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Abstract—In this paper, we propose an energy efficient motion
detection and power management mechanism, called sleepyCAM,
for wireless camera sensor nodes that do not otherwise support
low-power modes. In the proposed solution, a low-power sensor
node accompanied with a Pyroelectric Infrared (PIR) sensor and
a relay is used to detect motion and manage the power usage of a
high-power and high-resolution camera sensor node. To validate
our work, we used two baseline benchmarks for comparison that
are commonly used as motion detection mechanisms on wireless
surveillance cameras: (a) hardware based motion detection using
a PIR sensor and (b) software based motion detection using video
frame comparison. The main contributions of this paper are the
prototype implementation of the sleepyCAM, the surveillance
application and the comparison of power consumption between
the proposed and the baseline methods. The measurement results
indicate that the power consumption of a surveillance camera
node can be reduced significantly with the proposed mechanism.

I. INTRODUCTION

Wireless Video-surveillance Networks (WVN) are among
the emerging paradigms of the Internet of Things (IoT).
WVNs are a subtype of Wireless Multimedia Sensor Networks
(WMSN) that, for one, belong to Wireless Sensor Networks
(WSN). Recent studies and forecasts show that the global IP-
traffic will be significantly dominated by multimedia data orig-
inating from visual networking applications [1], [2]. According
to Cisco Visual Networking Index, the global IP video traffic
will be 82% of all the IP traffic by 2020; of which internet
video surveillance contributes 3.9%, up from 1.5% in 2015 [1].

WVNs can provide richer information and wider cover-
age for several applications that have vital scientific, social,
and strategic relevance [3]. Examples of these systems in-
clude wildlife monitoring to determine guidelines for hu-
man/predator coexistence, monitoring large open areas in air-
ports [3], monitoring crops and farm equipment in agricultural
plots [4], monitoring the condition of affected people during an
accident in mining industry [5], and monitoring elderly people
in assisted living scenarios [6].

The three fundamental issues in a WVN are energy con-
sumption, data latency and data quality [7]. For an off-grid
video surveillance deployment, energy consumption will be
of paramount concern. In contrast to simpler sensors, camera
nodes generate higher amounts of data requiring higher pro-
cessing power, and thus consume more energy [3]. In video-
surveillance applications, the visual sensors spend more than

99% of their time waiting for an incident [8]. Thus, the waiting
time energy consumption is the dominant factor affecting the
total energy consumption of a WVN.

The energy-efficiency of WSN and IoT in general has
been a hot research topic during the past years. Most of this
work has focused on reducing the idle power consumption
by introducing different levels of sleep modes [9]. Nonethe-
less, the currently available hardware capable of capturing
and streaming high-definition video, such as Raspberry Pi
(RPi) [10], do not have appropriate power management to
support different levels of sleep modes (sleep, deep sleep,
awake). Therefore, the battery life of the available camera
sensor nodes is closer to hours than months.

Thus, we developed a power management mechanism for
RPi and similar hardware using a low-power sensor node as
a controller. The controller uses Pyroelectric Infrared (PIR)
sensor to detect motion and relay to turn RPi on for recording
video when there is motion in the area under surveillance.
Using this technique, we can extend the battery lifetime during
the waiting time of RPi based camera sensor nodes (and
similar hardware) by more than 108 days using a 6000mAh
off-the-shelf Lithium-ion battery.

The rest of this paper is organized as follows: Section II
summarizes the related work. Section III introduces our sleep-
yCAM prototype. Section IV presents the different surveil-
lance scenarios as a basis for evaluating the proposed solution.
Section V shows the evaluation results. Finally, Section VI
discusses the results and highlights how each scenario could
further be improved based on our observations.

II. RELATED WORK

Although the power management of wireless sensor nodes
has been thoroughly studied during the past years, not much
has happened in the area of power management in wireless
multimedia sensors. In this section, we introduce some related
power management solutions that are applicable to the current
WVN and WMSN nodes in general.

Wake-on-Wireless is one of the basic methods for allowing
nodes to sleep during inactive periods by using the integrated
wireless radio to wake the device up when needed. Shih et
al. [11], provide an example of this method using a 802.11b
wireless radio to wake-up a PDA device. Using out-of-band



control signaling from a low-power radio device, the system
maintains connectivity and wakes up the PDA when needed.
This approach can be applied to WMSNs if the camera node
hardware platform supports reception of wake-on-lan packets
after it has gone to a sleep mode.

Similarly, more recent studies on the area of WVN [12],
[13] suggest the use of FM radio in WiFi-enabled multimedia
sensor networks as an “always-on” point-to-multipoint control
channel used to turn off the WiFi radios in camera nodes.
This method can minimize the energy consumption of a WVN
node that will be wasted on receiving packets that are destined
to other nodes. In addition, by scheduling the transmission
windows of the nodes this technique can minimize the number
of collisions in a congested network; and hence the energy
associated with the re-transmission of packets. The limitation
of this method is that it only manages the WiFi radios (which
consumes fraction of the device’s power in the case of RPi and
similar devices) and does not control the power state of the
main hardware. In addition, this method requires an “always-
on” FM radio which consumes energy, and also becomes
problematic to scale up the network in mass deployment of
WVNs.

Sorber et al. [14], propose a hierarchical power manage-
ment for mobile devices, aiming to improve their availability
in a distributed system. The paper suggests the integration of
different power-level mobile devices, such as PDAs, laptops
and sensors, into a single multi-tiered device that can function
at power-levels of any of its tiers. The fundamental idea of this
model is suitable for WVNs and is similar to our approach.
However, PDAs, laptops and sensors provide inherent low-
power states compared, for instance, to RPi which does not
support low-power modes.

III. PROTOTYPE IMPLEMENTATION OF SLEEPYCAM

We developed the sleepyCAM power management mech-
anism for RPi and similar hardware using low-power sensor
node (a controller) as shown in figure 1. In sleepyCAM, the
controller uses PIR sensor to detect motion and a relay to turn
RPi on when motion is detected. Our goal is to achieve as
low power consumption as possible during the waiting time
period of the surveillance application. There has been lots of
effort to achieve low-power mode of WVN during the waiting
time, such as using multi-tier architecture [15], [8]. In multi-
tier architecture, the camera nodes are kept in sleep mode
during the waiting time and will only listen for a wake-up
message from other scalar sensor nodes which perform the
motion detection task. This approach is however difficult if
the camera platform does not support low-power modes (such
as the RPi).

The low price, small size, portability and support for high-
resolution camera makes RPi an ideal platform for several IoT
projects. Despite all of that, RPi does not support Advanced
Configuration and Power Interface (ACPI) to perform power
management. Hence, it provides no low-power modes that
keep it running on battery for a long period of time. It
is possible to use the lowest possible clock setting of the
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Fig. 1: sleepyCAM: Power management of camera node

CPU (under-clocking), but this does not provide significant
power reduction. Thus, we devised a mechanism of controlling
the power consumption of RPi using a controller node. The
controller basically performs two tasks: (1) motion detection
using a PIR sensor and (2) powering-up RPi when motion is
detected. In our prototype implementation, RPi is normally
powered off, and therefore, it does not consume any energy
during the waiting time.

The hardware prototype of the controller node was imple-
mented using Libelium Waspmote sensor platform [16]. The
Waspmote main-board has an Atmega1281 microcontroller,
running at 8MHz with 8KB SRAM, 128KB Flash, 4KB
EEPROM, built-in temperature and accelerometer sensors, and
Real Time Clock (RTC). The Atmega1281 consists of two
UARTs (UART0 and UART1), SPI port, I2C communication
bus and digital/analog input/output (I/O). Using multiplexers,
the Waspmote platform extends the UARTs to 6 different ports:
USB connector and Socket0 on UART0, and Socket1, UART1
AUX, UART2 AUX and GPS ports on UART1.

To reduce the power consumption of the controller, we
use interrupts and put the node into a low-power state by
disabling all the unused ports in our surveillance application
described in Section IV-C. The built-in accelerometer and RTC
are connected on the I2C bus of the microcontroller. Since
neither of them are used in our surveillance application, we
have turned off the I2C bus to save additional power. Parallax
Rev. B PIR sensor and 10A 30VDC Songle relay are used
for event detection and switching RPi on when needed. The
software for the controller is implemented in C language using
the latest Waspmote Pro v040 IDE.

Upon occurrence of an event (motion), the controller
switches RPi on to record a video. It is up to RPi to
decide when to shutdown itself after completing with the
video recording. It can be done so that RPi will do further
motion detection and keep on recording video as long as
there is activity. When RPi is on, the motion detection can
be conducted either using a PIR sensor or by capturing and
comparing video frames from the camera stream, whichever
is more efficient. Finally, RPi shuts down after completing the
surveillance task and makes sure that there are no scheduled
tasks (e.g uploading the videos to a remote server).

An important step in the power management process is
the detection of the successful shutdown of RPi so that the



Fig. 2: Scenarios

relay can be safely detached without worrying about memory
card corruption. For that, RPi can be configured to signal the
completion of a graceful shutdown process over one of its
General Purpose Input/Output (GPIO) pins. The state of the
selected GPIO pin can be read by the controller node via one
of its digital pins, as shown in figure 1.

IV. SCENARIOS

To demonstrate the benefits of our proposal, we compare
the energy consumption of three different scenario setups as
shown in figure 2. Scenarios A and B are the baseline meth-
ods used for benchmarking the energy efficiency of motion
detection using sleepyCAM (scenario C). In each scenarios,
when motion is detected, the surveillance applications record
video of 10 seconds and go back to waiting mode. In all of the
scenarios, the hardware used as the camera node is RPi model
B3 with a 5 megapixels Rev. 1.3 camera module, and running
the latest Raspbian Jessie Lite OS. RPi model B3, has 1GB
RAM, 1.2GHz 64-bit quad-core ARMv8 CPU, 802.11n wifi,
Bluetooth 4.1, 4 USB ports, Ethernet port, full HDMI, camera
interface and VideoCore IV 3D graphics core. Each setup is
particularly distinct to one another by how they detect motion,
as explained in the scenario descriptions below.

A. Hardware based Motion detection on a standby RPi

In the first baseline scenario, we have a camera sensor node
using a PIR sensor for motion detection. In this setup, both
the motion detection and the event capturing functionality are
implemented on the camera node (i.e RPi). Thus, this camera
node needs to be kept active throughout the run-time of the
surveillance application. A PIR sensor is attached to one of
the GPIO pins of RPi as shown in figure 3. A surveillance
application written in Python is run. When there is an interrupt
signal from the PIR sensor, the surveillance application calls a
function that starts recording the video. The use of interrupts,
instead of pooling the GPIO pin, saves significant amounts of
energy during the waiting time.

B. Software based Motion detection on a standby RPi

In the second baseline scenario, the PIR sensor on figure 3 is
opted out. Instead, a software algorithm is run to detect motion
by analyzing the input from the camera stream. It takes video
frames of few seconds as input from the camera stream and
computes the absolute difference between the averaged frames.
If the difference passes a certain threshold, it is interpreted as
motion and the camera starts recording the video. During the
recording period, there is no need to compare video frames

for motion detection. We used Open Source Computer Vision
(OpenCV) libraries and Python programming to develop the
surveillance application shown in figure 4. Similar to scenario
A, in this setup, both the motion detection and video recording
are performed by RPi. Thus, RPi has to be continuously active.

C. Motion detection in sleepyCAM

In this scenario, we take a different approach. Instead of
exploiting the high-power camera node during the waiting
time, we used our sleepyCAM prototype to implement the
motion detection. To realize a low-power WVN, we divide
the surveillance application into two modules: (1) motion de-
tection and (2) video recording. The motion detection module
takes care of detecting motion in the area under surveillance,
whereas video recording module takes care of capturing the
event. We deployed the motion detection module on the
controller node and video recording on RPi. By implementing
the motion detection on a separate, low-power controller node,
the main camera node can be switched off during the waiting
time and significant amounts of energy can be saved.

Fig. 3: Baseline camera node setup.

Fig. 4: Software based motion detection from a camera stream



V. POWER CONSUMPTION ANALYSIS

A. Evaluation Setup

The power consumption of both the controller and RPi in all
of the scenarios was measured using Monsoon power monitor
tool [17]. The measurement data from the tool can be exported
as csv file to a workstation. We analyzed the csv data using
MATLAB. In order to improve the readability of the figures,
we used a moving average filter to smooth the data before
generating the graphs.

B. Evaluation Results

In this section, we will present the power consumption
measured in all scenarios for different modes of operations:
waiting and recording.

Figure 5 illustrates the power consumption transients of
the baseline setup in scenario A. The graph shows the power
consumption of a RPi camera node in a standby mode before
and after the surveillance application launches. The power
consumption before the application runs, characterizes the
behavior of the camera node (i.e. RPi) when only basic
operating system tasks are running. This benchmark can also
serve as baseline for standby RPi before the surveillance
application is started in scenario B.

Once the surveillance application is run, the camera node
starts waiting for some incident detected by the PIR sensor.
The PIR sensor becomes active when there is change in
passive infrared radiation in the area. The PIR sensor basically
consumes ∼ 0.35mW when it is inactive and ∼ 8.35mW
when active. Thus, it is difficult to see the change due to
the PIR sensor before and after the application runs. When
motion is detected the camera module is turned on and it
starts recording video for 10 seconds. The average power
consumption of the camera node during the recording jumps to
1854mW from 1423.6mW of the waiting time (refer table I
and table II).
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Fig. 5: Power consumption of scenario A

Similarly, figure 6 presents the power consumption tran-
sients of the standby camera node in scenario B. When the
surveillance application is launched, the camera module turns
on and is ready to record/stream video. It is possible to access
the live-stream anywhere over the network or by the local-host

(RPi). The goal in this scenario is to capture video frames from
the camera stream and process them to detect motion. As can
be seen in table I, this process consumes significant amount of
power (2162.9mW ), compared to scenario A. An interesting
observation in this setup is that the camera node actually
consumes more power during the waiting time, compared to
the recording time. The application is intentionally stopped
processing the video frames while recording as we are not
interested in detecting motion while we are actually capturing
the event. When motion is detected, the node starts recording
the video for 10 seconds and goes back to waiting mode.
During the recording, the node consumes 1937.5mW power
(refer table II).
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Fig. 6: Power consumption of scenario B

Next, in scenario C, we evaluate the power consumption of
motion detection using our sleepyCAM prototype. In sleepy-
CAM, the controller is running the motion detection module
of the surveillance application. The controller will enter the
waiting mode soon after it is powered-up and initialization
has been completed. During the waiting time, the controller
consumes 5.4mW and RPi 0mW . Hence, the total power
consumption for the surveillance system in the waiting time
is 5.4mW (table I). Figure 7 shows the power consumption
transients of the controller (purple line), RPi (black line) and
the system total (red line). It also presents different power
states of the system components. When motion is detected,
the controller activates the relay which in turn powers-up RPi.
The controller power rises to 212mW and will be in this power
state as long as RPi is on.

We configured RPi to execute the video recording module of
the surveillance application during the boot-up process (even
before any user has logged in). The recording module of
the surveillance application also commands RPi to shutdown
after completing the video recording. We also configured RPi
to signal the controller about a graceful completion of the
shutdown process so that it can safely deactivate the relay.
Figure 8 depicts the optimized system power consumption
transients of scenario C (sleepyCAM), including the boot-up
and shutdown processes. As it can be seen in table II, the total
power consumption of the system during the video recording
period is 2140.5mW .



In figure 9, we present the power consumption comparison
between the two baseline scenarios (A and B) and scenario C
utilizing our sleepyCAM. The graph regions labeled as (1) and
(2) depict the power consumption in each scenario during the
waiting time and recording, respectively. The average values of
these regions are presented in tables I & II. As can be seen,
our proposed mechanism decreases the waiting time power
consumption by ∼ 99.6% compared to baseline scenario A
and by ∼ 99.75% compared to baseline scenario B. During
the video recording, our mechanism consumes ∼ 15.5% more
power than baseline scenario A and ∼ 10.5% more than
baseline scenario B. The increased power consumption during
the recording time is caused by the controller’s relay which
consumes more power when being active.

Relay is
inactive

Relay is active

Motion 
detected

Relay is
inactive

RPi is OFF RPi is OFF

RPi is ON

Fig. 7: Power consumption of the nodes in scenario C
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Fig. 8: Total power consumption of scenario C

Scenario A Scenario B Scenario C

Power (mW) Power (mW) Power (mW)

RPi 1423.6 2162.9 0
Controller NA NA 5.4
Total 1423.6 2162.9 5.4

TABLE I: Waiting time power consumption

We conclude the power consumption analysis by providing
battery life estimation of the waiting time in the three scenarios
using a 6000mAh off-the-shelf Lithium-ion battery. Battery

1 1

1 1

11

2

2

2

Fig. 9: Overall power consumption comparison between sce-
nario A, B and C

Scenario A Scenario B Scenario C

Power (mW) Power (mW) Power (mW)

RPi 1854 1937.5 1928.5
Controller NA NA 212
Total 1854 1937.5 2140.5

TABLE II: Recording time power consumption

life can be calculated from the device’s current consumption
using online tools like provided in [18]. The average current
consumption, nominal voltage, and hours of battery life are
presented in table III. As can be seen, our sleepyCAM
prototype (Scenario C) improves battery life radically, by more
than 17600%).

Voltage (V) Current (mA) Battery-life(hrs)

Scenario A 5.0 284.7 14.8
Scenario B 5.0 387.5 10.8
Scenario C 3.3 1.6 2625

TABLE III: Battery-life of waiting time

VI. DISCUSSION AND FUTURE WORK

In this paper, we presented an energy efficient motion
detection and power management mechanism for a high-
resolution video-surveillance camera nodes, called sleepy-
CAM, and benchmarked its performance against two baseline
scenarios. Both baseline scenarios and our proposed sleepy-
CAM setup consist of RPi single-board computer and a 5MP
Rev. 1.3 RPi camera module. In our optimized solution, we
proposed an external low-power controller node to conduct
the motion detection and manage power of the camera node
at the same time. The hardware selected for this purpose is
Libelium Waspmote sensor platform with a PIR sensor and a
relay. We measured the power consumption using Monsoon
power monitoring tool, and analyzed the power consumption
transients using MATLAB plots. The results show that our
proposed motion detection provides more than 99% power
consumption improvement and ∼ 2600 hours (108 days)
longer battery-life using a 6000mAh battery-house. More



importantly, our power management technique can potentially
be used for several other embedded Linux based systems, such
as Banana Pi, Beaglebone and the likes.

We conclude the paper by providing some remarks on
how the baseline methods and our proposed mechanism could
be further improved. It is possible to optimize the RPi OS
in order to achieve fast boot-up and further decrease power
consumption, such as by prioritizing tasks, removing unused
services, or using buildroot tools to generate simple, effi-
cient and easy-to-use embedded Linux systems through cross-
compilation [19], [20]. Similarly, for a headless RPi (i.e one
intended to operate without a display, keyboard and mouse),
the active state power can be greatly reduced by disabling all
the unused peripherals and turning off the LED lights on the
hardware platform and camera module. These could improve
all the scenarios discussed in the paper. However, these are
beyond the scope of this paper and we did not try to address
them here.

In scenario B, the intensive computation during the waiting
time can be performed on a remote server. In this case, RPi
would open a live-stream to the remote server and the server
would do the motion detection by processing the video frames.
When motion is detected, the server would start recording
the stream. In addition to saving the computational power
of the camera node, this would have potential to save the
transmission delay incurred by transferring video from the
camera node to the server.

In Scenario C, the mechanical relay used by sleepyCAM can
be replaced by a solid state relay or even by an optocoupler
(photo-isolator) with the exact load-current rating. This could
reduce the power consumption of the controller significantly
during the run-time of RPi.

To mitigate the limitation of the boot-up time, our future
work will focus on extending our solution to a multi-tier
WVN architecture. We plan to use scalar sensor nodes as tier-
1 devices and our optimized camera node as tier-2 device.
The tier-1 devices will send an early alert signal to tier-
2 devices; so that tier-2 device will have enough time to
wake-up and record/stream the incident on time. Our future
work will, thus, consider power consumption analysis of radio
transmissions/reception between tier-1 and tier-2. We will also
include the power consumption of tier-2 for uploading video
to a remote server; or streaming to a terminal over a wireless
link.
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