M < N . In this case,t ∈ {1, 2, . . . ,K − 1}.
Storage Phase:In the placement phase, each fileWn for n = 1, . . . , N is split into

(
K
t

)
non-overlapping sub-files of equal

sizeF/
(
K
t

)
:

Wn = (Wn,τ : τ ⊆ {1, . . . ,K}, |τ | = t). (28)

For eachn, the sub-fileWn,τ is placed the cache of userk if k ∈ τ . Since|τ | = t, for each userk ∈ τ , there aret− 1 out
of K − 1 possible users with whom it shares a sub-file of a given fileWn. Thus each user cachesN

(
K−1
t−1

)
sub-files. Next we

generate a set of keys, each of the size of a sub-file i.e. of size F/
(
K
t

)
:

(Kτk : τk ⊆ {1, . . . ,K}, |τk| = t+ 1). (29)

The keyKτk is placed in the cache of userk if k ∈ τk. The keys are generated such that all the keys are orthogonalto each

other and each key is distributed according toKτk ∼ unif
{
1, 2, . . . , 2F/(Kt )

}
. Again, since|τk| = t + 1, each userk ∈ τk

shares keyKτk with t out ofK − 1 possible users. Thus there are
(
K−1

t

)
keys in the cache of each user. Given each key and
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sub-file has sizeF/
(
K
t

)
, number of bits required for storage at each user is:

N

(
N − 1

t− 1

)
·
F(
K
t

) +
(
K − 1

t

)
·
F(
K
t

)

=
FNt

K
+ F

(
1−

t

K

)
= F

(
Nt

k
+ 1−

t

K

)
= FM (30)

which satisfies the memory constraint.
Delivery Phase:We now elaborate on the delivery phase. Consider a request vector (d1, . . . , dk) ∈ {1, . . . , NK} where user
k requests the fileWdk

. Let S ⊆ {1, . . . ,K} be a subset of|S| = t+1 users. Everyt users inS share a sub-file in their cache
which is requested by thet+1-th user. Given a userk ∈ S and|S \ {k}| = t, the sub-fileWdk,S\{k} is requested by userk as
it is a sub-file ofWdk

which is missing at userk sincek /∈ S \ {k}. The file is present in the cache of thet userss ∈ S \ {k}.
For each such subsetS ⊆ {1, . . . ,K}, the server sends the following transmission:X(d1,...,dk) =

{
KS ⊕s∈S Wds,S\{s}

}
such

that {S ⊆ {1, 2, . . . ,K}, |S| = t+ 1}. The number of subsetsS is
(

K
t+1

)
. Thus there are

(
K
t+1

)
transmissions and an unique

key associated with each transmission i.e., there are
(

K
t+1

)
keys in the system. Each transmission has the size of a subfileand

thus the total number of bits sent over the rate-limited linkis:

RC
s (M)F =

(
K

t+ 1

)
·
F(
K
t

) =
K
(
1− M−1

N−1

)

1 + K(M−1)
N−1

· F

⇒ R∗
s(M) ≤RC

s (M) ,
K
(
1− M−1

N−1

)

1 + K(M−1)
N−1

. (31)

Next, we show that the delivery phase does not reveal any information to the wiretapper i.e., we show that

I
(
X(d1,...,dk);W1, . . . ,WN

)
= 0 (32)

We have,

I
(
X(d1,...,dK);W1, . . . ,WN

)

= H
(
X(d1,...,dK)

)
−H

(
X(d1,...,dK)|W1, . . . ,WN

)

= H
(
X(d1,...,dK)

)
−H

({
KS ⊕s∈S Wds,S\{s} : |S| = t+ 1

}
|W1, . . . ,WN

)

= H
(
X(d1,...,dK)

)
−H ({KS : |S| = t+ 1} |W1, . . . ,WN )

= H
(
X(d1,...,dK)

)
−H ({KS : |S| = t+ 1}) , (33)

where, the last equality follows from the fact that the keys are uniformly distributed and are independent of the files
(W1, . . . ,WN ). Using the fact thatH(A,B) ≤ H(A) +H(B), we have:

H
(
X(d1,...,dK)

)
= H

({
KS ⊕s∈S Wds,S\{s} : |S| = t+ 1

})

≤

( K

t+1)∑

i=1

H
(
KSi

⊕s∈Si
Wds,Si\{s} : |Si| = t+ 1

)

≤

( K

t+1)∑

i=1

log2

(
F(
K
t

)
)

=

(
K

t+ 1

)
log2

(
F(
K
t

)
)
. (34)

On the other hand, we have:

H ({KS : |S| = t+ 1}) =

( K

t+1)∑

i=1

H (KSi
: |Si| = t+ 1)

=

( K

t+1)∑

i=1

log2

(
F(
K
t

)
)

=

(
K

t+ 1

)
log2

(
F(
K
t

)
)
, (35)

where the equality in (35) follows from the fact that the keysKSi
, for all i are mutually independent and distributed as

unif
{
1, 2, . . . , 2F/(Kt )

}
. Substituting (34) and (35) into (33), we have:

I
(
X(d1,...,dK);W1, . . . ,WN

)
≤ 0. (36)
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Using the fact that for anyX,Y , I(X ;Y ) ≥ 0, we have:

I
(
X(d1,...,dK);W1, . . . ,WN

)
= 0, (37)

which proves that the rateRC
s (M) is securelyachievable. This completes the proof of Theorem 1.

APPENDIX B
PROOF OFTHEOREM 2

In this section, we prove the information-theoretic lower bound onR∗
s(M) for anyN,K ∈ N. Let s be an integer such

that s ∈ {1, . . . ,min{N,K}}. Consider the firsts cachesZ1, . . . , Zs. For a request vector(d1, d2, . . . , ds, ds+1, . . . , dK)
= (1, 2, . . . , s, φ, . . . , φ), the transmissionX1 = X(d1,...,dk), along with the cachesZ1, . . . , Zs must be able to decode the
files W1, . . . ,Ws. Similarly there for another request(d1, d2, . . . , ds, ds+1, . . . , dK) = (s + 1, s + 2, . . . , 2s, φ, . . . , φ), the
transmissionX2, which along with cachesZ1, . . . , Zs, must be able to decode the filesWs+1, . . . ,W2s. Thus considering⌊N/s⌋
different requests, the transmissions from the central server denoted byX1, . . . , X⌊N/s⌋, along with the cachesZ1, . . . , Zs,
must be able to decode the filesW1, . . . ,Ws⌊N/s⌋. Let

W̃ =
{
W1, . . . ,Ws⌊N/s⌋

}

X̃ =
{
X1, . . . , X⌊N/s⌋

}

X̃\{l} =
{
X1, . . . , Xl−1, Xl+1, . . . , X⌊N/s⌋

}

Z̃ = {Z1, . . . , Zs} .

In addition, we also have constraints based on file retrievaland security. The file retrieval constraint is based on the fact that
given all possible transmissions and caches, all files can can be retrieved. The security constraint is that a wiretappershould
not be able to retrieve any information about the files from any transmission by the server. Using Definition 1, we have:

H(W̃ |X̃, Z̃) ≤ ǫ (38)

I(W̃ ;Xl) ≤ ǫ; l = 1, . . . , ⌊N/s⌋ (39)

We present a novel extension to the cut-set bound argument [27] to include the security and file retrieval constraints. Consider
the information flow consisting of transmissionsX1, . . . , X⌊N/s⌋ and cachesZ1, . . . , Zs for decoding filesW1, . . . ,Ws⌊N/s⌋.
This flow has minimum capacitys⌊N/s⌋. Thus, we have:

s ⌊N/s⌋F ≤ H(W̃ ) = I(W̃ ; X̃, Z̃) +H(W̃ |X̃, Z̃)
(38)

≤ I(W̃ ; X̃, Z̃) + ǫ

= I
(
W̃ ; {X1, . . . , X⌊N/s⌋}, {Z1, . . . , Zs}

)
+ ǫ

= I(W̃ ;Xl) + I
(
W̃ ; X̃\{l}, Z̃|Xl

)
+ ǫ

(39)

≤ I
(
W̃ ; X̃\{l}, Z̃|Xl

)
+ 2ǫ

≤ H
(
X̃\{l}, Z̃

)
+ 2ǫ

≤

⌊N/s⌋∑

i=1,i6=l

H(Xi) +

s∑

j=1

H(Zj) + 2ǫ

≤ (⌊N/s⌋ − 1)R∗
s(M)F + sMF + 2ǫ

⇒ s ⌊N/s⌋ ≤ (⌊N/s⌋ − 1)R∗
s(M) + sM +

2ǫ

F
. (40)

Solving forR∗
s and optimizing over all possibles, we have:

R∗
s(M) ≥ max

s∈{1,...,min{N,K}}
lim
ǫ→0

s⌊N/s⌋ − sM − 2ǫ
F

⌊N/s⌋ − 1

= max
s∈{1,...,min{N,K}}

(
s−

s(M − 1)(
⌊N

s ⌋ − 1
)
)
, (41)

which concludes the proof of Theorem 2.
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APPENDIX C
PROOF OFTHEOREM 3

In this section, we prove that a constant multiplicative gapexists between the securely achievable rateRC
s (M) given in

Theorem 1 and the optimal secure rateR∗
s(M), for the regime

max

{
(K −N)(N − 1)

KN
+ 1, 1

}
≤M ≤ N. (42)

We consider two cases for the value ofK. Firstly, forK ≤ N , we have from Theorem 1:

RC
s (M) ≤ K

(
1−

M − 1

N − 1

)
= min{N,K}

(
1−

M − 1

N − 1

)
. (43)

For the case ofK > N , (42) reduces to(K −N)(N − 1)/KN + 1 ≤M ≤ N . Thus we have:

(K −N)(N − 1)

KN
+ 1 ≤M

⇒
1

N
−

1

K
≤
M − 1

N − 1
⇒ K ·

1

1 +KM−1
N−1

≤ N

⇒ K

(
1−

M − 1

N − 1

)
1

1 +KM−1
N−1

≤ N

(
1−

M − 1

N − 1

)

⇒ RC
s (M) ≤ min{N,K}

(
1−

M − 1

N − 1

)
. (44)

To prove the constant gap result, we focus on two cases:
Case1: min{N,K} ≤ 17

Settings = 1 in Theorem 2 gives the following lower bound on the optimal secure rate:

R∗
s(M) ≥

(
1−

M − 1

N − 1

)
. (45)

Hence from (44) and (45), we have
RC

s (M)

R∗
s(M)

≤ min{N,K} ≤ 17. (46)

Case2: min{N,K} ≥ 18
For this case, the rate in Theorem 1 has 3 distinct regimes:

• Regime1:

max
{

(K−N)(N−1)
KN , 0

}
≤M − 1 ≤ 1.2max

(
1, N−1

K

)

• Regime2: 1.2max
(
1, N−1

K

)
< M − 1 ≤ 0.0628(N − 1)

• Regime3: 0.0628(N − 1) < M − 1 ≤ N − 1

We consider each of the three regimes separately.

Regime 1: max
{

(K−N)(N−1)
KN , 0

}
≤M − 1 ≤ 1.2max

(
1, N−1

K

)

By Theorem 1, we have:
RC

s (M) ≤ RC
s (1) ≤ min{N,K}. (47)

By Theorem 2 and using the fact that⌊N/s⌋ ≥ N/s− 1, we have:

R∗
s(M) ≥ s−

s2(M − 1)

N − 2s
. (48)

Settings = ⌊0.1586min{N,K}⌋ ∈ {1, . . . ,min{N,K}} we get, forM − 1 ≤ 1.2max
(
1, N−1

K

)
:

R∗
s(M) ≥ R∗

s

(
1.2max

(
1,
N − 1

K

)
+ 1

)

≥ 0.1586min{N,K} − 1−
(0.1586min{N,K})2 · 1.2max

(
1, N−1

K

)

N − 2 · 0.1586min{N,K}
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≥ min{N,K}

{
0.1586−

1

min{N,K}
−

(0.1586)2 · 1.2

1− 2 · (0.1586)min{1,K/N}

}

≥ min{N,K}

{
0.1586−

1

18
−

1.2 · (0.1586)2

1− 2 · 0.1586

}

≥
1

17
min{N,K}. (49)

Combining (47) and (49), we have:
RC

s (M)

R∗
s(M)

≤ 17. (50)

Regime 2: 1.2max
(
1, N−1

K

)
< M − 1 ≤ 0.0628(N − 1)

Let M̄ be the largest multiple ofN−1
K less than equal toM such that

0 ≤M −
N − 1

K
≤ M̄ ≤M. (51)

ChoosingM̄ =M − (N − 1)/K, and using the fact thatRC
s (M) is monotonically decreasing inM , we have:

RC
s (M) ≤ RC

s (M̄)

≤ K ·

{
1−

M − 1

N − 1
+

1

K

}
·

1

1 + K(M−1)
N−1 − 1

≤

(
N − 1

M − 1

)
, (52)

where we have usedM−1
N−1 >

1
K in the last inequality. Now settings = ⌊0.1530N−1

M−1⌋ ∈ {1, . . . ,min{N,K}} in Theorem 2,
we have:

R∗
s(M) ≥ 0.1530

N − 1

M − 1
− 1−

0.15302 · N−1
M−1

2
· (M − 1)

N − 2 · 0.1530 · N−1
M−1

≥
N − 1

M − 1

{
0.1530− 0.0628−

0.15302

1− 2·0.1530
1.2

}

≥
1

17

(
N − 1

M − 1

)
. (53)

Combining (52) and (53), we get:
RC

s (M)

R∗
s(M)

≤ 17. (54)

Regime 3: 0.0628(N − 1) < M − 1 ≤ N − 1

Let M̄ − 1 be a multiple of(N − 1)/K less than equal to0.0628(N − 1), such that

0 ≤ 0.0628(N − 1)−
N − 1

K
≤ M̄ − 1 ≤ 0.0628(N − 1). (55)

Then using Theorem 1 and the fact thatM̄ ≤M , we have:

RC
s (M) ·

1

1− M−1
N−1

≤ RC
s (M̄) ·

1

1− M̄−1
N−1

⇒RC
s (M) ≤ RC

s (M̄) ·
1

1− M̄−1
N−1

·

(
1−

M − 1

N − 1

)

≤ RC
s (M̄) ·

1

1− 0.0628
·

(
1−

M − 1

N − 1

)
. (56)

Now by Theorem 1 and using (55), we have:

RC
s (M̄) ≤

1
M̄−1
N−1 + 1

K

≤
1

0.0628− 1
K + 1

K

=
1

0.0628
. (57)

Thus we have, from (56) and (57):

RC
s (M) ≤

1

0.0628(1− 0.0628)

(
1−

M − 1

N − 1

)
. (58)
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Settings = 1 in Theorem 2, we have the following lower bound:

R∗
s(M) ≥

(
1−

M − 1

N − 1

)
. (59)

Thus combining (58) and (59), we get:

RC
s (M)

R∗
s(M)

≤
1

0.0628(1− 0.0628)
≤ 17. (60)

Thus we have proved that for anyN,K ∈ N and all (K−N)(N−1)
KN +1 ≤M ≤ N , there is a constant multiplicative gap of17

between the achievable rate and the information theoretic optimal. This concludes the proof of Theorem 3.

Remark2. For K ≤ N the gap is bounded for the entire feasible regime of1 ≤ M ≤ N . However, forK > N , the gap is
unbounded in the regime:

1 ≤M <
(K −N)(N − 1)

KN
+ 1,

and scales with the number of usersK. However, (K−N)(N−1)
KN ≤ 1 for anyK > N and thus the regime is a fraction of the

value ofM and is in general negligible whenN is large. Also, the regime is always below the values ofM for which the
data memory dominates key memory i.e.,M > 2N/(N + 1) ≥ 1, thereby making it a regime of lesser practical interest.

APPENDIX D
PROOF OFTHEOREM 4

The decentralized algorithm which achieves the rate in Theorem 4 is given in Algorithm 2.

Algorithm 2 Secure Decentralized Caching Algorithm

Decentralized Cache Placement:
1: for k ∈ {1, . . . ,K}, n ∈ {1, . . . , N} do
2: Userk randomly cachesM−1

N−1F bits of file n.
3: end for

Delivery Procedure for request(d1, . . . , dK)
Centralized Key Placement:
Central server maps the cache contents to fragments in the
filesW1, . . . ,WN and generates keys as follows-
4: for i = 0, 1, 2, . . . ,K do
5: for n = 1, 2, . . . , N do
6: Wn = {Wn,T }, T ⊆ {1, . . . ,K} : |T | = i such thatWn,T is cached at userk, if k ∈ {T }
7: end for
8: end for
9: for s = 1, 2, . . . ,K do

10: for S ⊆ {1, . . . ,K} : |S| = s do
11: Key KS is generated
12: KS is placed in cache of userk if k ∈ {S}
13: end for
14: end for
Coded Secure Delivery:
15: for s = K,K − 1, . . . , 1 do
16: for S ⊆ {1, . . . ,K} : |S| = s do
17: Server sends

{
KS ⊕k∈S Wdk,S\{k}

}

18: end for
19: end for
Conventional Delivery Procedurefor request(d1, . . . , dK)
20: Server places individual keys of size(1 − M−1

N−1 )F bits at each user’s cache
21: for n ∈ {0, . . . , N} do
22: Server sends enough random linear combinations of bits in file n XOR-ed with individual keys for the all users

requesting it
23: end for
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GivenN files andK users, each with a cache size ofMF bits, we first show that the memory constraintM ∈ N−1
N t+1 for

t ∈ (0, N ] is valid. We then evaluate the rate of Algorithm 2 and show that the multicast delivery is information theoretically
secure.

Considering the proposed decentralized scheme in Algorithm 2, each user is allowed to cache any random subset ofM−1
N−1F

bits of any fileWn. Since the choice of these subsets is uniform, given a particular bit in file Wn, the probability of the bit
being cached at a given user is:

q ,
M − 1

N − 1
∈ (0, 1]. (61)

Considering a fixed subset ofs out ofK users, the probability that this bit is cached exactly at theses users and not cached
at the remaining(K − s) users isqs(1− q)K−s. The expected number of bits ofWn that are cached at exactly thoses users
is given by:

E [# of bits ofWn at s users] = Fqs(1 − q)K−s. (62)

The actual realization of the random number of bits of a fileWn cached ats users is within the range:

Fqs(1− q)K−s ± o(F ). (63)

For ease of exposition, we consider all the fragments of filesshared bys users have the same size. Hence the factoro(F ) can
be ignored for large enoughF .

Memory Constraint

Next, the server maps the contents of the users’ caches to non-overlapping fragments in files such that each fragment reflects
which users have cached the bits contained in the fragment. Referring to Algorithm 2, Line 4, the variablei signifies the
number of users which share a given file fragment. Fori = 0, the file fragments areWn,φ which is not stored at any user.
When i = 1, the file fragments areWn,k for k = 1, . . . ,K which are stored only at one user and hence shared by none. In
general for anyi, the fragmentsWn,S such that|S| = i are stored ati users and shared by any given user withi − 1 other
users. Thus, for a given a userk, the number of fragments it shares withi − 1 out of the remainingK − 1 users for eachi
is given by

(
K−1
i−1

)
. From (62), we have the size of fragments which are stored at exactly i users isFqi(1− q)K−i. Thus, the

total memory at each user for storing data is given by:

MDF = N ·

K∑

i=1

(
K − 1

i− 1

)
Fqi(1− q)K−i

MD = Nq

K−1∑

i−1=0

(
K − 1

i− 1

)
qi−1(1− q)(K−1)−(i−1)

= Nq = N
M − 1

N − 1
. (64)

Next, we describe the centralized key placement. For each sub-setS ⊆ {1, . . . ,K} of size s, i.e., |S| = s, wheres =
1, 2, . . . ,K, a keyKS is generated as follows:

KS ∼ unif
{
1, 2, . . . , 2Fqs−1(1−q)K−s+1

}
. (65)

Subsequently, the keyKS is placed in the cache of userk if k ∈ S. The centralized key generation and placement phase
is inherently related to the delivery phase of the decentralized algorithm since the size of a key is related to the size offile
fragment which is encoded with the key during coded delivery. Consider the coded delivery phase in Algorithm 2, Line15−19.
Given a request(d1, . . . , dK), the composite transmissionX(d1,...,dK) is sent by the server. The composite transmission can
be written as:

X(d1,...,dK) =
{
Xs

(d1,...,dK)

}K

s=1
, (66)

whereXs
(d1,...,dK) consists of

(
K
s

)
transmissions, one for each possible sub-setS of sizes i.e.,

Xs
(d1,...,dK) =

{
KS ⊕k∈S Wdk,S\{k} : |S| = s

}
. (67)

Wdk,S\{k} denotes the part of the fileWdk
requested by userk which is present in the caches all the users in setS except

in the cache of userk. The keyKS is associated with the transmission⊕k∈SWdk,S\{k}. Furthermore, from the design of the
key placement, the keyKS is available in the cache of all thes users in the sub-setS. Since|S \ {k}| = s− 1, from (62) we
have, the expected size of the fragmentWdk,S\{k} is given byFqs−1(1 − q)K−s+1. For a fixed value ofs, the size of each
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transmission inXs
(d1,...,dK) is given by:

max
k∈S

|Wdk,S\{k}| = Fqs−1(1− q)K−s+1. (68)

Thus, each keyKS must be chosen with the size:

|KS | = max
k∈S

|Wdk,S\{k}| = Fqs−1(1 − q)K−s+1, (69)

which is precisely how each key is generated according to (65). Now, for a given value ofs, a userk needs file fragments
contained inS \ {k} i.e., s− 1 other users in the setS. This set ofs− 1 users need to be chosen out of the remainingK − 1
users. Thus for eachs, there are

(
K−1
s−1

)
keys associated with each user. Thus the total number of keysat each user is given

by
∑K

s=1

(
K−1
s−1

)
= 2K−1. The total memory occupied by keys at each users’ cache is given by:

MKF =
K∑

s=1

(
K − 1

s− 1

)
Fqs−1(1 − q)K−s+1

MK = (1− q)

K∑

s=1

(
K − 1

s− 1

)
Fqs−1(1− q)(K−1)−(s−1)

= (1− q) = 1−
M − 1

N − 1
. (70)

From (70) and (64), we have:

MD +MK = N
M − 1

N − 1
+ 1−

M − 1

N − 1
=M, (71)

which proves the memory constraint. PuttingMD = t, the memory break up can be parametrized as:

M = t+ (1−
t

N
) =

N − 1

N
t+ 1. (72)

Now, whent = 0, M = 1, which is the condition for storing just keys in caches and sending entire files over the shared link.
On the other hand, whent = N , M = N i.e., the entire files are stored in the caches and there is no need for a transmission.
Thus t ∈ (0, N ] is the region of interest. HenceM ∈ N−1

N · (0, N ] + 1 is valid. Note that the constraint onM is due to the
centralized key placement and is thus the cost for security.

Remark3. Considering the range for file fragment size in (63), if we consider that the fragments are not indeed of equal size,
then in turn the key size is also within the rangeMK ± o(F ). If this is the case, then the cache memory constraint will be
within the rangeM±o(F ). Sinceo(F ) can generally be ignored in comparison toM , the cache memory constraint is satisfied
on an average. ✸

Calculation ofRD
s (M)

A. Analysis of Conventional Secure Scheme

In conventional secure delivery scheme, forN ≤ K, the worst case request corresponds to at least one user requesting every
file. Considering all users request fileWn, they all haveF (M − 1)/(N − 1) of its bits already in their cache. Thus at most

F
(
1− M−1

N−1

)
+ o(F ) random linear combinations need to be sent to the users requesting the filen. For ease of exposition,

o(F ) can be ignored. In the conventional scheme, each userk stores an unique keyKk of size
(
1− M−1

N−1

)
F bits which is

XOR-ed with the data before transmission. Although there are N files, each users’ request needs to be secured with a key.
Thus, in contrast to the non-secure case in [8], the unicast delivery is done forK users and the normalized delivery rate is
K
(
1− M−1

N−1

)
.

If N > K, then at mostK different files can be requested. The transmission thus has anormalized rate ofK
(
1− M−1

N−1

)
.

Thus, for allN andM ∈ (1, N ], the conventional scheme has a normalized rate of:

Rconv
s (M) = K

(
1−

M − 1

N − 1

)
(73)

B. Analysis of the proposed scheme

Considering the secure delivery procedure for the coded caching scheme in Algorithm 2, we can see that there are
(
K
s

)

subsetsS of cardinality s. Thus there are
(
K
s

)
transmissions for eachs = K,K − 1, . . . , 1. Now, for the coded secure

transmission, the unique keyKS is associated with each subsetS. The total number of unique keys in the system is given by∑K
s=1

(
K
s

)
= 2K − 1.
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Now, considering the fragment size ofWdk,S\{k} in (68) and the transmissionXs
(d1,...,dK) in (67), for each value ofs, the

size of each transmission is given by:

|Xs
(d1,...,dK)| =

(
K

s

)
Fqs−1(1− q)K−s+1. (74)

Summing over all values ofs, the rateRdec
s (M), of the composite transmissionX(d1,...,dK) is:

Rdec
s (M)F =

K∑

s=1

(
K

s

)
Fqs−1(1− q)K−s+1

Rdec
s (M) =

1− q

q
·

K∑

s=1

(
K

s

)
qs(1− q)K−s

=
1− q

q
·
(
1− (1− q)K

)

(61)
=

1− M−1
N−1

M−1
N−1

·

(
1−

(
1−

M − 1

N − 1

)K
)

= K

(
1−

M − 1

N − 1

)
·

N − 1

K(M − 1)
·

(
1−

(
1−

M − 1

N − 1

)K
)
. (75)

The server can use either the proposed scheme or the conventional secure scheme, whichever uses the minimal rate. Thus
combining (73) and (75), Algorithm 2 achieves a rate of:

RD
s (M) = min

{
Rconv

s (M), Rdec
s (M)

}

= K

(
1−

M − 1

N − 1

)
·

min

{
N − 1

K(M − 1)
·

(
1−

(
1−

M − 1

N − 1

)K
)
, 1

}
, (76)

which is the result (17) presented in Theorem 4.

Proof of Secure Achievability

Next, we show that the delivery phase does not reveal any information to the wiretapper i.e., we show that:

I
(
X(d1,...,dK);W1, . . . ,WN

)
= 0 (77)

In the decentralized scheme, the central server transmitsX(d1,...,dK) to satisfy the requests(d1, . . . , dk) of theK users. The
composite transmissionX(d1,...,dK), given in (66), consists of

(
K
s

)
transmissions for eachs = K,K − 1, . . . , 1. We have:

I
(
X(d1,...,dK);W1, . . . ,WN

)

= H
(
X(d1,...,dK)

)
−H

(
X(d1,...,dK)|W1, . . . ,WN

)

= H
(
X(d1,...,dK)

)
−H

({
Xs

(d1,...,dK)

}K

s=1
|W1, . . . ,WN

)

= H
(
X(d1,...,dK)

)
−H

({{
KS ⊕k∈S Wdk,S\{k} : |S| = s

}}K
s=1

|W1, . . . ,WN

)

= H
(
X(d1,...,dK)

)
−H

(
{{KS : |S| = s}}

K
s=1 |W1, . . . ,WN

)

= H
(
X(d1,...,dK)

)
−H

(
{{KS : |S| = s}}Ks=1

)
, (78)

where, the last equality follows from the fact that the keys are uniformly distributed and are independent of the files
W1, . . . ,WN . Using the fact thatH(A,B) ≤ H(A) +H(B), we have:

H
(
X(d1,...,dK)

)

= H

({
Xs

(d1,...,dK)

}K

s=1

)
≤

K∑

s=1

H
(
Xs

(d1,...,dK)

)
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≤

K∑

s=1

(Ks )∑

i=1

H
(
KSi

⊕k∈Si
Wdk,Si\{k} : |Si| = s

)

≤
K∑

s=1

(Ks )∑

i=1

log2
(
Fqs−1(1− q)K−s+1

)

=
K∑

s=1

(
K

s

)
log2

(
Fqs−1(1− q)K−s+1

)
. (79)

On the other hand, we have:

H
(
{{KS : |S| = s}}

K
s=1

)

=

K∑

s=1

H ({KS : |S| = s}) =

K∑

s=1

(Ks )∑

i=1

H (KSi
: |Si| = s)

=

K∑

s=1

(Ks )∑

i=1

log2
(
Fqs−1(1 − q)K−s+1

)

=

K∑

s=1

(
K

s

)
log2

(
Fqs−1(1− q)K−s+1

)
, (80)

where the equality in (80) follows from the fact that the keysare orthogonal to each other and they are uniformly distributed
as in (65). Substituting (79) and (80) into (78), we have:

I
(
X(d1,...,dK);W1, . . . ,WN

)
≤ 0 (81)

Using the fact that for anyX,Y , I(X ;Y ) ≥ 0, we have:

I
(
X(d1,...,dK);W1, . . . ,WN

)
= 0 (82)

which proves that the rateRD
s (M) is securelyachievable. This completes the proof of Theorem 4.

APPENDIX E
PROOF OFTHEOREM 5

The proof for Theorem 5 is similar to the proof of Theorem 3 in Appendix C. We prove that a constant multiplicative gap
exists between the achievable decentralized secure rate inTheorem 4 and the information theoretic optimal for the regime:

N − 1

N
+ 1 ≤M ≤ N (83)

For the case ofK < N , from Theorem 4, we have, for1 < M ≤ N ,

RD
s (M) ≤ K

(
1−

M − 1

N − 1

)
= min{N,K}

(
1−

M − 1

N − 1

)
. (84)

Again in the case ofK > N , we have

M ≥
N − 1

N
+ 1 ⇒

N − 1

M − 1
< N (85)

Now, settingr = 1− M−1
N−1 and substituting in (85), we have:

1

1− r
< N (86)

Since0 ≤ r < 1, we have

1

1− r
≈

K−1∑

i=0

ri ≤ N, (87)
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which becomes tighter asK → ∞. Noting that (87) is a geometric series, we get:

K−1∑

i=0

ri ≤ N ⇒
1− rK

1− r
≤ N (88)

Substituting the value ofr, we have:

N − 1

M − 1

(
1−

(
1−

M − 1

N − 1

)K
)

≤ N

⇒ RD
s (M) ≤ min{N,K}

(
1−

M − 1

N − 1

)
(89)

Thus in general,RD
s (M) ≤ min{N,K}

(
1− M−1

N−1

)
for the regime:

N − 1

N
+ 1 ≤M ≤ N. (90)

Next, we consider two cases:min{N,K} ≤ 17 andmin{N,K} ≥ 18.
Case1: min{N,K} ≤ 17

From (89), we have:

RD
s (M) ≤ min{N,K}

(
1−

M − 1

N − 1

)
. (91)

Also, settings = 1 in Theorem 2 gives:

R∗
s(M) ≥

(
1−

M − 1

N − 1

)
. (92)

Thus we have:
RD

s (M)

R∗
s(M)

≤ min{N,K} ≤ 17. (93)

For min{N,K} ≥ 18, we consider 3 distinct regimes:

Regime 1: N−1
N + 1 ≤M − 1 ≤ 1.2max

(
1, N−1

K

)

Regime 2: 1.2max
(
1, N−1

K

)
< M − 1 ≤ (N−1)

17

Regime 3: (N−1)
17 < M − 1 ≤ N − 1

We consider each of the three regimes separately.

Regime 1: N−1
N + 1 ≤M − 1 ≤ 1.2max

(
1, N−1

K

)

By (89), we have:
RD

s (M) ≤ RD
s (1) ≤ min{N,K}. (94)

By Theorem 2 and using the fact that⌊N/s⌋ ≥ N/s− 1, we have:

R∗
s(M) ≥ s−

s2(M − 1)

N − 2s
. (95)

Settings = ⌊0.1586min{N,K}⌋ we get, forM − 1 ≤ 1.2max
(
1, N−1

K

)
:

R∗
s(M) ≥ R∗

s

(
1.2max

(
1,
N − 1

K

)
+ 1

)

≥ 0.1586min{N,K} − 1−
(0.1586min{N,K})2 · 1.2max

(
1, N−1

K

)

N − 2 · 0.1586min{N,K}

≥ min{N,K}

{
0.1586−

1

min{N,K}
−

(0.1586)2 · 1.2

1− 2 · (0.1586)min{1,K/N}

}

≥ min{N,K}

{
0.1586−

1

18
−

1.2 · (0.1586)2

1− 2 · 0.1586

}

≥
1

17
min{N,K}. (96)
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Combining (94) and (96), we get:
RD

s (M)

R∗
s(M)

≤ 17. (97)

Regime 2:1.2max
(
1, N−1

K

)
< M − 1 ≤ (N−1)

17

Using (89), we have:

RD
s (M) ≤

N − 1

M − 1
− 1 ≤

N − 1

M − 1
. (98)

Now settings = ⌊0.1460N−1
M−1⌋ in Theorem 2, we have:

R∗
s(M) ≥ 0.1460

N − 1

M − 1
− 1−

0.14602 · N−1
M−1

2
· (M − 1)

N − 2 · 0.1460 · N−1
M−1

≥
N − 1

M − 1

{
0.0.1460−

1

17
−

0.14602

1− 2·0.1460
1.2

}

≥
1

17

(
N − 1

M − 1

)
. (99)

Combining (98) and (99), we get:
RD

s (M)

R∗
s(M)

≤ 17. (100)

Regime 3: (N−1)
17 < M − 1 ≤ N − 1

From (89), we have:

RD
s (M) ≤

N − 1

M − 1
− 1. (101)

Settings = 1 in Theorem 2, we have again:

R∗
s(M) ≥

(
1−

M − 1

N − 1

)
. (102)

Thus combining (101) and (102), we get:

RD
s (M)

R∗
s(M)

≤
N−1
M−1 − 1

1− M−1
N−1

=
N − 1

M − 1
≤ 17. (103)

Thus we have proved that for anyN,K ∈ N and all N−1
N +1 ≤M ≤ N , there is a constant multiplicative gap of17 between

the achievable secure decentralized rate and the information theoretic optimal for any secure scheme. It is to be noted that for
K > N , the gap is unbounded in the regime

1 < M <
N − 1

N
+ 1, (104)

and scales with the number of usersK. But N−1
N < 1 for anyN and thus the regime ofM in which the gap is unbounded

is in general negligible, especially whenN,K are large. This concludes the proof of Theorem 5.
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