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Large-Scale Analysis of Linear Massive MIMO

Precoders in the Presence of Phase Noise

R. Krishnan, M. R. Khanzadi, N. Krishnan, Y. Wu, A. Graell i Amat, T. Eriksson, and R. Schober

Abstract—We study the impact of phase noise on the downlink
performance of a multi-user multiple-input multiple-output system,
where the base station (BS) employs a large number of transmit
antennas M . We consider a setup where the BS employs Mosc

free-running oscillators, and M/Mosc antennas are connected to
each oscillator. For this configuration, we analyze the impact of
phase noise on the performance of regularized zero-forcing (RZF)
precoding, when M and the number of users K are asymptotically
large, while the ratio M/K = β is fixed. We analytically show
that the impact of phase noise on the signal-to-interference-plus-
noise ratio (SINR) can be quantified as an effective reduction in
the quality of the channel state information available at the BS
when compared to a system without phase noise. As a consequence,
we observe that as Mosc increases, the SINR of the RZF precoder
degrades as the interference power increases, and the desired signal
power decreases. On the other hand, the variance of the random
phase variations caused by the BS oscillators reduces with increasing
Mosc. Through simulations, we verify our analytical results, and
study the performance of the RZF precoder for different phase
noise and channel noise variances.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a promising

technology for future wireless networks [1]. In particular for

downlink transmissions, employing massive antenna arrays at

the base station (BS) is expected to provide significant array

gains and improved spatial precoding resolution in multi-user

(MU) MIMO systems [2]. This in turn is expected to increase

the throughput per user equipment (UE), and enable the sup-

port of a large number of UEs at the same time. In general,

MIMO systems suffer from MU interference during downlink

transmission, which is mitigated by means of channel-aware pre-

coding methods implemented at the BS [2]. Capacity-achieving

precoding methods, such as dirty-paper coding [2], for the MIMO

broadcast channel have high computational complexity. This

motivates the need for computationally simpler methods such as

linear precoders [3], which have been shown to achieve close-to-

optimal performance [3]–[5] when M , and the number of UEs,

K , are asymptotically large.

Implementing linear precoding methods at the BS mandates the

availability of reliable channel state information (CSI). In most

prior works on MU-MIMO downlink transmission using linear

precoders [3]–[5], it is assumed that the hardware components

of the MIMO transceiver are ideal. Hardware impairments can

affect the CSI quality drastically, and the phase noise caused

by noisy local oscillators used in the transceivers is a major

contributor to this problem [6]–[8]. As illustrated in [7], [8],

phase noise causes partial coherency loss, i.e., the true channel

during the data transmission period can become significantly

different from the CSI acquired during the training period. This is

referred to as the channel-aging phenomenon [9]. It is therefore

expected that phase noise at the BS and the UEs will present a

serious challenge towards realizing the unprecedented advantages

promised by massive MIMO [6]. The effect of phase noise on

the uplink performance of a massive MIMO system has been

analyzed in [6]–[8]. However, the number of studies on the

impact of phase noise on the downlink performance of massive

MIMO systems are limited.

In this paper, we analyze the massive MIMO downlink per-

formance of the regularized zero-forcing (RZF) precoder in the

presence of oscillator phase noise. We consider a single-cell

massive MIMO system comprising one BS serving multiple

single-antenna UEs. We analyze a general setup, shown in Fig.

1, where the BS employs Mosc free-running oscillators, and

M/Mosc ∈ Z+ BS antennas are connected to each oscillator. We

refer to this as the general oscillator (GO) setup. Two interesting

special cases arise from this general setup. In the first case, all

BS antennas are connected to a single oscillator (referred to as

the common oscillator (CO) setup). In the second case, each

BS antenna has its own oscillator (referred to as the distributed

oscillator (DO) setup).

For the considered setups, we derive the effective SINR [11] at

a given UE for the RZF precoder as M,K → ∞, while the ratio

M/K = β is fixed. We show that the impact of phase noise on

the SINR of the RZF precoder can be quantified as an effective

reduction of the quality of the CSI available at the BS, when

compared to the system without phase noise. As a consequence,

we observe that as Mosc increases, the SINR degrades. However,

the variance of the random phase variations caused by the BS

oscillators reduces as Mosc increases. By simulations, we show

that the SINR derived is accurate for relevant and practical values

of M and K . Finally, we compare the achievable rates of the CO

and the DO setups. A general observation for the RZF precoder

is that the CO setup performs better than the DO setup when β
is small. However, the opposite is true when β is large and the

signal-to-noise ratio (SNR) at the UE is low.

Notation: Vectors and matrices are represented by boldface

lower-case and boldface upper-case letters, respectively. The

complex Gaussian distribution and the real Gaussian distribution

with mean µ and variance σ2 are denoted as CN (µ, σ2), and

N (µ, σ2), respectively. The Hermitian, conjugation, transpose,

expectation with respect to φ, and trace operators are denoted as

{·}H , {·}∗ , {·}T ,Eφ {·} , and tr {·}, respectively. ℜ{·}, ℑ{·}, |·|
and ∠· are the real part, imaginary part, magnitude, and angle

of a complex number, respectively. The ℓ2 norm of a vector is

denoted by ‖·‖. An n-dimensional complex vector is denoted by

Cn×1, while Cn×m denotes the generalization to an (n × m)-
dimensional complex matrix. The integer space is denoted by Z.

The diag {. . .} operator generates a diagonal matrix from a given

vector, and IM denotes an M ×M identity matrix.

II. SYSTEM MODEL

We consider a single-cell system consisting of a BS that serves

K UEs. The BS is equipped with M antennas and each UE

is equipped with a single antenna. The channel between the



Fig. 1: The general oscillator (GO) setup, where the BS has Mosc free-running
oscillators, and M/Mosc ∈ Z+ BS antennas are connected to each oscillator.

mth antenna, m ∈ {1, . . . ,M}, at the BS and the kth UE,

k ∈ {1, . . . ,K}, is assumed to be frequency-flat Rayleigh block-

fading, and its gain is denoted as h
(m)
k ∼ CN (0, σ2

h), where

σ2
h = 1. Furthermore, h

(m)
k is the (k,m)th entry of H ∈ C

K×M ,

which represents the channels between the BS and the UEs.

The coherence time of the block-fading channel is denoted by

Tc. Without loss of generality, it is assumed that the large-scale

fading component of the channel is unity.

We consider the GO setup where the BS employs Mosc

free-running oscillators, and M/Mosc ∈ Z+ BS antennas are

connected to each oscillator. Considering a discrete-time Wiener

phase noise model [10], [15], in the jth symbol interval, the phase

noise sample at the kth UE is denoted by ϕ
(k)
j , and that of the

lth oscillator at the BS is denoted by φ
(l)
j , where

ϕ
(k)
j = ϕ

(k)
j−1 +∆ϕ

j , ∆ϕ
j ∼ N (0, σ2

ϕ), (1)

φ
(l)
j = φ

(l)
j−1 +∆φ

j , ∆
φ

j ∼ N (0, σ2
φ). (2)

Here, k ∈ {1, . . . ,K}, l ∈ {1, . . . ,Mosc}, and σ2
ϕ and σ2

φ

denote the phase noise increment variances at the UE and the

BS, respectively. Since the channel is constant within Tc, and

given that the mth BS antenna is connected to the lth oscillator

at the BS, θ
(m)
j,k , ϕ

(k)
j + φ

(l)
j is the phase noise sample that

impairs the link between the kth UE and the mth BS antenna.

Time division duplex (TDD) is assumed, where the UEs first

transmit time-orthogonal pilots to the BS for channel training.

Upon reception of the pilots from the UEs, the BS forms an esti-

mate of the channel between its antennas and the UEs. Exploiting

channel reciprocity [1], the channel estimate is then used by the

BS to transmit data in the downlink to the UEs. This training

scheme permits a simple channel estimation method at the BS,

and as we shall see later, facilitates the large-scale analysis of the

MIMO downlink performance [4], [5]. Importantly, this training

scheme aids in capturing the channel-aging effect due to phase

noise on the SINR achieved at the UEs.

During channel training, the UEs transmit their pilot symbols

sequentially in time, meaning that when one UE is transmitting,

the other K − 1 UEs are silent. The pilot signal received at the

BS from the kth UE at time instant j = 0 can be written as

yu,0 =
√
pu,kΘ0,khkc0,k +wu,0, (3)

where yu,0 = [y
(1)
u,0, . . . , y

(M)
u,0 ]T, and y

(m)
u,0 represents the

received signal in the uplink at the mth BS antenna.

pu,k denotes the uplink transmit power of the kth UE,

Θ0,k = diag
{

eθ
(1)
0,k1T

M/Mosc×1, . . . , e
θ

(Mosc)
0,k 1T

M/Mosc×1,
}

,

where 1T
M/Mosc×1 denotes an all-one vector of length M/Mosc,

and hk = [h
(1)
k , . . . , h

(M)
k ]T. c0,k denotes the pilot symbol

transmitted by the kth UE. wu,0 = [w
(1)
u,0, . . . , w

(M)
u,0 ]T, where

w
(m)
u,j ∼ N (0, σ2

w) denotes the zero-mean AWGN random vari-

able (RV) at the mth receive antenna.
Based on yu,0, a linear MMSE channel estimate is formed for

the kth UE at time instant j = 0. This estimate is modeled as

[4]

ĥ0,k =
√
q0,kΘ0,khk +

√
q1,kwe,τ,k. (4)

Here, we,τ,k ∈ CM×1 represents the estimation error, and

its entries are complex Gaussian independent and identically

distributed (i.i.d.) RVs with zero mean and unit variance. ĥ0,k ∈
CM×1 in (4) is the kth row of Ĥ0 ∈ CK×M , which contains the

channel estimates of all UE channels. Without loss of generality,

we assume that q0 = q0,k and q1 = q1,k, and set the channel

estimate variance as σ2
ĥk

, q0σ
2
h + q1 = 1. The parameter

q0 ∈ [0, 1] reflects the quality of the channel estimate [4], and is

a function of the SNR of the pilot symbol transmission in (4).

Let the data transmission on the downlink from the BS to

the UEs commence in the symbol interval j = τ , τ < Tc. τ
denotes the symbol periods that have elapsed since the uplink

transmission of the pilot symbols from the kth UE. Even though

the channel remains a constant during this elapsed time period,

the phase noise caused by the oscillators at the BS and the UE

drifts randomly. The signal received by the kth UE at time instant

τ is written as

ykd,τ = hT
τ,kΘτ,kxτ + wd,τ,k (5)

= hT
τ,kΘτ,k

K∑

k1=1

g0,k1cτ,k1 + wd,τ,k. (6)

In (5), xτ ∈ CM×1 is the transmit signal, and in (6), xτ is

written as a linear combination of the data symbols cτ,k1 , k1 ∈
{1, . . . ,K}, transmitted to the K UEs. The data symbols are

assumed to be circularly symmetric, but not necessarily Gaussian

distributed [15]. g0,k ∈ CM×1 is the kth column of the downlink

precoding matrix G0 ∈ CM×K , where G0 = [g0,1, . . . ,g0,K ].
wd,τ,k ∼ CN (0, σ2

w) denotes the AWGN RV at the kth UE.

Furthermore, Θτ,k represents the random phase noise variations

caused by the noisy oscillators at the BS and the UE during the

data transmission phase.
We consider RZF precoding in (6), i.e., G0 is written as [4]

G0 = ξ
(

ĤH
0 Ĥ0 +MαIM

)−1
ĤH

0 P
1
2 , (7)

where P , diag {p1, . . . , pK}, pk denotes the power allocated

to the kth UE, and the normalization parameter ξ is set such that

the precoder satisfies the power constraint tr
(
GH

0 G0

)
= 1.

III. LARGE-SCALE ANALYSIS OF THE RECEIVED SIGNAL

AND ACHIEVABLE RATES

In this section, we use tools from random matrix theory [14]

to analyze the received signal model in (6). Specifically, we

present a simplification of the desired signal term in (6) for

the GO setup when M,K → ∞, while M/K = β. Notably,

we will show that in the CO and DO setups, the multiple-input

single-output (MISO) system model in (6) can be re-written as an

equivalent single-input single-output (SISO) phase noise channel

including the effects of phase noise, AWGN, and interference

[15]. Furthermore, we define the effective SINR, and discuss the

achievable rates for the GO setup.



A. Received Signal Model

For the RZF precoder in (7), the received signal at the kth UE

in (6) becomes

ykd,τ = hT
kΘτ,kG0cτ + wd,τ,k

=
√
pkh

T
kΘτ,kξ

(

ĤH
0 Ĥ0 +MαIM

)−1
ĥ∗
0,k

︸ ︷︷ ︸

,Isig

cτ,k

+hT
kΘτ,kξ

(

ĤH
0 Ĥ0 +MαIM

)−1
ĤH

0,−kP
1
2−k

︸ ︷︷ ︸

,Iint

cτ,−k

+wd,τ,k. (8)

In (8), we have introduced the following definitions:

Ĥ0,−k = [ĥ0,1, . . . , ĥ0,k−1, ĥ0,k+1, . . . , ĥ0,K ], P−k =
diag {p1, . . . , pk−1, pk+1, . . . , pK}, and cτ,−k =
[cτ,1, . . . , cτ,k−1, cτ,k+1, . . . , cτ,K ]T. Furthermore, Isig ∈ C

and ITint ∈ CM−1×1 denote the scaling factors associated with

the desired symbol and the interfering symbols at the kth

UE, respectively. The factor Isig is simplified in the following

proposition.

Proposition 1: Consider an RZF precoded downlink transmis-

sion from a BS having M antennas to K single-antenna UEs

employing TDD in the presence of oscillator phase noise. Let

α > 0, M/K = β, β ≥ 1, and q0 ∈ [0, 1]. Assume that 1
M ĤHĤ

has uniformly bounded spectral norm for all M . Then, the desired

signal factor Isig, for M,K → ∞, can be simplified to

Isig =
√
pkq0TPNξte

(ϕ(k)
τ −ϕ

(k)
0 ), (9)

where

TPN , lim
M→∞

1

M
tr {∆Φτ} , (10)

ξ = lim
M,K→∞

√

M(1 +m(−α))
2

m′(−α)
∑K

k=1pk
(11)

m(−α) =
β − 1− αβ +

√

β2α2 + 2(β + 1)αβ + (1− β)2

2αβ
(12)

t =
m(−α)

m(−α) + 1
. (13)

In (10), ∆Φτ = diag { e(φ
(1)
τ −φ

(1)
0 )1T

M/Mosc×1, . . . ,

e(φ
(Mosc)
τ −φ

(Mosc)
0 )1T

M/Mosc×1

}

, m(−α) in (12) is the Stieltjes

Transform of the Marchenko-Pastur Law [14, Eqs. (1.12, 2.43)],

and m′(−α) = dm(z)
dz |z=−α.

Proof: Please refer to Theorem 1 for a discussion on the

proof, and to [15, Proposition 1] for a detailed proof.

Remark 1: The terms t and ξ in (9) depend on α and β, and

capture the channel hardening effect [1], [4] that results from the

averaging of the random fading channels when RZF precoding

is used, and M,K → ∞. The term TPN in (10) captures the

effects of phase noise variations at the BS between the training

and the data transmission phases, and is given by

TPN =
1

Mosc

Mosc∑

l=1

e(φ
(l)
τ −φ

(l)
0 ). (14)

Specifically, for the CO setup, where ∆Φτ =
e(φτ−φ0)IM , and the DO setup, where ∆Φτ =

diag
{

e(φ
(1)
τ −φ

(1)
0 ), . . . , e(φ

(M)
τ −φ

(M)
0 )

}

, (14) reduces to [7]

TPN =

{
e(φτ−φ0) CO setup

e−
τσ2

φ

2 DO setup
. (15)

Inspection of TPN in (14) and (15) reveals that ∠TPN reflects

the random phase variations caused by the oscillators at the

BS. The variance of ∠TPN decreases as Mosc increases, while

its mean is zero for all values of Mosc. |TPN| represents the

random amplitude variations in Isig caused by transmissions

using distributed (asynchronous) oscillators at the BS. As Mosc

increases, the mean of |TPN| reduces from 1 to exp
(

− τσ2
φ

2

)

.

Specifically, for the CO setup, |TPN| = 1, while for the DO

setup, |TPN| = exp
(

− τσ2
φ

2

)

. The variance of |TPN| is maximal

for Mosc = 2, and decreases as Mosc increases. In summary,

when 2 ≤ Mosc < ∞, there are random variations in TPN. In

the DO setup1, where Mosc = M , TPN hardens to a deterministic

value that depends on τ and σ2
φ. However, this hardening effect

is not observed in the CO setup as the phase noise caused by the

BS oscillator does not average out.

From the central limit theorem (as K → ∞), and since

the symbols cτ are circularly symmetric, the interference term

Iintcτ,−k in (8) is a circularly symmetric Gaussian RV for both

the CO and the DO setups. Furthermore, this term is uncorrelated

(and hence independent) from the signal term. In the case where

2 ≤ Mosc < ∞, Iintcτ,−k is non-Gaussian, but still uncorrelated

from the signal term. Further analysis of Iintcτ,−k can be found

in [15]. Upon applying (9), (15) in (8), we have

ykd,τ =
√
pkq0TPNξte

(ϕ(k)
τ −ϕ

(k)
0 )cτ,k + Iintcτ,−k + wd,τ,k. (16)

For the CO and the DO setups, the MISO system model in (6)

and (8) becomes an equivalent SISO phase noise channel in (16)

[15]. However, when 2 ≤ Mosc < ∞, (16) still corresponds to

a MISO phase noise channel, since TPN in (14) depends on the

random phase noise variations of the multiple oscillators at the

BS.

B. Effective SINR and Achievable Rates

For the CO and the DO setups, we define the effective SINR

based on the SISO phase noise channel in (16) as [15]

SINRk =
|Isig|2

‖Iint‖2 + σ2
w

. (17)

Since the phase noise in (2) drifts symbol-by-symbol, the SINR,

which depends on τ (8), also varies symbol-by-symbol. In order

to analyze the achievable rate of a given UE based on the SINR

in (17), we model the phase noise to be a constant within a

block of symbols [15]. Therefore, the SINR which is computed

for a given τ corresponds to the SINR associated with a block of

symbols, and can be used to determine the achievable rate [12].

Note that this model is implicity used in [6]–[8]. Furthermore,

this model is only used to evaluate the achievable rates based on

the SINR derived, and is not required, per se, for deriving the

SINR and the other analytical results in this paper. The achievable

rate computed based on this model is an upperbound for the case

where the SINR varies symbol-by-symbol.

1It is important to note that the results for the DO setup also hold in the case
where Mosc → ∞, while the ratio M/Mosc is fixed.



Based on the effective SINR in (17), an upper bound for the

achievable rate of the kth UE for the CO and the DO setups for

a given block of symbols (i.e., given τ ) is [15], [16]

C(SINRk) ≤ log2 (1 + SINRk). (18)

This upper bound, which corresponds to the AWGN channel

capacity, is generally tight for low-to-medium SINR values.

Another upper bound for the achievable rate for the CO and the

DO setups, which is generally tight at high SINR, was derived

by Lapidoth et al. [13], and is given by

C(SINRk) ≤
1

2
log2(4π

2
SINRk)−

1

2
log2

(
2πeτ(σ2

ϕ + δpnσ
2
φ)
)
,

(19)

where δpn = 1, when Mosc = 1, and δpn = 0, otherwise.

In (19), the second term represents the differential entropy of

the phase noise process, ϕ
(k)
τ − ϕ

(k)
0 + δpn(φτ − φ0). The

result in (19) holds under the assumption that the phase-noise

process is stationary, and has a finite differential-entropy rate.

Combing (18) and (19), the achievable rate for the CO and

the DO setups can be tightly upper-bounded as C(SINRk) ≤
min{Rate in (18),Rate in (19)} [15].

There are no results available for the achievable rates for

the MISO phase noise channel in (8), when 2 ≤ Mosc < ∞.

However, the randomness of TPN in this case is reminiscent of

fading channels. Assuming ergodicity for the effective channel

in (16), the achievable rate is written as [11, Lemma 1]

C(SINRk) = Eφ log2

(

1 +
|Isig|2

‖Iint‖2 + σ2
w

)

(20)

≈ log2

(

1 +
Eφ|Isig|2

Eφ‖Iint‖2 + σ2
w

)

, (21)

where Eφ denotes the expectation operation with respect to

the phase noise at the BS. The accuracy of this approximation

increases with increasing Mosc. Also, Isig and Iint are not

required to be independent. This motivates the definition of an

effective SINR for 2 ≤ Mosc < ∞ as

SINRk =
Eφ|Isig|2

Eφ‖Iint‖2 + σ2
w

. (22)

The effective SINR in (22) reduces to (17) for the CO and the

DO setups. Also, note that the achievable rate computed in (21)

only depends for the SINR achieved at the UE, and does not

account for the reduced variance of the phase noise variations

at the BS when Mosc > 1. However, the rate in (21) is a tight

upper bound for low-to-medium SINR values.

IV. SINR ANALYSIS

In this section, we introduce Theorem 1, which provides the

analytical form for the effective SINR achievable at a given UE

for the RZF precoder.

Theorem 1: Consider an RZF precoded downlink transmission

from a BS having M antennas to K single-antenna UEs employ-

ing TDD in the presence of oscillator phase noise. Let α > 0,

β ≥ 1, q0 ∈ [0, 1], and SINRk denote the effective SINR at the

kth UE. Then,

SINRk − SINRrzfk

M,K→∞−→ 0 (23)

almost surely, and the effective SINR associated with the kth UE

for the GO setup is given as

SINRrzfk =
pkt

2q0Eφ|TPN|2
t2
M

(

1− tq0Eφ|TPN|2 − tq0Eφ|TPN|2

(1+m(−α))

)

+
σ2
w

ξ2

(24)

with

Eφ|TPN|2 , Eφ

∣
∣
∣
∣

1

M
tr {∆Φτ}

∣
∣
∣
∣

2

=
1− e−τσ2

φ

Mosc
+ e−τσ2

φ (25)

t2 =
K∑

k1=1,

k1 6=k

pk1

m′(−α)

(1 +m(−α))2
, (26)

where t,m(−α), ξ, and TPN are as given in (10)-(13). Specif-

ically, Eφ|TPN|2 = exp
(

−τσ2
φ

)

for the DO setup, and

Eφ|TPN|2 = 1 for the CO setup.

Proof: For brevity, we present only a sketch of the proof

here. First, we derive ξ, such the RZF precoder G0 in (7) satisfies

the power constraint tr
(
GH

0 G0

)
= 1. Then, we derive the signal

term Isig, and the interference power ‖Iint‖2 using tools from

random matrix theory [4], [14]. Also, when deriving the signal

term Isig, we prove Proposition 1. For the complete proof, please

refer to [15, Theorem 1]

Remark 2: Theorem 1 captures the effect of phase noise on

the SINR as an additional penalty to the quality of the channel

estimate—when phase noise is present, the quality of the channel

estimate, q0, degrades to q0Eφ|TPN|2 in the GO setup (25).

The quality of the effective channel estimate decreases as Mosc

increases (25). Also, the effective quality is reduced when τ or

σ2
φ increase. In the DO setup, the quality of the channel estimate

diminishes by a factor of exp
(

−τσ2
φ

)

. However, in the CO

setup, there is no reduction in the quality of the channel estimate

due to noisy oscillators at the BS or the UEs as |TPN|2 = 1.

Clearly, the effect of channel aging on the SINR increases as

Mosc increases—the SINR in (24) decreases as Mosc increases.

This results from the degradation of the desired signal power

by a factor Eφ|TPN|2 < 1 when Mosc ≥ 2, implying that the

desired signal power decreases as Mosc increases. On the other

hand, the MU interference power increases with Mosc, as can be

seen in (24). This is because the CSI quality deteriorates due to

phase noise (25), thereby reducing the interference suppression

capability of the RZF precoder. Specifically, for the CO setup,

there is no effect of phase noise on the SINR since the desired

signal power and the MU interference power are identical to the

case when only AWGN is present.

V. SIMULATION RESULTS

In this section, the analytical results for the RZF precoder

presented in Section IV are verified by comparing them against

the results obtained from MC simulations. Even though the

analytical results are derived for M,K → ∞, in the sequel,

we observe that these results concur with those from simulations

for finite values of M and K .

We simulate the system model specified in (6) using the RZF

precoder, and numerically evaluate the effective SINR in (22).

Then, the achievable rate in the downlink for a given UE is

computed using (21) for all values of Mosc, unless otherwise

stated. Recall that this evaluation only depends on the SINR

achieved at the UE, and does not account for the reduced variance
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Fig. 2: C(SINRk) for the optimized RZF precoder for β = 5,M = 50, σ
φ
=

σϕ = 6◦, and q0 = 0.9.

of the phase noise variations at the BS when Mosc > 1. We

will evaluate the achievable rates for the CO and the DO setups

as C(SINRk) = min{Rate in (18),Rate in (19)} [15] when

exclusively comparing their performances in Fig. 4. Thereby, the

effects of both SINR and the differential entropy rates on the

achievable rates of the CO and the DO setups are taken into

account.

The system considered consists of a single cell with a BS

having M = 50 antennas. Setting β = 5, the number of UEs

served by the BS is K = 10. The channel between a BS

antenna and a UE is drawn from an i.i.d. complex Gaussian

distribution, i.e., h
(m)
k ∼ CN (0, 1). The coherence time of the

channel is set to Tc = 100 data symbol periods, thus resulting

in an i.i.d. Rayleigh block-fading channel. The Monte-Carlo

(MC) simulations are conducted for 10000 independent channel

realizations. The phase noise is simulated as a discrete Wiener

process (1), with increment standard deviation σϕ = σφ = 6◦

[15]. Unless otherwise stated, the time elapsed between the

training period of the kth UE and the data transmission period

is set to τ = K = 10 symbol periods. Furthermore, all UEs use

the same training power, and for downlink transmission, equal

power is allocated by the BS to all UEs, i.e., P = 1
K IK . The

quality of the channel estimate is set to q0 = 0.9 [4]. This is

reasonable given that the UEs can choose to transmit at power

levels pu,k such that the desired q0 is attained.

A. Verification of the SINR Result in Theorem 1

Fig. 2 compares the rate achieved with RZF precoded trans-

mission from the BS to the UEs for different SNR values, where

the SNR at the kth UE is defined as pk

σ2
w

. The value of α used in

this simulation is evaluated as in [15, Eq. 35]. We see that the

achievable rate (21) for the RZF precoder based on the effective

SINR in (24) concurs with the rate achieved in simulations for all

the values of Mosc considered. Furthermore, the SINR of the RZF

precoder decreases with increasing Mosc. Therefore, in terms of

SINR degradation due to channel aging caused by phase noise,

the CO setup is more robust than the GO setup when Mosc ≥ 2.

Also, the performance of the GO setup for Mosc = 5 is close to

that of the DO setup.

5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

Mosc

R
a
te

[b
p
cu

]

 

 

SNR = 0 dB

SNR = 20 dB

Fig. 3: C(SINRk) for the RZF precoder in the GO setup, where 1 ≤ Mosc ≤
M,M/Mosc ∈ Z+, for M = 50, β = 2, q0 = 0.9, σ

φ
= σϕ = 0.06◦,

τ = Tc = 0.25 ms (104 symbol periods) [17], and different SNR values.

B. Example Based on LTE Specifications

We analyze an example based on long-term evolution (LTE)

system specifications [17], where we account for practical values

of Tc, symbol time Ts, bandwidth BW , τ , center frequency

fc, doppler spread fd, σφ, and σϕ. We choose Ts = 0.032µs,

BW = 20 MHz, fc = 2 GHz, and fd = 1000 Hz arising from

a relative velocity of 500 km/h between the BS and the UEs.

Letting Tc = 1/(4fd), the coherence time is Tc = 0.25 ms. We

also consider that the time elapsed between the training and the

data transmission phase is equal to the coherence time of the

channel, i.e., τ = Tc = 0.25 ms [17, p. 99].

Next, we compute σ2
φ and σ2

ϕ based on a Si CMOS oscillator

technology in [18]. Specifically, we consider an oscillator, whose

offset level at 100 KHz is −105 dBc/Hz. This renders σ2
φ =

σ2
ϕ = 6.3× 10−7 rad2, or σφ = σϕ = 0.06◦ using [15, Eq. (4)],

implying that high-quality oscillators are used at the BS and the

UE. In Fig. 3, we plot the performance of the RZF precoder

versus Mosc for τ = Tc = 0.25 ms (104 symbol periods), q0 =
0.9, β = 2, and M = 50 for different SNR values. At SNR =
20 dB, we observe that the performance of the RZF precoder

decreases by around 0.3 bits per channel use (bpcu), as Mosc

increases, and for Mosc > 10 oscillators at the BS, the additional

degradation in performance becomes negligible. Furthermore, at

SNR = 0 dB, the performance degradation for the RZF precoder

is negligible as Mosc is increased from 1 to M .

C. Rate Comparisons for CO and DO Setups

We compare the performance of the CO setup with that of the

DO setup by computing the achievable rate. Specifically, we set

q0 = 0.9, σφ = σϕ = 6◦, and τ = K = 25, and analyze the

rate performance of the RZF precoder for different values of β
in Fig. 4. For SNR = 40 dB, the performance of the CO setup is

consistently better than that of the DO setup as the SINR used in

(18) and (19) is large, and exclusively determines the achievable

rate. In particular, when β is small, the rate in (18) is a tighter

upper bound, and the achievable rate is determined by the SINR

term, which is relatively larger for the CO setup. As β increases,

the rate in (19) becomes a tighter upper bound, and the SINR term

is much larger than the differential entropy term. Hence, the CO

setup still performs better. Now, consider the low SNR scenario
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Fig. 4: C(SINRk) = min{Rate in (18),Rate in (19)} of the optimized RZF
precoder for the CO and DO setups, where q0 = 0.9, σ

φ
= σϕ = 6◦ , and

τ = K = 25.

(SNR = 0 dB). Here, once again, for small β, the rate in (18) is

a tighter upper bound than that in (19), and depends on the SINR

alone. Therefore, the CO setup performs better. However, as β
increases, the rate in (19) becomes a tighter upper bound, and

the differential entropy term becomes significant compared to the

SINR term. In particular, the DO setup has a lower differential

entropy rate as it is only impaired by the phase noise at the UE.

Consequently, the DO setup performs better.

VI. CONCLUSIONS

In this work, we derived the effective SINR of the RZF

precoder for the GO setup in the presence of phase noise. We

showed that the effect of phase noise on the SINR can be

expressed as an effective reduction in the CSI quality available

at the BS. Importantly, the SINR degrades as the number of

oscillators, Mosc, increases. This is because as Mosc increases,

the desired signal power decreases, and the interference power

increases. Furthermore, we showed that the variance of the

random phase variations caused by the BS oscillators reduces

with increasing Mosc. We demonstrated that the SINR obtained

is tight and agrees with that obtained from simulations with

remarkable accuracy for interesting, and practical values of M
and K . Finally, we observed that for the RZF precoder, the CO

setup has a higher achievable rate than the DO setup when β is

small, while the DO setup outperforms the CO setup when the

SNR at the UE is low and β is large.
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