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Abstract—In this work we investigate energy efficient packet
scheduling problem for the loss tolerant applications. We consider
slow fading channel for a point to point connection with no
channel state information at the transmitter side (CSIT). In
the absence of CSIT, the slow fading channel has an outage
probability associated with every transmit power. As a function
of data loss tolerance parameters and peak power constraints,
we formulate an optimization problem to minimize the average
transmit energy for the user equipment (UE). The optimization
problem is not convex and we use stochastic optimization
technique to solve the problem. The numerical results quantify
the effect of different system parameters on average transmit
power and show significant power savings for the loss tolerant
applications.

Index Terms—Energy efficiency, power control, packet
scheduling, bursty packet loss, stochastic optimization.

I. INTRODUCTION

Internet of things (IoT) is one of the use cases of 5G

wireless communications to serve the heterogeneous services.

The applications like smart city, smart buildings and smart

transportation systems depend heavily on efficient information

processing and reliable communication techniques. The use of

thousands of smart and tiny sensors to communicate regular

measurements, e.g., temperature, traffic volume, etc., makes

it extremely important to look at the energy efficiency aspect

of the problem. In 5G networks, context aware scheduling is

believed to play key role in smart use of resources. Depending

on the application’s context, it may not be necessary to

receive every packet correctly at the receiver side to avoid

experiencing a serious degradation in quality of experience

(QoE). If some packets are lost, the application may tolerate

the loss without requiring retransmissions of the lost packets.

The application loss tolerance can effectively be exploited to

reduce average energy consumption of the devices.

We investigate energy efficient power allocation scheme for

the wireless systems with data loss constraints. The packet

loss constraints are defined in terms of average packet loss

and the maximum number of packets lost in successive time

slots. The reliability aspect of the communication systems

is conventionally handled at upper layers of communication

using error correction codes and/or hybrid automatic repeat

request (HARQ). Feedback based link adaptation applied in

HARQ is dictated by the latency constraints of the application

[1], [2]. Our approach is different from the HARQ scheme in

the sense that we assume that we do not have a data buffer

at the transmitter side due to simple nature of sensing device

(node), which makes HARQ irrelevant. Instead, we assume

that the applications’s QoE does not require every packet to

be received successfully, i.e., loss of some packets can be

tolerated, but it must be bounded and parameterized.

In literature, some earlier works have addressed similar

problems in different settings (more at network level). In [3],

the authors evaluate the subjective and objective performance

of video traffic for bursty loss patterns. Reference [4] considers

real-time packet forwarding over wireless multi-hop networks

with lossy and bursty links. The objective is to maximize

the probability that individual packets reach their destination

before a hard delay deadline. In a similar study, the authors

in [5] investigate a scenario where multimedia packets are

considered lost if they arrive after their associated deadlines.

Lost packets degrade the perceived quality at the receiver,

which is quantified in terms of the ”distortion cost” associated

with each packet. The goal of the work in [5] is to design a

scheduler which minimizes the aggregate distortion cost over

all receivers. The effect of access router buffer size on packet

loss rate is studied in [6] when bursty traffic is present. An

analytical framework to dimension the packet loss burstiness

over generic wireless channels is considered in [7] and a new

metric to characterize the packet loss burstiness is proposed.

However, these works do not characterize the effect of average

and bursty packet loss on the consumed energy at link level.

The energy aspect of the problem has been addressed in

[8] where the authors investigate intentional packet dropping

mechanisms for delay limited systems to minimize energy cost

over fading links. Some recent studies in [9], [10] characterize

the effect of packet loss burstiness on average system energy

for a multiuser wireless communication system where the

transmit channel state information (CSIT) is fully available or

erroneous. This work extends the work [9], [10] such that no

CSIT is assumed to be available, which poses new challenges

for communication and scheduler design. When CSIT is not

available for slow fading channels, channel state dependent

power control cannot be applied and error free communication

cannot be guaranteed. This results in outage which adds a new

dimension to the problem. Under different system settings,

we characterize the average power consumption of the point

to point wireless network for various average and bursty
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packet drop parameters, as well as the outage probability that

application can tolerate loss of a full sequence of packets

(successively). We model and formulate the power minimiza-

tion problem, characterize the resulting programming problem

and propose a solution based on stochastic optimization.

Simulation results show that our scheduling scheme exploits

packet loss tolerance of the application to save considerable

amount of energy; and thereby significantly improves the

energy efficiency of the network as compared to lossless

application case.

The rest of the paper is organized as follows. The system

model for the work is introduced in Section II and state space

description of the proposed scheme is discussed in Section

III. We formulate the optimization problem in Section IV and

discuss the solution in Section V. We evaluate the numerical

results in Section VI and Section VII summarizes the main

results of the paper.

II. SYSTEM MODEL

We consider a point-to-point system such that the transmit-

ter user equipment (UE) has a single packet to transmit in

each time slot. The packets are assumed to be with fixed size,

measured in bits/s/Hz. Time is slotted and the UE experiences

quasi-static independently and identically distributed (i.i.d)

block flat-fading such that the fading channel remains constant

for the duration of a block, but varies from block to block.

We assume that no transmit channel state information

(CSIT) is available at the transmitter, but the transmitter is

aware of channel distribution. Depending on the scheduling

state i (explained later in Section III), the UE transmits with

a fixed power Pi to transmit a fixed size packet with rate R

bits/s/Hz, and waits for the feedback. For convenience, the

distance between the transmitter and the receiver is assumed

to be normalized.

For a transmit power Pi, and channel fading coefficient

h, the outage probability for the failed transmission (channel

outage) is denoted by ǫi such that,

ǫi = Pr

[

log2

(

1 +
Pi|h|

2

N0

)

< R

]

(1)

where N0 is additive white Gaussian noise power.

If the packet is received at the receiver correctly, the receiver

sends back a positive acknowledgement (ACK) message to

the UE. If it is not decoded at the receiver, a negative

acknowledgement (NAK) is fed-back to the UE. The feedback

is assumed to be perfect without error. Note that a power

adaptation based on the feedback results is applied even

without CSIT.

Feedback based power allocation belongs to Restless Multi-

armed Bandit Processes (RMBPs) [11] where the states of

the UE in the system stochastically evolve based on the

current state and the action taken. The UE receives a reward

depending on its state and action. The next action depends

on the reward received and the resulting new state. In this

work, we investigate the effect of feedback based sequential

decisions in terms of UE consumed average power.

A. Problem Statement

A single packet arrives at the transmit buffer of the UE

in every time slot. The UE’s data buffer has no capacity to

store more than one packet (R bits/s/Hz). This is a typical

scenario for a wireless sensor network application where

data measurements arrive constantly after regular fixed time

intervals. The UE is battery powered, which needs to be

replaced after regular intervals. It is therefore, important to

save transmit energy as much as possible. Depending on the

application, the UE has two constraints on reliability of data

packet transfer [9], [10]:

1) Average packet drop/loss rate γ is the parameter that

constraints the average number of packets dropped/lost.

2) Maximum number of packets dropped successively. This

is called bursty packet drop constraint. The parameter N

denotes the maximum number of packets allowed to be

dropped successively without degrading QoE below a

certain level. Mathematically, the distance r(q, q − 1)
between qth and qth − 1 correctly received packets

measured in terms of number of packets is constrained

by parameter N , i.e.,

r(q, q − 1) ≤ N. (2)

Due to transmit power constraint, it is not possible to provide

the guarantee in (2) with probability one. Given at least N

packets have been lost successively by time instant t− 1, we

define a parameter ǫout at an instant t by the probability that

another packet is lost, i.e.,

ǫout = Pr
(

rt(q, q−1) = rt−1(q, q−1)+1|rt−1(q, q−1) ≥ N
)

(3)

All of these factors contribute to the QoE for the application.

Average packet drop rate is commonly used to characterize

a wireless network and bounds the QoE for the application.

However, the bursty packet loss in the applications like smart

monitoring sensors can degrade the performance enormously

due to absence of contiguous data measurements. At the same

time, the UE can exploit the parameters γ and N to optimize

average energy consumption if the application is more loss

tolerant. If the application is loss tolerant, it is advantageous to

transmit with a small power if a packet has just been received

successfully in the last time slot because the impact of packet

loss due to outage is not so severe on cumulative QoE. The

consideration of bursty (successive) packet loss poses a new

challenge in system modeling as the number of packets lost

in previous time slots affect the power allocation decision at

time slot t.

Clearly, there is a trade-off between transmitting a packet at

time t with small power based on the success of transmission

in time slots [t − 1, t − 2, . . . ], and transmitting with large

power to limit the risk of outage. This trade-off determines

the power allocation policy. Let us illustrate the impact of

ACKs and NAKs on the tightness of the constraints in the

following:

If the permitted average packet loss rate γ is very high but

N is small, i.e., it is not permitted to lose more than N packets



successively without degrading QoE, the effective average

packet drop rate becomes much lower than the permitted γ

in this case. It may work to transmit with small power due to

large γ, but parameter N does not allow it.1 Due to successive

packet drop constraint N , transmission of a packet in a time

slot t may not be as critical as in any other time slot with

t′ 6= t. If a packet was transmitted successfully in a time slot

t− 1, it implies that transmitting a packet with a lower power

is not as risky in time slot t. However, when the number of

successively lost packets approach N , power allocation needs

to be increased proportionally to avoid/minimise the event

of missing N packets successively, which may cause loss of

important information for wireless sensor networks.

III. STATE SPACE DESCRIPTION

To model the problem, we need to take the history of

transmission in the last N time slots into account. If a NAK is

received in time slot t− 1, it needs to be determined whether

transmission in time slot t − 2 was an ACK or NAK. We

model the problem using a Markov chain model where the

next state only depends on the current state and is independent

of the history. A Markov state i is defined by the number of

packets lost successively at the transmit time t. If a packet

was transmitted successively in time slot t − 1, the current

state i = 0. If two successive packets are lost in time slots

t − 1 and t − 2, i = 2. The maximum number of Markov

states is determined by parameter N .

To explain the state transition mechanism, let us examine the

power allocation policy first. At the beginning of the Markov

chain process, a packet is transmitted with power P0 in a time

slot t with initial state i = 0. The channel has an outage

probability of ǫi (defined in (1)). If the received feedback is

ACK, the process moves back to state 0, otherwise moves to

state 1. The lost packet is dropped permanently as UE has no

buffer. In state i = 1, the new arriving packet is transmitted

with a power P1 > P0 as the packet is more important for

QoE at the receiver end due to previously lost packet in the

last time slot. Thus, power allocation in state i is a function

of outage probability ǫi in state i,

Pi = f(ǫi) (4)

If the packet is transmitted successfully, the next state is zero,

2 otherwise. Similarly, the Markov chain makes a transition

to either state i+1 or state zero corresponding to the event of

unsuccessful or successful transmission, respectively. When

i = N (termination state) and a packet is not transmitted

successfully, this defines the outage event for successive packet

loss. This is modeled by self state transition probability αNN

of staying in Markov state SN such that,

αNN = ǫN = Pr(St+1 = N |St = N). (5)

PN is chosen such that αNN ≤ ǫout where ǫout is a system

parameter defined in (3). If a packet is lost in state N , we

want Markov process to stay in state N for the next time slot

1The effect of both parameters has been characterized in [9].
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Fig. 1. State diagram for the Markov chain for the UE power allocation
scheme.

to maximize the chances of transmission for the next packet

as state N has the largest transmit power PN .

Lemma 1. For all i ∈ [0, N ] it holds Pi ≤ Pi+1.

Proof. It is straight forward to prove by contradiction. If Pi >

Pi+1 and the UE is allowed to enter state i + 1, an optimal

decision is not to transmit in state i at all and wait for a

transmission in state i + 1 which requires less power. This is

a birth death process where after every N − 1 time slots, one

transmission is made in state N with power PN . This clearly

is suboptimal solution, and makes solving problem for most

of the realistic γ and N values infeasible.

The state transitions from state i to j occur with a state

transition probability αij . The state transition probability is

a function of parameters γ,N and channel distribution. For

every transmit power Pi, there is an associated state transition

probability αij .

Formally, the state transition probability αij from the cur-

rent state St = i to next state St+1 = j is defined by,

αij = Pr(St+1 = j|St = i) (6)

=































1− ǫi, if ACK Received, ∀i, j = 0

ǫi, if NAK Received, i 6= N, j = i+ 1,

0 ≤ ǫi ≤ 1

ǫN , if NAK Received, i = N, j = N

0, otherwise

(7)

where ǫi is given by (1). The resulting state diagram is shown

in Fig. 1. The state transition probability matrix A = [αij ]
N
i,j=0

takes the form

A =















1− ǫ0 ǫ0 0 . . . 0
1− ǫ1 0 ǫ1 . . . 0

. . .
. . .

. . .
. . .

. . .

1− ǫN−1 0 0 . . . ǫN−1

1− ǫN 0 0 . . . ǫN















(8)

For a time homogeneous Markov chain, the steady state

probability for state j, πj is defined by

πj =
∑

i∈S

αijπi (9)

where S defines the state space for the UE states.



Assuming N0 = 1, for Rayleigh fading and state i, the

outage probability is given by,

ǫi = 1− exp
(−(2R − 1)

Pi

)

(10)

After some algebraic manipulation, the required transmit

power Pi is calculated by,

Pi =
1− 2R

log(1− ǫi)
(11)

Note that other channel distributions, e.g., diversity reception

or transmission with multiple receive and/or transmit antennas

with single-stream transmission and 2 · d (d is the number

of active antennas) fold diversity, result in similar outage

probability expressions, as in equation (27) in [12]:

ǫi = P

(

d
2R − 1

Pi

, d

)

(12)

with the incomplete Gamma function P (a, x) defined in [13,

6.5.1]. It is not easy to solve (12) with respect to Pi due to

the incomplete Gamma function.

From the transmit power for every state i, the average

transmit power consumed is given by,

Pa =

N
∑

i=0

Piπi. (13)

IV. OPTIMIZATION PROBLEM FORMULATION

The optimization problem is to compute a vector of power

values P = [P0, P1, . . . PN ], which satisfies the constraints

on packet dropping parameters and minimizes average system

energy. The problem is mathematically formulated as,

min
P

Pa (14)

s.t.

{

C1 : γr ≤ γ, 0 ≤ γ ≤ 1

C2 : ǫN ≤ ǫout 0 ≤ ǫout ≤ 1
(15)

C1 is the average packet loss constraint for the achieved

average packet loss rate γr. From the state space model,

γr =
N
∑

i=0

ǫiπi . (16)

The outage probability ǫi and the corresponding transmit

power Pi for a UE in state i is computed such that the average

packet dropping probability constraint C1 holds. For i = N ,

ǫN ≤ ǫout where ǫout is defined in (3). ǫi cannot be determined

directly and needs to be optimized for the system parameters.

ǫi = f(γ,N, ǫout, hX(x), R) (17)

where hX(x) is the fading channel distribution.

The optimization problem is to find ǫi, ∀i that results in

minimum average power. If we choose Pi too high for small

states, the packets will more likely be transmitted too early

at the expense of larger power budget without exploiting loss

tolerance of the application and provide good (but unneces-

sary) QoE. On the other side, if Pi is chosen too low in the

beginning, the packets will be lost mostly and we have to

transmit with much higher power to meet the forced condition

that at least one packet has to be transmitted to avoid the

sequence of N lost packets.

A. Special Case N = 1

Let us examine a special case with N = 1. In this case,

state transition probability matrix A reads,

A =

(

1− ǫ0 ǫ0
1− ǫ1 ǫ1

)

(18)

Steady state transition probabilities for states 0 and 1 are

calculated as,

π0 =
1− ǫ1

1 + ǫ0 − ǫ1
(19)

π1 =
ǫ0

1 + ǫ0 − ǫ1
. (20)

Computing γr for ǫ1 = ǫout and π0 and π1 calculated above,

(16) yields

γr =
ǫ0

1 + ǫ0 − ǫout
. (21)

We can compute the value of ǫ0 in closed form that satisfies

constraint C1 and C2 with equality. Solving (21) and C1 in (15)

with equality,

ǫ0 = (1− ǫ1)
γ

1− γ
. (22)

Then, we compute power levels P0 and P1 and resulting

average power Pa in closed form using (11) in (13). We

numerically show in Section VI that the power levels computed

in closed form for the boundary condition ǫN = ǫout is not

optimal for every value of ǫout.

The expressions for the power levels cannot be obtained

in closed form for N > 1. The variables ǫ0, ǫ1 . . . ǫN are

unknown and it is not possible to compute a unique set of

ǫi, ∀i in closed form that satisfies C1 in (15). The optimization

problem in (14) is a combinatorial problem as it is hard to

compute a unique solution in terms of ǫi, ∀i due to sum of

product term in (16). It is therefore, difficult to compute P

that minimizes Pa using convex optimization techniques.

B. Optimization with Peak Power Constraint

Let us assume that we have a peak power constraint Pm at

the transmitter side. This implies that largest transmit power at

the UE cannot exceed Pm in any state i, regardless of the other

problem constraints. Thus, peak power constraint is added to

the constraints in (15):

C3 : Pi ≤ Pm, ∀i, j (23)

where C3 represents the peak power constraint.

Lemma 2. The peak power constraint Pi ≤ Pm, ∀i, j, reduces

to PN ≤ Pm.

Proof. From Lemma 1, Pi ≤ Pi+1, ∀i. This implies, PN is the

largest transmit power for any state. Constraining PN ≤ Pm

is therefore, enough to apply peak power constraint for the

overall system.
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Fig. 2. Performance of the proposed scheme for different packet loss parameters with N = 1.

From Lemma 2, PN is constrained by Pm. However, PN is

also constrained by the power resulting from system parameter

ǫout (C2). This implies that the problem is only feasible if the

solution satisfies both outage probability resulting from the

peak power constraint and the outage constraint ǫout. Denoting

the power consumption from ǫout by Pout, the solution is

feasible if

Pout ≤ PN ≤ Pm. (24)

V. STOCHASTIC OPTIMIZATION

The combinatorial optimization problems which are not

solvable with regular optimization techniques, can approxi-

mately be solved using stochastic optimization methods. There

are a few heuristic techniques in literature to solve such

problems like genetic algorithm, Q-learning, neural networks,

etc. We use Simulated Annealing (SA) algorithm to solve the

problem. The algorithm was originally introduced in statistical

mechanics, and has been applied successfully to networking

problems [9], [10].

In SA algorithm, a random configuration in terms of transi-

tion probability matrix A is presented in each iteration and the

average power Pa is evaluated only if constraints in (15) are

met. If the evaluated Pa is less than the previously computed

best solution, the candidate set of outage probabilities ǫi,

∀i are selected as the best available solution. However, the

candidate set ǫi, ∀i can be treated as the best solution with

a certain temperature dependent probability even if the new

solution is worse than the best known solution. This step is

called muting and helps the system to avoid local minima.

The muting occurs frequently at the start of the process as the

selected temperature is very high and decrease as temperature

is decreased gradually, where temperature denotes a numerical

value that controls the muting process.

In literature, different cooling temperature schedules have

been employed according to the problem requirements. The

cooling schedule determines the convergence rate of the so-

lution. If temperature cools down at a fast rate, the optimal

solution can be missed. On the other hand, if it cools down

too slowly, optimization requires large amount of time. In this

work, we employ the following cooling schedule, called fast

annealing (FA) [14]. In FA, it is sufficient to decrease the

temperature linearly in each step b such that,

Tb =
T0

csa · b+ 1
(25)

where T0 is a suitable starting temperature and csa is a

constant, which depends on the requirements of the problem.

After a fixed number of temperature iterations, when muting

ceases to occur completely, the best solution is accepted as

optimal solution.

??.

VI. NUMERICAL RESULTS

We perform numerical evaluation of the proposed schedul-

ing scheme in this section. We consider a Rayleigh fading

channel with mean 1 for the point to point link. The noise vari-

ance N0 equals one. Spectral efficiency R equals 1 bits/s/Hz

while peak power is set to a relatively high value of 20 dBW

for all numerical examples.

We study the effect of packet loss parameters on average

power consumption for the special case N = 1 in Fig. 2, where

the results are evaluated using both closed form expressions

derived in Section IV-A and the SA framework developed in

Section V. Average transmit power is plotted for the fixed N

and γ = 0.1, 0.2 in Fig. 2(a). Note that ǫout = ǫN in the closed

form expression. Average power consumption is a convex

function in ǫout for a fixed γ and N , and a unique optimal

ǫout can be seen. Let us call it ǫ∗out. If system parameter

ǫout ≤ ǫ∗out, it results in high average power. However, if

ǫout > ǫ∗out, the system has more flexibility and it is optimal

to set ǫN = ǫ∗out instead to save power. The optimized results

with SA method match closely with the closed form results for

ǫout ≤ ǫ∗out which validate the accuracy of solution provided

by SA algorithm. For ǫout > ǫ∗out, SA method provides the
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optimal solution in contrast to the suboptimal solution where

ǫN = ǫout is enforced.

Fig. 2(b) confirms the results in Fig. 2(a) for the experiment

conducted using SA algorithm. We plot ǫN (read on left y-

axis) and the corresponding γr values (read on right y-axis)

for different values of ǫout. When ǫout ≤ ǫ∗out, ǫN follows ǫout
closely while γr < γ.2 When ǫout > ǫ∗out, ǫN = ǫ∗out while

γr → γ. These results explain the average power optimization

for SA algorithm in Fig. 2(a) that all degrees of freedom are

sufficiently exploited at ǫout = ǫ∗out to optimize the energy

consumption for a fixed γ and N .

Fig. 3 compares the average power consumption for the

case N = 1, 2, 3 and γ = 0.2. The power levels are optimized

using Simulated Annealing algorithm. It is evident that ǫ∗out
and resulting average power is the same for all N .3 When

ǫout ≤ ǫ∗out, an increase in N for a fixed γ helps to reduce

average power consumption in general (specially at small

ǫout). More flexibility in packet dropping parameters provides

more degrees of freedom and results in energy savings. When

ǫout > ǫ∗out, the effect of large N vanishes and power saving

depends solely on average packet dropping parameter.

VII. CONCLUSION

We consider energy efficient scheduling and power alloca-

tion for the loss tolerant applications. Data loss is characterized

as a function of average and successive packet loss, and the

probability that successive packet loss is not guaranteed. These

parameters jointly define the QoE and context for an applica-

tion. In contrast to average packet loss parameter, other loss

parameters depend on the packet loss patterns without actually

changing the number of lost packets. By considering bursty

packet loss a form of contextual information, we provide

2The curve for γr shows some irregular behaviour. Note that γr is
constrained to be less than γ and irregular values of γr resulting from
stochastic optimization still meet this condition.

3Minor difference in the values is due to nature of randomized SA
algorithm.

another degree of freedom in the scheduling algorithm which

can be exploited to reduce energy consumption. Without CSIT,

we formulate the average power optimization problem as a

function of data loss parameters. The optimization problem is

a combinatorial optimization problem and requires stochastic

optimization technique to solve it. We compute closed form

expressions of average power as a function of system param-

eters for the special case N = 1 and compare it with the

solution obtained from simulated annealing algorithm. Both

of the results match up to a point and diverge after words

due to inaccurate assumptions for the closed form solution.

However, the matching of both results validate the solution

provided by simulated annealing algorithm. For N ≥ 1,

we numerically quantify the energy savings for increased

flexibility in successive packet loss tolerance parameter.

ACKNOWLEDGEMENT

This publication has emanated from research conducted

with the financial support of Science Foundation Ireland (SFI)

and is co-funded under the European Regional Development

Fund under Grant Number 13/RC/2077.

REFERENCES

[1] T. Villa, R. Merz, R. Knopp, and U. Takyar, “Adaptive modulation and
coding with hybrid-ARQ for latency-constrained networks,” in European

Wireless Conference, April 2012, pp. 1–8.
[2] J. Choi and J. Ha, “On the energy efficiency of AMC and HARQ-IR

with QoS constraints,” IEEE Trans. Vehicular Technology, vol. 62, pp.
3261–3270, 2013.

[3] M. M. Nasralla, C. T. E. R. Hewage, and M. G. Martini, “Subjective and
objective evaluation and packet loss modeling for 3D video transmission
over LTE networks,” in International Conference on Telecommunications

and Multimedia (TEMU), Heraklion, Crete, Greece, July 2014.
[4] Z. Zou and M. Johansson, “Deadline-constrained maximum reliability

packet forwarding with limited channel state information,” in IEEE

Wireless Communications and Networking Conference (WCNC), April
2013, pp. 1721–1726.

[5] A. Dua, C. W. Chan, N. Bambos, and J. Apostolopoulos, “Channel,
deadline, and distortion (CD2) aware scheduling for video streams over
wireless,” IEEE Trans. Wireless. Communications, vol. 9, no. 3, pp.
1001–1011, Mar. 2010.

[6] L. Sequeira, J. Fernandez-Navajas, L. Casadesus, J. Saldana, I. Quintana,
and J. Ruiz-Mas, “The influence of the buffer size in packet loss for
competing multimedia and bursty traffic,” in International Symposium on

Performance Evaluation of Computer and Telecommunication Systems,
Toronto, Canada, July 2013.

[7] F. Liu, T. H. Luan, X. S. Shen, and C. Lin, “Dimensioning the packet
loss burstiness over wireless channels: a novel metric, its analysis and
application,” Wireless Communications and Mobile Computing, 2012.

[8] M. J. Neely, “Intelligent packet dropping for optimal energy-delay
tradeoffs in wireless downlinks,” IEEE Trans. on Automatic Control,
vol. 54, no. 3, pp. 565–579, March 2009.

[9] M. M. Butt and E. A. Jorswieck, “Maximizing system energy efficiency
by exploiting multiuser diversity and loss tolerance of the applications,”
IEEE Trans. Wireless Communications, vol. 12, no. 9, pp. 4392–4401,
2013.

[10] M. M. Butt, E. A. Jorswieck, and A. Mohamed, “Energy and bursty
packet loss tradeoff over fading channels: A system-level model,” IEEE

Systems Journal, vol. PP, no. 99, pp. 1–12, 2016.
[11] P. Whittle, “Restless bandits: Activity allocation in a changing world,”

Journal of Applied Probability, vol. 25, pp. pp. 287–298, 1988.
[12] E. A. Jorswieck and H. Boche, “Outage probability in multiple antenna

systems,” European Trans. on Telecom., vol. 18, pp. 217–233, 2007.
[13] M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions.

Dover Publications, 1970.
[14] H. Szu and R. Hartley, Physics Letters A, no. 3, June.


	I Introduction
	II System Model
	II-A Problem Statement

	III State Space Description
	IV Optimization Problem Formulation
	IV-A Special Case N=1
	IV-B Optimization with Peak Power Constraint

	V Stochastic Optimization
	VI Numerical Results
	VII Conclusion
	References

