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Abstract—We consider Bayesian ranging methods for local-
ization in wireless communication systems. Based on a channel
model and given priors for the range and the line-of-sight (LOS)
condition, we propose range estimators with and without LOS
detection. Since the pdf of the received frequency-domain signals
is unknown, we approximate the maximum-a-posteriori (MAP)
and the minimum mean-squared error (MMSE) estimators.
The promising ranging accuracy obtained with the proposed
estimators is demonstrated by Monte Carlo simulations. We
observe that the approximate MMSE estimators outperform the
approximate MAP estimators. In addition, we find that including
LOS detection in the approximate estimators, while adding a
higher computational complexity, has no major impact on the
ranging performance.

I. INTRODUCTION

Having accurate localization capability is increasingly im-
portant for wireless communication systems [1] [2]. One
approach to increase localization performance is to rely on
high precision ranging techniques [3]. State-of-the-art ranging
techniques based on, for example, the received signal strength,
angle-of-arrival, time-of-arrival, time-difference-of-arrival, etc,
may be sensitive to line-of-sight (LOS) conditions [2] [4].
Therefore, accounting for the unknown LOS or non-LOS
(NLOS) conditions is an issue considered in many ranging
and localization techniques [5] [6].

To tackle this issue, one approach is to rely on LOS
identification techniques. Such a approach is reliable provided
that the signal bandwidth and signal-to-noise ratio (SNR)
are sufficiently large [4] [7] [8] [9] [10] [11]. Existing LOS
identification techniques include methods based on machine-
learning [10] [12] and hypothesis-testing [5] [9] [2]. The
LOS identification step labels range estimates as “LOS” or
“NLOS” to facilitate the localization algorithms [13] [12].
The rational is that if the LOS condition can be correctly
identified, this information can be used to improve the ranging
and localization accuracy. However, in communication systems
with limited bandwidth and SNR, the LOS detector may be
unreliable [4].

Instead of identifying and mitigating NLOS range estimates,
direct ranging, which infers the range parameter directly from
the received signal, can be potentially applied. Direct ranging
methods have been proposed in [14], [15] for bypassing
a related problem, i.e. first-path detection. These methods
rely on a channel model formulated via a point process
to compute the required moments of the received signal.
In [14], an approximate maximum-likelihood ranging method

using the first- and second-order moments of the received
signal has been presented. Using the prior distribution of the
range, Bayesian estimators, including approximate maximum
a posteriori (MAP) and minimum-mean-square-error (MMSE)
estimators and a pth-order MMSE polynomial estimator, are
proposed in [15]. In contrast to the methods in [16] [17], direct
ranging operates without knowledge of the number of multi-
path components in the channel response and separability
condition on these components. Although the methods in [14],
[15] still rely on LOS state information, the principle of
ranging without estimating intermediate parameters seems
promising.

In the present contribution, we propose Bayesian ranging
methods with and without LOS detection for multi-path chan-
nels. Inspired by the direct ranging principle, we make use of
a channel model to approximate pdfs of the received signal.
In addition, we incorporate prior information on the range and
the LOS condition. For this setup, we propose and evaluate ap-
proximate MAP and MMSE estimators. In addition, we derive
variants of these estimators with approximate MAP and Bayes
decision rules for LOS detection. We test the performance of
the proposed methods by means of Monte Carlo simulations
of an OFDM system with limited bandwidth.

II. SIGNAL AND CHANNEL MODEL

We address the problem of estimating the range parameter
r directly from the received signal vector y = [y1, . . . , yN ]T

obtained at frequencies f1, . . . , fN . We follow the Bayesian
approach and consider the range r to be a random variable with
a priori pdf p(r). Assuming the channel to be time-invariant
with additive noise, we write

y = Ah(r) + n, (1)

where A = diag{a1, . . . , aN} is a diagonal matrix containing
the known pilot symbol, h(r) denotes the range-dependent
frequency-domain channel response, and n is a white circular
complex Gaussian noise vector with component variance σ2.

As in [14] and [15], we decompose h(r) as the Hadamard
product of a range-dependent factor ϕ(r) and a range-
independent factor ξ:

h(r) = ϕ(r)⊙ ξ (2)

with

ϕ(r) = [ϕ1, . . . ,ϕN ]T , ϕn = e−ȷ2πfn
r
c ,



where ȷ =
√
−1 and c is the speed of light. Unlike [14]

and [15], we here consider the case of a multi-path channel
in which LOS propagation occurs with probability pLOS. Thus
we write ξ as a superposition of a LOS term and a multi-path
term

ξ = qα01+ ε, (3)

where 1 denotes an all-ones vector. The random LOS indicator
q takes value one with probability pLOS and zero otherwise.
The complex gain of the LOS term is denoted by α0. The
multi-path term ε = [ε1, . . . , εN ]T has entries

εn =
L
∑

l=1

αle
−j2πfnτl , n = 1, . . . , N, (4)

where αl is the complex gain and τl is the excess delay of path
l with respect to the LOS delay r

c
. The random excess delays

form a point process T = {τ1, τ2, . . .} with intensity function
ρ(τ) whose shape controls the average number of points in T
per time unit. By convention, we set the delay associated to
the LOS component to be zero, i.e. τ0 = 0. Depending on the
specific point process assumed, the number L = |T | of multi-
path components may be random and potentially infinite. We
further assume that

E[αl|τl] = 0, E[αlα
∗
l′ |τl, τl′ ] =

{

σ2
α(τl), l = l′

0, otherwise,
(5)

where σ2
α(τl) denotes the expected power of a path component

with delay τl. With these definitions, the delay power spectrum
of the considered channel model is of the form

P (τ) = E[P (τ |q)|q] (6)

where P (τ |q) is the conditional delay power spectrum [14]

P (τ |q) = σ2
α(τ)(ρ(τ) + q2δ(τ)) (7)

with δ denoting the Dirac delta function. Thus, P (τ) =
σ2
α(τ)(ρ(τ) + pLOSδ(τ)).

III. ESTIMATION OF RANGE

A. Approximate Likelihood Function

Standard Bayesian estimators such as MAP and MMSE
estimators necessitate the computation of the posterior pdf
p(r|y). For a specific estimation problem, this pdf may be
known directly or alternatively computed via Bayes Theorem,
provided that the likelihood function p(y|r) is known. For the
problem described in Section II, it is most convenient to work
with the likelihood function, which can be expressed as

p(y|r) =
1

∑

q=0

p(y|r, q)p(q), (8)

where p(q) denotes the probability mass function of q. Unfor-
tunately, for the case considered, the two likelihood functions
p(y|r, q) and p(y|r) are unknown and therefore we resort to
approximations. Here, we consider two different approxima-
tions for p(y|r).

To derive the first approximation, we follow the same
approach as in [14] and [15]: we approximate the likelihood
function p(y|r, q) as a Gaussian pdf pG(y|r, q) with the same
first and second moments, i.e. with mean zero and covariance

Cy|r,q = E[yyH |r, q] = AΦ(r)Cξ|qΦ
H(r)AH + σ2

I, (9)

where Φ(r) = diag{ϕ(r)}, I denotes the identity matrix, and
Cξ|q = E[ξξH |q] with the (m,n)th entry computed as

[Cξ|q]mn = F{P (τ |q)}(fm − fn). (10)

Here, F denotes the Fourier transform. Inserting pG(y|r, q)
for p(y|r, q) in (8), we obtain the Gaussian mixture

pGM (y|r) =
1

∑

q=0

pG(y|r, q)p(q). (11)

In the second approximation, we replace p(y|r) directly by
a Gaussian pG(y|r) with the same first and second moments
as y|r, i.e. with mean zero and covariance

Cy|r = E[Cy|r,q] (12)

in which Cξ = E[Cξ|q] can be straightforwardly computed.

Evaluation of pG(y|r) and pGM(y|r) requires calculation
of determinants and inverses of the matrices defined in (9)
and (12). Following the same line of arguments as in [14],
these computation tasks simplify since the determinants do
not depend on r and inversion of the involved matrices can be
carried out efficiently.

The accuracy of the above approximations depends on
the specific parameter settings of the channel model. As an
example, the Gaussian approximation may be inaccurate if
the average number of path components in the multi-path
channel, see (4), is small or the delay power spectrum exhibits
a fast exponential decay. In the other extreme where the delay
power spectrum is a constant and the average number of
path components is high, the Gaussian approximation is well
justified. Consequently, the accuracy of the estimators derived
from the proposed approximations should be assessed, e.g. via
Monte Carlo simulations.

B. Approximate MAP Ranging

The MAP estimator for r, defined as

r̂MAP(y) = argmax
r

p(y|r)p(r), (13)

cannot be computed since p(y|r) is unknown. Therefore, we
propose to approximate it by replacing p(y|r) with either
pGM (y|r) or pG(y|r) defined above. Accordingly, we define
two approximate MAP estimators:

r̂AMAP,GM(y) = argmax
r

pGM(y|r)p(r), (14)

r̂AMAP,G(y) = argmax
r

pG(y|r)p(r). (15)

In (14) and (15), we marginalized over q and therefore
LOS detection is not needed. Alternatively, we can obtain the



range by detecting the LOS condition first. This results in an
approximate MAP estimator for r:

r̂AMAP,Dec(y) = argmax
r

pG(y|r, q̂)p(r), (16)

with q̂ denoting the approximate MAP decision rule

q̂(y) = argmax
q

p(q)

∫

pG(y|r, q)p(r)dr. (17)

Computation of (16) and (17) is a two-step procedure with a
LOS detection step followed by a ranging step. However, it is
unclear if this additional complexity due to the LOS detector
translates into improved ranging accuracy since the involved
Gaussian approximations may undermine the performance
of (16) and (17). In Section IV, we carry out a simulation
study to answer this question.

Depending on the choice of prior and delay power spec-
trum, the optimization in (14)–(17) may require numerical
procedures. We remark that to numerically evaluate the ob-
jective functions, it is necessary to invert the corresponding
covariances defined in (9) and (12) for each value of r. As
already shown (see [14]), this inversion can be simplified using
eigenvalue decomposition.

C. Approximate MMSE Ranging

For the ranging problem, the MMSE estimator is given by

r̂MMSE(y) = argmin
r′

E[(r − r′)2|y] = E[r|y], (18)

where the expectation is taken over the unknown pdf p(r|y).
Using the approximations for p(r|y) in Section III-A, we

obtain approximate MMSE estimators:

r̂AMMSE,GM(y) = EpGM
[r|y], (19)

r̂AMMSE,G(y) = EpG
[r|y], (20)

where the expectations are taken over pGM(r|y) and pG(r|y)
respectively.

The performance of the estimators (19) and (20) is essen-
tially limited by the involved approximations. These estimators
are therefore not optimal in a particular sense. Better per-
forming estimators could potentially be obtained by invoking
more accurate approximations. One candidate improvement
provided a reliable detection of the LOS condition is to use
separate approximations for the LOS and NLOS cases. Here,
we consider Bayes’ decision rule in combination with the
approximate MMSE estimator defined in (20) where pLOS = 1
when LOS is detected and zero otherwise:

r̂AMMSE,D = EpG
[r|y, q̂]. (21)

Bayes’ decision rule for q reads

q̂(y) =

⎧

⎪

⎨

⎪

⎩

1; C11p(q = 1|y) + C01p(q = 0|y)
< C10p(q = 1|y) + C00p(q = 0|y)

0; otherwise,

(22)

where Cqq′ is the cost resulting from the MSE of the esti-
mator (21) with LOS decision q′ applied under the true LOS
condition q.

Table I
SIMULATION SETTINGS

OFDM system:
Bandwidth: 9MHz, N = 100,

∆f = 15 kHz, Tcp = 5.4 µs, SNR =
E[|ai|

2]
σ2 ,

Equal power and equal spacing pilot signal is used.

Channel parameters:
Homogenous Poisson point process: ρ(τ) = ρ0, λ = 360 ns,
κ = 2; Average no. of paths: µL = ρ0Tcp, r ∼ U [0, 100]m.

Results obtained from 3000 Monte Carlo trials are displayed.

Implementation of the approximate MMSE estimators re-
quires, in contrast to the approximate MAP estimators, eval-
uation of certain integrals. In case no closed-form expression
can be obtained, this can be done fairly accurately by using
standard numerical integration methods. We remark that the
cost functions in (22) can be computed using Monte Carlo
methods and stored for each considered parameter setting of
the power delay profile. Therefore, range estimators with LOS
detection require additional computational effort and storage
compared to the estimators without LOS detection in (19)
and (20).

IV. NUMERICAL PERFORMANCE EVALUATION

The invoked approximations of the likelihood function
naturally impair the estimation performance. It is, however,
unclear which of the estimators suffers the most. Note that
the theoretical result that the MMSE estimator achieves lower
MSE than all other estimators, e.g. the MAP estimator, does
not hold for the approximate MMSE estimators. Thus, we rely
on Monte Carlo simulations for assessing which of the above
estimator yields the lowest MSE.

We compare the performance of the proposed estimators in
terms of root-mean-squared-error (RMSE) and probability of
LOS detection error. In addition, we compare them to “genie-
aided” estimators obtained from (16) and (21) by inserting the
true q value for q̂. The genie-aided estimators provide lower
bounds on the RMSE. As a study case, we simulate an OFDM
communication system operating in the channel defined in the
next subsection. Table I reports the parameter settings used for
the simulations.

A. Simulation Scenarios and Related Analytical Results

To reflect the situation where the user terminal (to be
localized) can appear at any distance within an interval, we
assume that the prior of range r is uniform on [0, rmax].
Inspired by Turin’s channel model, we assume that the random
excess delays form a Poisson point process. For simplicity, we
assume that the process is homogeneous, i.e. ρ(τ) = ρ0. The
conditional second moments of the path gain are modeled as

σ2
α(τ) =

⎧

⎪

⎨

⎪

⎩

Cκ; τ = 0

C exp(− τ
λ); 0 < τ < Tcp

0; otherwise

,
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Figure 1. RMSE of the approximate MAP estimators versus SNR with pLOS

as a parameter: µL = 60.

where parameter κ determines the power of the LOS compo-
nent, λ denotes the root-mean-square (RMS) delay spread of
the multi-path term, and C is selected to normalize the channel
power gain. The cyclic prefix length, Tcp, is assumed to be
long enough such that the power of the path components with
excess delays larger than Tcp becomes negligible. Accordingly,
the delay power spectrum reads

P (τ) = C exp(−
τ

λ
)(ρ01(0 < τ < Tcp) + κpLOSδ(τ)) (23)

with 1 denoting indicator function and the conditional delay
power spectrum is given by

P (τ |q) =

{

C exp(− τ
λ
)(ρ01(0 < τ < Tcp) + κδ(τ)); q = 1

C exp(− τ
λ)ρ01(0 < τ < Tcp); q = 0.

(24)
For the simulation, it is necessary to compute the covariance

matrices Cξ and Cξ|q:

[Cξ]mn = κpLOSC + ρ0gmn (25)

and

[Cξ|q]mn =

{

κC + ρ0gmn; q = 1

ρ0gmn; q = 0
(26)

with

gmn = C
1− e−(j2π(fm−fn)+ 1

λ
)Tcp

j2π(fm − fn) + 1
λ

.

B. Evaluation of Ranging Accuracy

In the simulation, we obtain similar RMSEs for the approx-
imate MAP estimators (14) and (15). The same observation
holds for the approximate MMSE estimators (19) and (20).
Therefore, we omit reporting the performance of (14) and (19).

Figs. 1 and 2 report the simulated RMSE versus SNR of
the approximate MAP and MMSE estimators respectively for
different values of pLOS. It is apparent that the approximate
MMSE estimators outperform the approximate MAP estima-
tors. We observe that as pLOS increases, the ranging accuracy
improves.
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To investigate the impact of the average number of path
components on the estimators performance, we plot simulated
RMSE versus µL in Figs. 3 and 4, again when pLOS is varied.
We observe that, overall, the RMSE decreases with increasing
µL. Similarly, the RMSE decreases as pLOS increases as ex-
pected. As it is also observed in Figs. 1 and 2, the approximate
MMSE estimators exhibit a higher ranging accuracy than the
approximate MAP estimators.

Figs. 1–4 indicate that including the LOS detector somewhat
improves the ranging accuracy for low and medium values
of pLOS. However, for large pLOS, the trend is different.
For the approximate MAP estimator, there is no noticeable
performance gain, while including the LOS detection in the
approximate MMSE estimator degrades the performance. To
investigate the cause of this behavior, we turn our attention to
the performance of the detectors, see Fig. 5. The probability of
detection error seems rather high considering the prior infor-
mation. This high value may be due to either the considered
multi-path channel or the pdf approximations applied to the
design of the detectors.

Given these results, it seems obvious to ask whether or
not the accuracy of the proposed methods can be improved
by using better pdf approximations. Due to the fact that we
cannot access the likelihood functions, lower bounds such
as the Cramér-Rao bound, are not available. It is, therefore,
unclear how much the estimation accuracy can be improved.
To evaluate the importance of the impact of the approximations
on the performance of the detectors, we applied them to
signals generated according to their respective approximate
pdfs. The results, not reported here, show error probabilities
less than 7% for all considered detectors with µL settings as
given in Fig. 5. We thus conclude that the accuracy of the
pdf approximations indeed plays a major role. The potential
performance gain in ranging accuracy obtained by better pdf
approximations in the detector can be assessed by comparing
the RMSE curves to those of the genie-aided methods as done
in Figs. 1–4. We conjecture that better pdf approximations can
also increase the ranging accuracy of the estimators without

detection.

V. CONCLUSION

We have proposed approximate MAP and MMSE estimators
of the range with and without LOS detection. These estimators
are derived by approximating the pdf of the received signal
vector. The approximate MMSE estimators outperform the
approximate MAP estimators in terms of RMSE. Using the
proposed pdf approximations, we observe that including LOS
detection in the estimators, while adding complexity, has no
major impact on the ranging performance. Our simulation
study indicates that there is a potential for improving the
ranging performance by relying on better pdf approximations.
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