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Abstract—Slotted ALOHA (SA) algorithms with Successive In-
terference Cancellation (SIC) decoding have received significant
attention lately due to their ability to dramatically increase the
throughput of traditional SA. Motivated by increased density
of cellular radio access networks due to the introduction of
small cells, and dramatic increase of user density in Machine-
to-Machine (M2M) communications, SA algorithms with SIC
operating cooperatively in multi base station (BS) scenario are
recently considered. In this paper, we generalize our previous
work on Slotted ALOHA with multiple-BS (SA-MBS) by con-
sidering users that use directional antennas. In particular, we
focus on a simple randomized beamforming strategy where,
for every packet transmission, a user orients its main beam in
a randomly selected direction. We are interested in the total
achievable system throughput for two decoding scenarios: i) non-
cooperative scenario in which traditional SA operates at each BS
independently, and ii) cooperative SA-MBS in which centralized
SIC-based decoding is applied over all received user signals.
For both scenarios, we provide upper system throughput limits
and compare them against the simulation results. Finally, we
discuss the system performance as a function of simple directional
antenna model parameters applied in this paper.

Index Terms—Slotted ALOHA, successive interference cancel-
lation, M2M, directional antennas

I. INTRODUCTION

The problem of connecting very large number of devices to
wireless cellular networks is gaining momentum as billions of
devices are estimated to be connected to the Internet as part of
so called M2M communications. In mobile cellular networks,
the first M2M standards have been introduced under the name
Machine Type Communication (MTC) services as part of the
fourth generation (4G) 3GPP Long-Term Evolution (LTE)
technology and will continue to evolve into the upcoming
fifth generation (5G) technology [1]. The vast majority of
MTC users will be devices whose activity is irregular and
unpredictable and that occasionally transmit small volumes
of data such as smart meters. As the cellular infrastructure
becomes increasingly dense due to proliferation of small cells,
the 5G radio access network is faced with increased density
both in terms of user and base stations. In such a scenario,
we are interested in the design of simple and efficient random
access solution able to support the expected surge of MTC
traffic in the future.

Slotted ALOHA (SA) random access solutions with Succes-
sive Interference Cancellation (SIC) decoding have received
significant attention lately due to their ability to dramatically
increase the throughput of traditional SA. SA with SIC for
single base station systems has been proposed in [2]. Using
the analogy with sparse-graph codes and iterative erasure
decoding, SA with SIC is further optimized to reach close-
to-optimal throughputs [3]. Motivated by increased density
of cellular networks due to the introduction of small cells,
we recently considered SA algorithms with SIC operating
cooperatively in multi base station (SA-MBS) systems [4].
In SA-MBS, users can be heard and decoded by any of the
surrounding base stations as, from the system perspective, it
is not important which of the small base stations collected the
user. Thus, apart from temporal diversity exploited by SA with
SIC in single base station systems, SA-MBS may additionally
exploit spatial diversity combined with cooperative SIC-based
decoding. For an overview of SA with SIC in single and multi
base station systems, we point the reader to [5] and [6].

In this paper, we generalize the work in [4] by considering
users that use directional antennas. Our main motivation
follows recent trends of shifting the operational band of mobile
cellular systems towards millimetre wavelength (mmWave)
domain and usage of directional transmissions by exploiting
multiple antenna systems and beamforming techniques [7][8].
In particular, we consider a simple randomized beamforming
strategy where, for every packet transmission, a user orients its
main beam in a randomly selected direction [9]. This way, we
maintain the simplicity of random access SA-MBS scheme,
avoid complex and time-consuming beamforming alignment
procedures, and rely on density of small cell infrastructure and
efficiency of SA-MBS with joint SIC-based decoding. We are
interested in the achievable system throughput for two decod-
ing scenarios: i) non-cooperative scenario in which traditional
SA operates at each BS independently, and ii) cooperative SA-
MBS in which centralized SIC-based decoding is performed
over all received user signals. The latter scenario is motivated
by the case where user signals are centrally processed as
part of emerging Cloud RAN (C-RAN) architectures [10]. We
provide analytical approximations for the system throughput
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and compare them against the results obtained via simulation
experiments. The analysis is concluded by the discussion of
the system throughput performance as a function of directional
antenna model parameters such as the beam-width and the
beam-range.

The rest of the paper is organized as follows. In Section
2, we present details of the SA-MBS system model with
directional antennas. Section 3 introduces the two versions of
the SA-MBS decoding and provides simple but useful approx-
imations of the system throughput. In Section 4, we present
simulation results and compare them against the analytical
approximations. Finally, Section 5 concludes the paper.

II. SYSTEM MODEL

A. Placement Model

We assume that both BSs and UEs are placed according to
Poisson point processes (PPP) over a surface A of an area
‖A‖. The PPP for BSs has intensity λBS , while for UEs it
has intensity λUE . The two PPP are mutually independent.
The numbers of BSs and UEs, denoted as NBS and NUE , are
hence random variables with Poisson distributions P(NBS)
and P(NUE), with mean values NBS = λBS · ‖A‖ and
NUE = λUE · ‖A‖, respectively. We denote users by Ui,
i = 1, 2, ..., and BSs by Bj , j = 1, 2, ... Unless otherwise
stated, we will focus on a unit-square area A (‖A‖ = 1), in
which case the expected number of BSs and UEs reduces to
NBS = λBS and NUE = λUE , respectively.

B. Random Access Model

We consider Slotted ALOHA random access model in the
Multi Base Station (SA-MBS) scenario [4]. The time domain
is discrete and divided into time slots (TS). User transmissions
are synchronized and aligned with TS boundaries, which are
perfectly synchronized across all BSs. In any time slot, a UE
transmits an equal-length data packet independently of other
UEs with probability p, which we call the activity factor.
Due to high BS density, the UE packet transmission may
be detected at several neighbouring BSs. We assume BSs are
interconnected via a backhaul network and any BS may collect
any UE’s data packet, i.e., we assume no a priori UE to BS
associations. We consider the UE’s packet to be collected as
long as it is decoded by any BS.

The average normalized load is defined by G = pNUE

NBS
=

pλUE

λBS
. For the sake of analysis, without loss of generality,

it is sufficient to consider the SA-MBS system behaviour at
any single fixed TS. In the following, we will assume activity
factor p = 1. This is sufficient, as any other p < 1 will only
thin the PPP describing UE placement to intensity pλUE .

C. User Transmission Model

In contrast with our previous work on SA-MBS [4], in
this paper we assume that UEs use directional antennas,
e.g., by exploiting beamforming techniques, to direct their
transmission beams [8]. We assume a simple randomized

Fig. 1. User directional transmission model: User Ui transmits a signal of
range r and beam-width Θ in a randomly oriented direction α.

beamforming model in which UEs choose the main lobe
direction α uniformly at random from the interval [0, 2π), as
presented in Figure 1 [9]. The simple beamforming model
avoids inefficiency due to beam-alignment procedures, while
relying on assumption that the density of infrastructure λBS
(e.g., small cells) is very large. The main lobe angular width
θ and the UE signal range r is assumed equal for all UEs.
In other words, we assume homogeneous model where each
UE transmits using the same power, and simplify the signal
propagation model by considering only path loss (shadowing
and fading effects are neglected).

For the above model, a user transmission has a simple geo-
metric interpretation where UE signals cover circular section
areas centred at the UE location x with the radius r, angular
width θ and randomly selected angular offset α, as illustrated
in Figure 1. We denote the surface covered by this circular
section as ACS(x, r, α, θ). A necessary condition for the UE
to be collected is that ACS(x, r, α, θ) covers at least one BS.
We formalize the notion of an UE covering a BS as follows:
the user Ui covers the base station Bj if and only if the
corresponding coverage indicator Cij = 1:

Cij =

{
1 if (dij ≤ r) ∧ (α− θ

2 ≤ αij ≤ α+ θ
2 )

0 otherwise,
, (1)

where dij is the Euclidean distance between Ui and Bj , and
αij is the angle of the line (Ui, Bj) relative to the reference
direction.

We find the motivation for the randomized beamforming
in its simplicity and the fact that it could provide a lower
bound performance limit for more sophisticated beamforming
techniques. To some extent, randomized beamforming simpli-
fies our analysis, i.e., the specific performance approximations
presented in the next section.



Fig. 2. Upper-left subfigure: Randomly directed UE transmissions in a given time slot; Upper-right subfigure: Resulting network connectivity graph; Lower-
left subfigure: Non-cooperative SA-MBS decoding example - only UEs connected via dashed edges will be collected; Lower-right subfigure: Cooperative
SIC-based SA-MBS decoding example - the first iteration is identical to non-cooperative decoding; the SIC phase removes solid lines; the second iteration
decodes UEs connected via dotted lines (note that the set of four UEs in the lower-right corner cannot be decoded as it forms a stopping set [11]).

D. Network Connectivity Graph

The above introduced coverage indicator Cij allows us
to define the (random) Network Connectivity Graph C =
(V,E) as a bipartite graph of nodes V = {U ,B}, where
U = {U1, U2, . . . , UNUE

} is the set of UEs and B =
{B1, B2, . . . , BNBS

} is the set of BSs, and edges E ⊆ U ×B
such that (Ui, Bj) ∈ E ⇐⇒ Cij = 1 (see Figure 2,
upper subfigures). Note that the resulting graph represents
a random bipartite geometric graph and has in particular a
random number of nodes NBS +NUE .

For any user Ui, its degree deg(Ui) (number of adjacent
BSs) in graph C is a Poisson random variable with mean
1
2λBS r

2θ, which we denote by P( 1
2λBS r

2θ). Similarly, for
any BS Bj , its degree deg(Bj) (number of adjacent users)
has the distribution P( 1

2λUE r
2θ) (we note that for both,

UE and BS degree distributions, we ignore the boundary
effects.) Denote by Λd = P(deg(Ui) = d), and by Ωd =
P(deg(Bj) = d), d = 0, 1, 2, ... For future reference, we also
introduce the corresponding degree distribution polynomials
Λ(x) =

∑∞
d=0 Λdx

d and Ω(x) =
∑∞
d=0 Ωdx

d. Finally, we
note that the network connectivity graph C is a useful tool not
only to visualise, but to also interpret and analyse the SA-MBS
decoding process, as described next.

III. DECODING ALGORITHMS AND THROUGHPUT
ANALYSIS

In this section, we present two decoding approaches for SA-
MBS system: i) non-cooperative and ii) cooperative decod-
ing. Providing exact closed-form expressions for the system
throughput in both scenarios seems to be a formidable task;
however, we approximate the throughput with a simple but
insightful expressions.

A. Base Stations Decoding Model

Non-Cooperative SA-MBS Decoding: in this case, we
assume all BSs apply classical Slotted ALOHA decoding
algorithm independently of each other. In other words, in
any time slot, a BS will collect a UE’s packet if and only
if that UE is the only one that covers the BS (“singleton”). In
contrast, if BS detects empty TS (no UE cover the BS) or TS
is occupied by two or more UE transmissions, the TS, at that
BS, is wasted. Non-cooperative SA-MBS decoding proceeds
on a "slot-by-slot" basis, where TSs are independent among
each other. In terms of the network connectivity graph, the
algorithm allows simple interpretation: only BSs with degree
equal to one are able to collect a corresponding UE (Figure
2, lower-left subfigure).



Cooperative SA-MBS Decoding: in this scenario, we
assume all signals collected at BSs are forwarded to the central
processing location. Motivation for this assumption comes
from the so-called Cloud-RAN (C-RAN) architecture, where
BSs serve only as RF front-ends while the baseband processing
is done centrally. For simplicity, we assume all UE signals are
synchronized to the TS boundaries at all BSs (i.e., the distance
differences can be neglected due to high density of both UEs
and BSs), and that BSs know and share with the centralized
processing location the channel state information of the UEs
in their vicinity. Centralized cooperative decoding algorithm
applies SA with Successive Interference Cancellation (SIC)
across all the signals received at different BSs [2]. In short,
if UE’s transmission is decoded as a singleton at any BS, its
signal can be subtracted from collisions at all other BSs where
a given UE signal is found in collision with other UE signals.
In terms of graphical interpretation, the signal recovery using
cooperative SA-MBS algorithm on the network connectivity
graph is equivalent to the iterative erasure decoding of LDPC
codes [3][4] performed on random bipartite geometric graphs
(Figure 2, lower-right subfigure).

B. Throughput Analysis

We consider the SA-MBS system with average normalized
load G = λUE

λBS
. The average normalized system throughput is

defined as the expected number of collected users per BS, per
TS:

T =
1

λBS
E [NUE, coll.] ,

where NUE,coll. is the total number of collected users. Here,
expectation is taken over the number of users, number of BSs,
as well as over their random placements. In the following, we
consider the average normalized system throughput for the
SA-MBS system with non-cooperative decoding.

Non-Cooperative SA-MBS Decoding – Throughput Up-
per Bound: Denote by NBS,1 the number of BSs which have
degree equal to 1, i.e., which are in the transmission range
of exactly one active user. Note that, for the random variables
NUE,coll. and NBS,1, it holds that NUE,coll. ≤ NBS,1. Indeed,
for each collected user Ui, there exists at least one BS which
collected it, and this BS necessarily has degree 1. Note also
that there might be more than one BS which collects Ui; and
all such BSs have degree one and are adjacent to Ui. Moreover,
the set of the BSs which collect Ui and the set of the BSs
which collect Uj are disjoint, for any i 6= j. Now, having
that NUE,coll. ≤ NBS,1, we can upper bound the average
normalized system throughput as follows:

T ≤ 1

λBS
E [NBS,1] . (2)

It remains to calculate E [NBS,1]. We do so by conditioning
on the number of BSs NBS , i.e.:

E [NBS,1] =

∞∑
b=0

E [NBS,1 |NBS = b ] P(NBS = b).

Next, it is clear that E [NBS,1 |NBS = b ] = bΩ1, where we
recall that Ω1 is the probability that a fixed BS has degree 1,
and it equals µ e−µ, with µ = λUEr

2θ
2 . Now, using P(NBS =

b) = e−λBS λ
b
BS

b! , we have:

E [NBS,1] =

∞∑
b=0

b µ e−µ
e−λBSλbBS

b!

= λBS µ e
−µ

∞∑
b=1

e−λBSλb−1
BS

(b− 1)!
= λBS µ e

−µ.

Substituting the latter expression in (2), and using µ =
λUE r

2 θ
2 , we finally obtain the following upper bound on the

average normalized throughput:

T ≤ λUE r
2 θ

2
exp

(
−λUE r

2 θ

2

)
(3)

=
GλBS r

2 θ

2
exp

(
−GλBS r

2 θ

2

)
.

We note that the form of the above upper bound corresponds
exactly to the well-known exact throughput expression for SA
in single BS systems. As noted above, the throughput penalty
for SA-MBS system that use non-cooperative decoding arises
from the fact that some UEs will be collected by multiple BSs.

It is now interesting to investigate the bound (3) as a
function of system parameters r and θ, when λUE , λBS , and
G are fixed. Note that the bound is of the form z e−z , with
z = λUE r

2 θ
2 . The function z e−z has its maximum at z = 1,

and hence the maximal throughput is achieved when r and θ
are such that λUE r

2 θ
2 = 1. In words, the maximal throughput

(bound) is achieved when r and θ are such that, on average,
each BS “sees” exactly one active user. Simulations further
ahead will show that the optimal parameter estimates based on
bound (3) are close to the actual optimal system parameters.

Cooperative SA-MBS Decoding - Throughput Upper
Bound: in this scenario, after all signals in a TS are col-
lected and forwarded to the central processing location, the
cooperative SIC-based decoding operates on the corresponding
network connectivity graph C. The graph contains on average
NUE = λUE user nodes and NBS = λBS base station nodes,
while edges follow UE-to-BS coverage indicators. The degree
distributions of both UE and BS nodes can be approximated
as Poisson distributions provided in subsection II-D.

We consider the asymptotic scenario when both λUE and
λBS → ∞, while keeping constant the average system load
G = λUE

λBS
. We also fix to a constant value the average

UE degree d̄UE = 1
2λBSr

2θ and the average BS degree
d̄BS = 1

2λUEr
2θ. In the asymptotic limit, the UE and BS

degree distributions tend to Poisson distributions Λ(x) =
e−d̄UE(1−x) = e−G·d̄BS(1−x) and Ω(x) = e−d̄BS(1−x). In such
a scenario, the asymptotic probability that a UE is collected
after l iterations of cooperative SA-MBS decoding, under
assumption that the underlying graph does not contain cycles
of length 2l or less, can be obtained by applying the density
evolution analysis [11].



Fig. 3. Average system throughput T = T (G) for cooperative and non-
cooperative SA-MBS decoding (simulation results and upper bound).

Let P(l)(Ui,coll.) be the probability that a UE Ui is collected
after the l-th iteration of iterative SIC-based cooperative SA-
MBS decoding. Observing the SIC-based decoding process
as graph-peeling iterative erasure decoder running on the
network connectivity graph, we denote by ql (rl) the average
probability that an edge in the graph incident to a user (base
station) survives the l-th iteration. Then, by and-or-tree lemma
[12], we have:

rl = 1− e−(1−G)·d̄BS ·(1−ql−1); (4)
ql = e−G·d̄BS(1−rl); (5)

where the recursion is initialized by q0 = 0. The expected
probability a user is collected after the l-th iteration of the
iterative SIC-based decoder is equal P(l)(Ui,coll.) = 1− ql.

We note that the output of the and-or-tree analysis overesti-
mates P(Ui,coll.) due to the fact that: i) in real-world systems,
we deal with finite values of λUE and λBS , and ii) unlike as-
sumed in and-or-tree analysis, our network connectivity graph
is random bipartite geometric graph, and consequently, the
probability of short cycles will not vanish asymptotically. Thus
we adopt the output of and-or-tree analysis as an upper bound
for P(Ui,coll.) in case of cooperative SA-MBS decoding, as
demonstrated numerically in the following section.

IV. NUMERICAL RESULTS

In this section, we present the average system throughput
results obtained via simulation experiments and discuss the
performance of SA-MBS with directional antennas as a func-
tion of user beam-width Θ and beam-range r. We compare
the simulation results with not very tight but simple and
informative throughput upper bounds presented in Section 3B.

The simulation setup is described as follows. In each simu-
lation experiment, we fix the average system load G = λUE

λBS
.

Then, we sample NUE = n and NBS = b from P(λUE)
and P(λBS), i.e., the UEs and BSs are placed over a unit-
square area according to PPPs with intensities λUE and λBS
(the two PPPs being independent). For all UEs, we generate
their corresponding circular section areas ACS as described in

Fig. 4. Average system throughput T = T (r) for cooperative SA-MBS for
different beam-widths Θ and load G = 1.

Section 2C, and use them to define the corresponding network
connectivity graph C. We run both decoding algorithms on C,
as described in Section 3A, in order to obtain the number
of collected users NUE,coll. = ncoll.. For a fixed set of
parameters, the simulation experiment is repeated 100 times
to obtain the estimate of the average number of collected
users NUE,coll.. The average system throughput is estimated
as T = G · NUE,coll.

NUE
=

NUE,coll.

λBS
.

In Figure 3, we present the average system throughput,
both simulated and upper bounds, for non-cooperative and
cooperative SA-MBS decoding. We fixed the average BS
density to λBS = 1000 and varied the average UE density
λUE in order to evaluate T = T (G) over the range G = [0, 1].
The directional antenna beam parameters are fixed to r = 0.1
and θ = π/10. The figure shows that the average throughput of
cooperative SA-MBS decoding significantly outperformes the
non-cooperative case and reaches the maximum T ∗ ∼ 0.38
for G = 0.7, compared to T ∗ ∼ 0.2 achieved by the
non-cooperative decoding at G = 0.5. We note that the
derived upper bounds, although not tight, correctly follow the
throughput behaviour and, as demonstrated next, could be used
to estimate the optimal directional antenna parameter settings.

In Figure 4, we present the simulated results for the system
throughput T in cooperative SA-MBS decoding scenario as
a function of radius r. We fix the average system load G =
1 by fixing λUE = λBS = 1000, and vary the UE beam-
range r = [0.01, 0.3], for the set of directional antenna beam-
widths θ = {0.1, 0.2, 0.3, 2π]. Figure 4 shows clear benefits of
using directional antennas in a given scenario, where not only
the maximum throughput slightly increases for smaller beam-
widths Θ, but also, the region of beam-ranges r for which the
throughput remains at high values is dramatically larger.

Figure 5 investigates the system throughput T as a function
of radius r for a fixed narrow beam-width Θ = 0.1. The
average system load is varied between G = [0.6, 1] by varying
λUE while keeping λBS = 1000. Figure 5 shows how by
decreasing the system load G, one can achieve high throughput
for a wide range of beam-ranges r. The maximum throughput



Fig. 5. Average system throughput T = T (r) for cooperative SA-MBS for
different loads G and beam-width Θ = 0.1.

T ∗ = 0.48 is achieved for G = 0.7.
Finally, in Figure 6, we consider the system throughput T

as a function of the beam-width Θ for a fixed load G = 0.5
and a set of beam-ranges r = {0.1, 0.15, 0.2, 0.25, 0.3}. One
can observe that the maximum throughput peaks at narrow
beam-widths (Θ ≈ 0.1). As expected, for any beam-range
r, there exists an optimum beam-width that maximizes the
system throughput T . However, note that for smaller beam-
range values r, the region of high throughput values stretches
across considerably larger range of beam-widths Θ.

V. CONCLUSIONS

In this paper, we investigated SA-MBS scenario consider-
ing users that employ directional antennas. The total system
throughput is investigated for two decoding algorithms: the
non-cooperative SA-MBS decoding where BSs independently
apply traditional SA, and the cooperative SA-MBS decoding
where signals received at BSs are centrally decoded using SIC-
based decoding. Both scenarios are analyzed by evaluating
the total system throughput using both simulation experiments
and analytical throughput upper bounds. The obtained re-
sults demonstrate that the cooperative SA-MBS decoding can
significantly outperform non-cooperative SA-MBS decoding.
In addition, the obtained bounds could be used to provide
guidelines on the selection of directional antenna parameters
that, under a given system setting, maximize the total system
throughput. As a future work, we intend to tighten analytical
bounds for both non-cooperative and cooperative decoding
scenario by considering the probabilities that a UE is collected
by two or more BSs (non-cooperative) or by analyzing certain
dominant stopping sets (cooperative). We will also extend
the scenario where UEs employ directional antennas by addi-
tionally considering time-diversity, i.e., by exploiting Framed
Slotted Aloha (FSA) and performing SIC-based decoding
both spatially (across different BSs) and temporally (across
different TSs).

Fig. 6. Average system throughput T = T (Θ) for cooperative SA-MBS for
different beam-ranges r and load G = 0.5.

ACKNOWLEDGEMENT

The Research leading to these results has received funding
from the EC Seventh Framework Programme (FP7-PEOPLE-
2013-ITN) under Grant Agreement No. 607774.

REFERENCES

[1] T. Taleb, and A. Kunz, “Machine type communications in 3GPP networks:
potential, challenges, and solutions,” IEEE Communications Magazine,
Vol. 50, No. 3, pp. 178-184, March 2012.

[2] E. Casini, R. De Gaudenzi, and O. del rio Herrero, “Contention resolution
diversity slotted ALOHA (CRDSA): An enhanced random access scheme
for satellite access packet networks,” IEEE Transactions on Wireless
Communications, Vol. 6, No. 4, pp. 1408–1419, April 2007.

[3] G. Liva, “Graph-based analysis and optimization of contention resolu-
tion diversity slotted ALOHA,” IEEE Transactions on Communications,
Vol. 59, No. 2, pp. 477–487, February 2011.

[4] D. Jakovetic, D. Bajovic, D. Vukobratovic, V. Crnojevic: “Cooperative
Slotted ALOHA for Multi Base Station Systems,” IEEE Transactions on
Communications, Vol. 63, No. 4, pp. 1443-1456, April 2015.

[5] E. Paolini, C. Stefanovic, G. Liva, P. Popovski, “Coded Random Access:
Applying Codes on Graphs to Design Random Access Protocols,” IEEE
Communications Magazine, Vol. 53, No. 6, pp. 144-150, June 2015.

[6] A. Munari, F. Clazzer, G. Liva, “Multi-Receiver Aloha - a Survey and
New Results,” in Proc. IEEE ICC Workshop on Massive Uncoordinated
Access Protocols (MASSAP), London (UK), 8-12 June 2015.

[7] T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!,” IEEE Access,
Vol. 1, pp. 335-349, 2013.

[8] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and
F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for
5G cellular communications: theoretical feasibility and prototype results,”
IEEE Communications Magazine, Vol. 52, No. 2, pp. 106-113, 2014.

[9] C. Bettstetter, C. Hartmann, and C. Moser, “How does randomized
beamforming improve the connectivity of ad hoc networks?,” In Proc.
IEEE ICC 2005, pp. 3380-3385, Seoul (Korea), May 2005.

[10] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, Vol. 52, No. 2, pp. 74-80, February 2014.

[11] T. Richardson, and R. Urbanke, “Modern coding theory,” Cambridge
University Press, 2008.

[12] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random
processes via and-or tree evaluation,” in ACM SODA âĂŹ98, San
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