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Abstract— The rapid increase in data centre communication
in recent years has led to a wave of interest in the problems that
affect communications in the data centre environment. Many data
centre applications rely on TCP/IP protocols for reliable data
transport, which while successful for many Internet applications,
does not integrate with and perform seamlessly in the data
centre environment. One of these problems arises in data centre
setups where many servers communicate simultaneously, and
effectively in parallel, with one client through a single switch.
In this scenario, the servers could experience a large drop in
throughput due to severe packet loss, a phenomenon known as
Incast congestion.

In this paper, we investigate the Incast problem and introduce
a variant of TCP, namely M21TCP-A, which is developed with
the idea that the switch can be used to inform each parallel
sender (server) of how many other senders are communicating
simultaneously. Each sender can then limit its congestion window
based on this feedback from the switch. M21TCP-A is evaluated
against RED, ECN and DCTCP, which are the most successful
congestion control proposals for mitigating Incast. Performance
results show that M21TCP-A mitigates Incast thoroughly and
outperforms previous proposals.

Index Terms— Congestion, TCP, Incast.

I. INTRODUCTION

In recent years, data centres have become very important

and instrumental in driving and supporting the new era of

Internet cloud computing. Modern data centres host a variety

of services and applications such as web search, scientific

computing, social networks, distributed files systems, etc [1].

These data centres usually run TCP/IP over an Ethernet

network since TCP is low cost and easy to use [2]. Over the

years, TCP has succeeded in meeting most communication

requirements of Internet-based communications because of

its assurance of reliable delivery and its congestion control

mechanisms. However, recent research has shown that it falls

short in the unique data centre environment with its advanced

network topologies, unique workloads and high throughput

requirements [3].

Many data centres run soft real time applications that

employ a Partition/Aggregate pattern; these have been used

for applications such as e-commerce, web search, retail etc.

As shown in Figure 1, this pattern usually consists of a

multi-layered hierarchical structure where the deadline of

computations and responses on one layer affects computations

and responses on higher layers. In a simple two-layered

structure, for instance, aggregators on higher layers designate

tasks amongst the workers on lower layers [4]. When each

worker completes a task, it sends the results back to the

aggregator (parent node), which compiles these results into

a final response. Latency targets drive the performance of

more multi-layered partition-aggregate structures. The latency

targets, obtained from customer surveys [5], determine the

deadlines of each layer in the algorithm tree. If children

nodes (workers) miss their deadlines, then their parent nodes

(aggregators) send out incomplete responses, leading to lower

quality results and thus lower revenue. Therefore, the slowest

sending child node limits each parent node.

Partition/Aggregate workflow patterns are just one of the

“many to one communication” workload patterns that are

affected by a communication problem that is usually found

in data centres, called Incast congestion. Incast congestion is

a catastrophic loss in throughput that occurs when the number

of servers sending data increases beyond the ability of an

Ethernet switch to buffer packets. It occurs when multiple

servers are communicating through an Ethernet switch and

the limited buffer is overwhelmed by a concurrent flood of

highly bursty traffic from parallel communicating servers,

leading to severe packet loss and consequently one or more

TCP timeouts. Parallel senders, in this case, include multiple

servers that use the same Ethernet switch or router. These

timeouts impose hundreds of milliseconds delay, which almost

guarantees that a server (worker in partition/aggregate pattern)

misses the deadline and that subsequent data to be sent is not

received [6]. Timeouts have been shown to reduce throughput

by up to 90% of the link capacity [7].

Considerable research efforts have been advocated to ad-

dressing the Incast problem. These proposals can be mainly

divided into two categories. The first is an extension of

traditional TCP [7] [8]. These approaches inherit the TCP

properties and fall short in overcoming the Incast problem.

The second category uses rate control and Active Queue

Management (AQM) mechanisms. This includes DCTCP [9],

D2CTCP [10], D3 [11] and pFabric [12]. While these tech-

niques improve the data centre transport capabilities in some

aspects, they fail in others, especially with respect to perfor-

mance (throughput and scalability) and implementation cost.

This article introduces M21TCP-A, a novel approach to

solving the Incast problem, where the router informs each

sender of the total number of parallel senders by setting a

“number of senders” TCP field in every packet that passes

through it. The protocol leverages the idea of router based flow
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Fig. 1. Partition Aggregate pattern.

and rate control proposals such as pFabric [12] and D3 [11]. It

targets the root cause of Incast: buffer overflow due to bursty

traffic. The switch allocates a number of senders to each flow

using an additional field in the TCP or IP header. A maximum

congestion window is then calculated at the sending server,

such that if each sender sends packets concurrently, the switch

buffer still has enough memory to handle all the packets.

M21TCP-A is compatible with any other congestion algorithm

as the senders only set a maximum that the congestion window

must not supersede.

The remainder of this article is structured as follows. Sec-

tion II introduces the Incast problem and characterize the data

centre traffic workload. Section III briefly discusses relevant

existing congestion control algorithms for data centres. In

Section IV, we introduce the M21TCP-A congestion control

algorithm and discuss its properties. Section V presents the

performance study of our algorithm with a comparison to

existing schemes. Finally, Section VI concludes the paper.

II. THE TCP INCAST PROBLEM

TCP Incast congestion occurs in barrier synchronized many

to one communication patterns like the Partition/aggregate

pattern and cluster based storage workloads, where effectively

parallel concurrent senders communicate with a client through

a bottleneck link. Figure 2 depicts an example of this scenario.

Many flows running simultaneously can overwhelm a switch

by exhausting the switch memory and leading to severe packet

loss.

When Incast occurs, a client may observe a TCP throughput

drop of one or two orders of magnitude below its link capacity

when packets overfill the buffers on the client port of the

switch [7]. So far, there has been no widespread accepted

solution to Incast. Individual application solutions such as that

discussed in [13] are tedious because they require that each

application be built and set up according to their specific needs,

and the capabilities of the network. In order to better describe

and analyse the Incast problem, it’s worth going through an
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Fig. 2. The classical Incast scenario showing multiple servers communicating
with a single client through a bottleneck link .

example of data centre environment with representative traffic

workloads as described next.

A. Workload characterization

The workload used in this paper is inspired by distributed

cluster based storage systems, and bulk block transfers in

batch processing tasks like MapReduce [14]. In these envi-

ronments, many servers/senders communicate with a single

client through a switch (the classic scenario under which Incast

occurs). Each server/sender stores a part of a data block usually

referred to as a Server Request Unit (SRU). The client requests

a data block from the servers by sending request packets

to all the servers simultaneously. The servers reply with the

SRU, leading to a simultaneous many to one communication

pattern. Important still, the client can only request the next

block from servers after it receives all the previous data for

the block requested. This is called a barrier-synchronized

workflow pattern. The workload is a fixed fragment workload,

which means that when the number of senders is increased, the

size of each SRU remains constant. Therefore, given n servers,

if each server sends 256KB of data as shown in Figure 3,

the total block size is n × SRU . It should be noted that in

some applications that run partition aggregate patterns like that

researched in [12] , the client has a deadline and sends all the

data received during that deadline to its parent node, whether

or not it has received all the data it requested. The effect of

Incast in such cases is decreased quality of results. Despite this

fact, we believe that the workload presented here will allow a

thorough examination of Incast scenarios. The default network

parameters used are typical of data centre communications

and were obtained from system administrators and switch

specifications and are detailed in [2] [3].

B. Incast analysis

Figure 4 shows the result of simulating Incast with the

default parameters in Figure 3. This plot is consistent with

previously obtained Incast patterns [9] [3] [2] [15]. At low

server numbers, the total throughput of the whole system

is close to the bandwidth of the bottleneck link i.e. 1Gbps.

However the throughput collapses to less than 400Mbps at

16 servers. At greater server numbers, the throughput is even

less that 200Mbps. This situation replicates the idea of Incast

congestion.



Parameter Default 

SRU size 256KB 

Maximum Segment Size 576 bytes 

Link Bandwidth 1 Gbps 

Link delay 25us 

TCP Variant NewReno 

Device Transmit Buffer Size 128KB 

Retransmission Time Out (RTO) 200ms 

Switch Buffer Size 64KB 

Limited Transmit disabled 

Switch Queue  Droptail 

Fig. 3. Exemplar network communication scenario parameters.

 

Fig. 4. The total throughput of multiple barrier synchronised connections vs
the number of senders, under a fixed block workload.

Figure 5 shows that increasing the buffer size, which is

equivalent to increasing the switch’s memory, improves the

performance of the system and delays the onset of Incast.

Approximately, doubling the buffer size, doubles the number

of servers at which Incast will set in. One problem with in-

creasing buffer sizes is cost. For instance, The E1200 (1024KB

buffer) switch costs $500,000 USD [7].

TCP timeouts are usually responsible for Incast congestion.

When one or more servers experiences a timeout as a result of

severe packet loss at the queue, the other servers may complete

their transfers but do not receive the next request until that

timeout(s) expires, and all the servers complete their transfers.

Therefore, the bottleneck link remains idle or underutilised for

extended periods of time.

III. EXISTING CONGESTION CONTROL ALGORITHMS

As stated earlier, while there have been many proposals

for Incast and congestion control in data centres, our focus is

on the few relevant efforts. TCP’s state of the art congestion

control algorithms assume that a network is a black box.

For congestion avoidance, the end hosts gradually probe

 

Fig. 5. The total throughput of multiple barrier synchronized connections
vs the number of senders, under a fixed block workload.

the network by increasing the congestion window gradually,

decreasing it (the feedback) only when a packet is lost. This

method of congestion avoidance cannot cope with the unique

requirements of data centres that run high throughput, latency

sensitive applications. Previous attempts to solve this problem

involve Active Queue Management (AQM) at the switch,

Explicit Congestion Notification (ECN) and other proprietary

congestion control algorithms.

Random Early detection (RED) [16] is an AQM scheme

which aims to reduce the number of packets dropped by the

router, provide lower delay by slowing queue build-up and

make sure that there will always be buffer space available

for an incoming packet. The RED algorithm drops packets

probabilistically. The probability that the router will drop a

packet increases as the estimated average queue size increases

i.e. the switch is more likely to drop a packet if its transmit

buffer was recently full and less likely to drop packets if it

was recently empty. The RED algorithm involves two main

functions:

• Estimating the average queue length with the algorithm

described in [17].

• Dropping Packets based on the average queue length and

two configurable parameters, minth (minimum threshold)

and maxth (maximum threshold). No packet is dropped

if the queue size is below the minimum threshold while

all packets are dropped if the queue size is above the

maximum threshold. In between, packet drop decisions

are made probabilistically.

Explicit congestion notification refers to a router side action

where the switch provides an indication of congestion by

marking packets that exceed a threshold, instead of dropping

them. ECN is usually used in conjunction with AQM schemes

like RED, marking packets anytime RED (or others) would

drop them. The IP header has two ECN bits: four code points.

Three are set by the sending server to indicate whether or not

a flow is ECN capable and the last (CE code point) is set by

the switch to indicate congestion. On receipt of a packet with



the CE codepoint set, the receiver encodes an ECN ECHO

in the TCP header of the Acknowledgement. The server then

responds to the ECHO as it would to a timeout (halves the

congestion window) [18].

Data centre TCP (DCTCP) is a congestion control algorithm

designed to achieve high burst tolerance and high throughput

with commodity shallow buffered switches [9]. It uses ECN

and a proprietary marking scheme similar to RED. The key

contribution of DCTCP is the act of deriving multibit feedback

from the single bit ECN marks. The DCTCP AQM scheme and

RED have two main differences:

• DCTCP has only one marking threshold, K. Above this

threshold; an arriving packet is marked with the CE

codepoint, sending an indication of congestion.

• Marking is based on the current queue length not the

average queue length.

Therefore a RED queue can easily be repurposed for DCTCP

by setting the maximum and minimum thresholds to the same

value and marking packets based on the instantaneous queue

length.

IV. THE M21TCP ALGORITHM

It has been established that the main cause of Incast con-

gestion is TCP timeouts caused by severe packet loss at the

switch’s transmission buffer. This severe packet loss occurs

during highly bursty transmissions that overflow the switch

buffer. In some next generation data centre congestion control,

the routers are actively involved in preventing Incast [19] [11]

[12]. M21TCP-A leverages router technology to inform each

parallel server of the total number of parallel servers that are

communicating through that router. Given that each server

has an idea of the router size, they can calculate a maximum

congestion window above which, each server cannot send. The

maximum congestion window is calculated such that if packets

from each sender reach the switch simultaneously, the switch

will still not overflow.

Therefore M21TCP-A ensures that TCP senders do not

exceed a sending rate limit that could cause a buffer overflow

by encoding the number of senders transmitting concurrently

in each packet’s header. Like ECN, a packet with the encoded

information traverses the routers along that path to the re-

ceiver. The encoded information is transmitted by the receivers

(client) back to the senders through ACK packets. Each router

along the path encodes a new value if and only if the value

it hopes to set is more than the value encoded in the header.

The M21TCP-A algorithm has three main components:

1) Router/Switch Operation: A router that supports

M21TCP-A operation allocates a number of senders to

each flow by counting the number of flows currently

traversing the interface. This sender number is encoded

in an additional IP or TCP field and is valid for the next

RTT.

In order to properly perform this function, the router

must track the number of flows traversing the interface.

The M21TCP-A router does this by keeping a list of

all the different flows with varying flow parameters in

its memory and checking for new flows by comparing

incoming packets to the list of already attained flow

parameters. If the packet’s flow parameters are already

contained in the list, the list remains as it is. If the

packet’s flow parameters are not contained in the list,

then they are added to the list. The flow parameters

maintained in the list are, similar to the TCP 5-tuples,

given below:

• Source address

• Destination address

• Source port

• Destination port

• Protocol name

When multiple switches operate between end hosts,

routers may set the number of senders in the packet

if and only if the number of senders which that specific

router hopes to set is more than that which is already

set in the packet. Thus a packet obtained by the re-

ceiver contains the maximum flow/sender number value

contained in any of the routers on the path the packet

traversed.

2) Receiver Operation: The M21TCP-A receiver conveys

the flow/sender number received in a packet back to the

sender by encoding it in the ACK packet. It can either

encode the sender number information in an additional

IP or TCP header field. In the case of delayed ACKS,

the flow/sender value in the latest received packet is used

in the ACK. The ACK, which contains the number of

senders encoded in an additional TCP header field is

sent from the receiver to the sender.

3) Sender Operation: The first difference between the

normal TCP sender and the M21TCP-A sender is that

the M21TCP-A sender must support an additional 32-

bit TCP field or an additional IP field (Both TCP and

IP fields are used to obtain results in this paper).

The sender calculates a maximum congestion window

using this value with the formula in Equation 1.

Max Wind =
B − (MHS ×N)

N
(1)

B is the buffer size. The constant, MHS, is the

minimum header size, which represents the combined

minimum IP and TCP header size; it usually has a

value of 42, N is the number of enders determined by

the router. The sender uses the value received to limit

its congestion window. The operation does not change

the TCP’s congestion control algorithm itself. Instead,

it simply limits the congestion window by setting a

maximum congestion window assignment. Equation 2

depicts an example of this.

cwnd = min{cwnd+ 1,maxcwnd} (2)

It is worth noting that M21TCP-A is designed for single

path TCP. For topologies with multiple paths between end

hosts [20], this relies on Equal Cost MultiPath (ECMP),

Valiant Load Balancing (VLB) and other existing mechanisms

used with TCP to ensure that a given flow follows a single

path. For flows that use multiple paths, additional mechanisms



 

Fig. 6. The total throughput of DROPTAIL, RED, ECNTCP, DCTCP and
M21TCPA in the Incast scenario under FFW.

will be required to get M21TCP-A to function properly.

However, this hardly seems necessary because the main focus

of this paper is the classical Incast scenario, with one switch

between the sending servers and the client.

V. PERFORMANCE RESULTS

The performance of RED, ECN with RED, and DCTCP is

evaluated and compared to that M21TCP-A in the classical

Incast scenario using the NS-3 simulator. RED is simulated

with minth = 15 and maxth = 25. K is set to 20 and g to

0.16, as suggested by Alizedah [9]. Simulations are performed

in NS-3 using the classical Incast scenario.
We start by evaluating the performance of Droptail, ECN,

RED (ECNTCP) and DCTCP under a fixed fragment work-

load. The fixed fragment SRU size is 256KB, thus from the

fixed fragment workload characterization, the total block size

is n×SRU when the number of severs is n. The two metrics

of interest are the throughput and latency of the flows.
Figure 6 shows the throughput of each of the compared

solutions. From the plot, RED performs worse than Droptail,

ECN performs better than Droptail while DCTCP similar

to ECN, delaying the onset of Incast substantially but not

eliminating it.
RED is a fair algorithm that is not designed to deal with

the uniqueness of highly congested data centre traffic. It is

not suited to the Incast scenario because it drops packets

prematurely. This means that even at lower traffic volumes,

there is a probability that a TCP flow will experience timeouts:

fewer senders could cause Incast. The server then responds to

the ECHO as it would normally respond to a timeout (halves

the congestion window) [18]. In addition, since packet drops

occur probabilistically, server timeouts may be staggered such

that the total effective timeout from packet drops is much

greater than RTOmin. In droptail queues, packets are dropped

at close intervals and are more likely to be from the same

server. Therefore, timeouts occur close to each other, leading

to a lesser effective total timeout than with RED.
ECN and DCTCP show great improvements on Droptail.

They both also achieve roughly the same amount of throughput

 

Fig. 7. The Completion time of DROPTAIL, RED, ECNTCP, DCTCP and
M21TCPA in the Incast scenario under FFW.

before Incast occurs (circa 940Mbps). Since TCP aggressively

drops the window size on receipt of ECN ECHO, some [9]

claim that it leads to low link utilisation because of a mis-

match between the input rate and the link capacity. The high

throughput in Figure 6 shows that this is not the case under

fixed fragment DCN workloads. ECN actually causes short

flows to complete quickly [21]. Nevertheless, algorithms like

RED with ECN that function based on the queue length, find

it difficult to deal with situations where there is low statistical

multiplexing and the queue length oscillates rapidly [9].This

causes queue build-up with little room to absorb microbursts.

This is why Incast still occurs at 32 servers with ECN.

Figures 6 and 7 shows that for fixed fragment workloads,

DCTCP performs slightly better than ECN: Incast occurs at

around 48 servers. By the admission of [9], Incast is the

most difficult DCN traffic problem to solve. In their research,

DCTCP is found to be ineffective under conditions where

the number of senders is large enough such that each of the

senders sending around 2 packets exceeds the static buffer

size. Thus, even at its best, DCTCP still imposes limits on the

number of senders at which Incast will not occur. We observe

that M21TCP-A achieves and maintains a high throughput

close to 900Mbps, while the throughput of other solutions

experience a great collapse at some point.

The latency of M21TCP-A increases gradually with increas-

ing number of senders simply because the block size is greater.

Expectedly, M21TCP-A performs much better than other solu-

tions under the workload. There is a slight drop in throughput

at 64 senders, but the decline is slight. At lower sender

numbers, servers running M21TCP-A maintain a throughput

greater or equal to other solutions. M21TCP-A prevents queue

oscillations and build up, leading to a consistent, predictable

solution which guarantees that the switch’s transmission buffer

will not overflow and therefore there will be no timeout (the

main cause of Incast). The request completion times show

that M21TCPA requests have a high probability of completing

quicker than other solutions and below the latency targets and



deadlines of partition/aggregate workflow patterns, which can

be as low as 10ms.

VI. CONCLUSION

Incast occurs when many parallel senders communicate

with one client through a bottleneck link. It is a catastrophic

throughput loss that disrupts the high throughput, low latency

applications in data centre networks. In this report, the Incast

problem was presented and simulated in the NS-3 simulator.

It was validated that the root cause of Incast is buffer overflow

at the congested switch, which leads to severe packet loss and

consequently, TCP timeouts.

M21TCP-A was proposed and tested against normal TCP

with droptail, ECNTCP, and DCTCP. M21TCP-A is a con-

gestion control scheme that informs senders of the number

of parallel senders so that senders that they must not ex-

ceed, to prevent the switch buffer from overflowing. It was

proved to prevent Incast for the maximum number of senders

investigated: 64. In general, many to one modifications on

the transport layer level offer an opportunity for data centre

networks to be emancipated from previous limits on the

number of concurrent servers involved in barrier synchronized

flows like MapReduce.
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