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Abstract—In the Cloud Radio Access Network (C-RAN) ar-
chitecture, the baseband signals from multiple remote radio
heads are processed in a centralized baseband unit (BBU) pool.
This architecture allows network operators to adapt the BBU’s
computational resources to the aggregate access load experienced
at the BBU, which can change in every air-interface access frame.
The degree of savings that can be achieved by adapting the
resources is a tradeoff between savings, adaptation frequency,
and increased queuing time. If the time scale for adaptation
of the resource multiplexing is greater than the access frame
duration, then this may result in additional access latency
and limit the energy savings. In this paper we investigate the
tradeoff by considering two extreme time-scales for the resource
multiplexing: (i) long-term, where the computational resources
are adapted over periods much larger than the access frame
durations; (ii) short-term, where the adaption is below the access
frame duration. We develop a general C-RAN queuing model that
describes the access latency and show, for Poisson arrivals, that
long-term multiplexing achieves savings comparable to short-
term multiplexing, while offering low implementation complexity.

I. INTRODUCTION

In the Cloud Radio Access Network (C-RAN) architecture,
the Remote Radio Heads (RRHs) are connected through low
latency and high capacity front-haul links to a central pool
of virtual Base Band Units (BBUs), as illustrated in Fig.
This architecture enables the baseband signals from spatially
distributed RRHs, to be partially or fully processed in the
BBUs [1]], allowing for a high level of synchronization and co-
ordination between the RRHs. This ultimately enables spectral
efficiency enhancements brought by cooperative techniques,
such as coordinated multipoint (CoMP) [2], [3].

The traditional cellular network architecture, denoted as
Distributed RAN (D-RAN), has the functionalities of the RRH
and BBU concentrated at the base stations. This is neither
resource nor cost efficient, as the processing resources at
these base stations are dimensioned to handle peak access
loads. Furthermore, the only way to reduce the energy and
operating expenditures is to turn off partially or completely the
base station during periods of low access load. In a C-RAN
architecture, the number of processing resources at the BBU
can be chosen to take advantage of the load fluctuations across
the RRHs, with the goal of reducing energy and operating
costs. Access load fluctuations are both slow and fast. Taking
a Poisson arrival perspective, slow fluctuations refer to the
average arrival rate changing over the course of the day,
i.e. A(t) which changes in the minutes to hours scale—the
so-called tidal effect [1l]. The fast fluctuations refer to the
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Fig. 1. A C-RAN deployment with 2 RRHs and the application of BBU
resource multiplexing to short-term (in frames) and long-term (in hours) load
fluctuations. (a) and (b) Load at the individual RRHs. (c) Aggregate load at
the BBU. (d) Long-term multiplexing. (e) Short-term multiplexing.

instantaneous realization of the arrival process, i.e. in the
milliseconds to seconds scale. Thus, long-term multiplexing
refers to adapting the resources to A(¢), while the short-
term multiplexing refers to the capability to adapt to fast
fluctuations. In a C-RAN setting, the adaptation to slow
fluctuations is achieved by enabling/disabling RRHs and the
associated processing resources according to the current needs.
While this also exists in traditional radio access networks,
the multiplexing gain becomes more significant when multiple
RRHs share the same computational resources, as in the BBU
pool. Ideally, fast fluctuations can be taken advantage of by
occupying or freeing up computational resources for the BBU
pool at high frequency in an elastic cloud environment.
Since long-term multiplexing adapts to the slow fluctuations
in the load, there may be periods where the load is higher than
what can be served by the allocated resources, as shown in
the red area in the curve in Fig. [T[d). These periods introduce
queuing in the system and hence higher latency for the users.
Similarly, there are periods where the load is lower than what
the system can serve (the green area). In this region and
depending on the amount of queued arrivals, some resources
may be unused, thereby creating a potential for savings which
the long-term multiplexing cannot achieve. These fluctuations
can be exploited by the short-term multiplexing which operates
at a much higher frequency than long-term multiplexing, see
Fig. [Ife). In this case, the number of servers follows the
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Fig. 2. The transfers from each RRH are queued before they are handled by
one of the c shared servers in the BBU pool.

load in every frame. Since the number of active resources
is limited only by the air-interface, no additional queuing
latency is introduced. However, this requires quick adaptation
of resources to the fluctuations, which may be very difficult in
practice. Nevertheless, it serves as reference when measuring
the potential computational resource savings.

In this paper, we analyze and evaluate the system latency
introduced by the multiplexing of computational resources in
the BBU pool in a frame-based admission setting, where the
amount of resources is determined by the current load. We
consider two time-scales for the resource multiplexing: (i)
long-term multiplexing, where the computing resources are
adapted to the access load in an interval much higher than
the air-interface frame duration; (ii) short-term multiplexing,
where the number of computing resources can adapt faster
than the frame duration. We define a general queuing system
model to study resource multiplexing in terms of the tradeoff
between latency and resource/energy savings. We also identify
the regions where the multiplexing gains at different scales are
identical in terms of the achieved savings.

Latency in C-RAN has been previously investigated [4],
[S]], but only few have studied the latency incurred by com-
putational resource multiplexing in the BBU pool and the
effect of frame-based admission. Other studies [6]], [7]] consider
the probability of missed deadlines in the case of BBU
sharing, where users are served without queuing. A scheduling
framework for long-term load multiplexing is proposed in [8]],
where both energy savings and the probability of missing a
deadline are characterized.

The remainder of the paper is organized as follows. Section
IT defines the system model and in Section III we analyze
the dynamics of the system latency. Numerical results are
presented and discussed in Section IV and finally the paper is
concluded in Section V.

II. SYSTEM MODEL

We consider N RRHs connected to a shared BBU pool
via a front-haul link, as presented in Fig. [T} Since we are
interested in the latency caused by resource multiplexing, we
assume that the front-haul link is dimensioned to meet the
latency constraints required by the system. The air-interface at
each RRH follows a time and frequency based frame structure,
such as in LTE [9], of duration F'. The maximum number
of supported concurrent user transactions in an air-interface
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Fig. 3. Transfer delays in the system.

frame is denoted by L. The BBU pool shared between the
N RRHs consists of ¢ servers, each able to handle one user
transaction at a time (Fig. [2). Under this scheme, at most L
servers can serve transfers from the same RRH concurrently.
Since no more than L - N transfers can be active at the same
time, we only consider the cases where ¢ < L - N. Each RRH
has its own queue of transfers; and the available servers in the
BBU are assigned to these queues in a round-robin fashion to
provide fairness between the RRHs.

Within the time scale of an air-interface frame, we treat ¢
as constant. In the case of long-term resource multiplexing, ¢
will only change after a large number of frames have elapsed
(large enough to assume stationary conditions). In the short-
term resource multiplexing, ¢ is adapted at the beginning of
each frame according to the access load.

We assume that a user transaction is composed of several
uplink and downlink exchanges; corresponding to the user
connection establishment to the network, the Scheduling Re-
quest (SR), the subsequent data exchanges and release of the
network connection. A user transaction is completed only after
all its uplink and downlink transmissions have been completed.
We model the user transaction arrivals at the jth RRH as a
Poisson arrival process with intensity A;, where the arrivals
can only enter the system at the beginning of each frame.
Upon the connection establishment, the scheduling request of
a user is queued at the RRH until resources become available
to initiate the transfer and users are instantaneously informed
when they are assigned resources.

The latency experienced by a user is illustrated in Fig. [3]
The delay t; corresponds to the time from when data is avail-
able to be transferred at the user device until the scheduling
request is transmitted in the beginning of the following frame.
to corresponds to the time spent in the RRH queue, i.e. the
time from reception of the scheduling request until the first
resource is granted. The last delay, denoted as t3, is the service
time, i.e. the time it takes for the user to transmit its data. We
assume that the amount of requested resources in a scheduling
request follows an exponential distribution with rate g [L0]. In
this way the amount of requested resources may exceed one
frame, in which case the transfer will span multiple frames.

A. Resource/Energy Savings

In long-term multiplexing, the servers are adapted to the
mean arrival rate. We assume that some target delay 7 exists
with a certain reliability ¢ (e.g. less than 1 frame period
queuing time with probability 99%) and that the minimum



number of servers required to fulfill this requirement are
allocated.

For short-term multiplexing, we assume that servers can be
turned off when they are idle, and are only turned back on
when needed. If servers are turned on and off instantaneously
and at any time, the achievable savings would be equal to the
mean idle time, 1 — p. However, we consider a more realistic
scenario, where servers can be turned on and off only in the
beginning of each frame. Specifically, the number of transfers
in the system is observed immediately after the arrival of SRs
in the beginning of each frame, and the servers required to
serve them are allocated while the remaining servers are turned
off. The number of allocated servers in the BBU is given by

N
c= Z min(L, ;) ey
j=1
where [; is the number of transfers in the system (ongoing
and queued) from RRH j.

III. ANALYSIS

In this section we obtain the probability distributions de-
scribing the latency in the system. Based on these distributions
we find expressions for potential energy/resource savings. We
start by defining the conditions required to ensure stability
in the network. Then we characterize the long-term resource
multiplexing through an approximate Markov chain model
which describes the metrics of interest. Finally, we present the
short-term resource multiplexing, where the number of servers
c at the BBU pool is dynamically adopted in each frame to
the fast fluctuations of the arriving traffic.

A. Stability Conditions

The stability condition for the described system is given in
terms of the utilization p. Since the utilization is both limited
by the total number of servers in the BBU, ¢, and the number
of concurrent transactions, L, there are two conditions that
must be satisfied for stability. First, the total number of arrivals
must be less than what the ¢ servers in the BBU pool can
handle @) Second, the arrivals at each RRH must be below
what is supported by the air-interface (3):

1 X
PBBU = — Aj <1, 2
chj; J
Ny yj=1...N 3)
PRRHj = TP , Yj=1...N.

When pgpy = 1 or prru; = 1, the queue grows to infinity.

B. Long-term Resource Multiplexing

In this subsection, we present a Markov chain model
which approximates the latencies introduced by queuing in
the system under stationarity. Motivated by the round-robin
scheduling, we analyze the RRHs individually with a fixed
number of servers proportional to the arrival rates. The number
of servers used for analyzing RRH j is given as:
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Fig. 4. The notation used in the Markov chain model.

where c is the number of servers in BBU pool and |x| denotes
the largest integer less than or equal to z. To simplify the
notation, we shall refer to ¢; simply as ¢ and A\; as A in the
remainder of this section and refer to Fig. 4| for the Markov
chain symbol notation.

We consider a discrete-time Markov chain that is observed
in the beginning of each frame, immediately prior to the arrival
of SRs, denoted as { F}, }. The states are indexed by the number
of transfers (ongoing and queued) in the system g¢,. Let v,
denote the number of SRs arriving in frame n specified by
the Poisson probability mass function

Avne=A

Up!

Do, (Un) = 5 Un > 07 (5)

and let s,,4; be the number of transfers completed between
F, and F,,; (Fig. E[) We form the basic relation

Qn+1 = Gn T Un — Sn+1-

We seek the transition probabilities p; ; in the Markov chain
such that

Pij = Pr(‘]n+1 = ]|qn = Z)

For convenience, we analyze the transition probabilities
conditioned on the number of arriving SRs in a frame since
this quantity is independent of the system state:

wi-i—k,,j = Pr(QVH-l = j|Q71, = i,’Un = k)

From 1);11; we obtain p;; by marginalizing over the
number of arrivals v,,:

S o Yitk jpo, (k) i+ k=35>0,
Pij = .
0 otherwise.

(6)

We consider the following three cases of ¥, ;:

1) ¢ + k < c corresponding to when all arriving SRs are
immediately served.

2) i+ k > ¢, 7 = c corresponding to when some of the
arriving SRs are placed in the queue, and all servers
remain busy during the entire frame.

3) i+ k > ¢, j < c corresponding to when some of the
arriving SRs are placed in the queue, but at least one
server is idle in the beginning of the succeeding frame.

When ¢ + k < c all k arriving SRs are immediately served.

Exactly ¢ + k — 7 transfers will complete service within the
frame period, or equivalently, exactly j out of ¢ + k£ will not



complete transfer. Since the service time is exponential, the
probability that a transfer will not complete service within the
frame period is e ¥ and hence we obtain

Vivkj = (Z * >6“FJ(1 —e MY itk <e
J

For case 2, where i + k > ¢,j > ¢, exactly i + k — ¢ SRs
are placed in the queue and all ¢ servers will remain busy
throughout the frame period during which ¢ + k — j transfers
will complete service. Since all servers are busy in the entire
frame period, the number of completed transfers is Poisson
distributed with rate cuF":

(CMF)i+k—j€—ch
(i+k—75)" ~

wi-kk,j: i+k>c,j>c.

When i + k > ¢,j < ¢, one or more servers are idle prior
to the subsequent frame. As in the previous case, i + k — ¢
SRs are initially placed in the queue and all servers are busy,
but after ¢ + kK — ¢ + 1 transfers have been completed, some
servers remain idle for the remaining frame.

Let ¢ < 1 denote the time (in frame durations) until 7 +
k — ¢ + 1 transfers have completed. ¢ is a sum of i + k — ¢ +
1 independent and identically distributed exponential random
variables and hence is Erlang distributed [11] with density
function

(CMF)Z‘JrkchrltiJrkfcefcht
(i+k—o)

p(t) =
The probability that j < c transfers remain in service after

¢ frame periods, assuming the total number of transfers in the
system is less than c is given by

p(ilé) = (c; 1) eEnFI(] _ gmEnFye—i1,

Marginalizing over £ = 1 — ¢t we obtain the final expression
for iy, ;:

1
-1 ) y
¢7§+k,j :J. (C j )e_(l_t)JﬂF(l — e_(l—t)MF)(,—]—l
0

(CMF)i+kfc+1ti+kfcefcht

dt
(t+k—c)
B c—1 e—qu(c’uF)i+k’—c+1
T\ (i+k—c)

1
e—t,uF(j—c))(l _ e—(l—t);LF)c—j—ltH—k—c dt,
0

i+k>c j<c

To obtain the stationary queuing time distribution we first
seek the stationary queue length distribution. Let P = [pm-]
denote the transition matrix and @ = [m] be a vector of
state probabilities. Since the Markov chain is irreducible and
aperiodic, the stationary state distribution 7 is given by

m = lim = p"
n—o0

where 7(*) is the initial state distribution. We obtain 7 by
imposing a finite queue length M and multiplying iteratively
by P until convergence. Equation (6) then becomes:

0
pij = Z Do, (k)wi-&-min(k,c+M—i),j>
k=0

1+k>7=20,i<c+ M.

From 7 we may obtain the distribution of the queuing time
to under stationarity. Let ¢, = ¢, + v, be the number of
transfers in the system immediately after arrival of SRs. Since
we assume stationarity, we omit the time index and write ¢’ =
q + v. We may factorize the queuing time distribution as

o (t2) = D3 puap(t2ll) Pr(llg, ¢') Pr(q|g)mq,
a q 1

to=>0,c+M=q¢ >q=>0,

where py,;(t2|l) is the density function of the queuing time
conditioned on an SR arriving to state [ and Pr(l|q, ¢’) is the
probability of arriving to state [ given that the newly arrived
SRs occupy states ¢ + 1,...,¢". Two cases of p(ta|l) exists:
when the SR arrives to an idle server (I < c¢), and when it
arrives to the queue (I > c¢). In the former case, the SR is
immediately served and the queuing time is 0. In the latter
case, the queuing time is Erlang distributed with parameters
Il —cand cu:
(I—c—1)!

Peyi(tall) = {5(t )
2

where 6(z) is the Dirac delta function. It is equally likely
for an SR to arrive to any of the states between ¢ + 1 and
q’, hence Pr(l|q, ¢') is a discrete uniform distribution between
q+1and ¢, ie. Pr(llg,q) = (¢ —q)~ . Pr(¢’|q) is obtained
by truncating the Poisson distribution at the queue size limit
M,

(C#)lfctlz—c—le—cutz

l>c,

otherwise

Pu, (@ —q) ¢ <M,
Pr(¢|g) = 1= tpy, (n—q) ¢ =M,
0 otherwise.

We may obtain the system time, t2 + ¢3 by the convolution
of the queuing time and the service time density functions.
Similarly, the transfer time ¢; + ¢ + t3 can be obtained by
convolution of the densities for t5 + t3 and t;. Since ¢y is
uniformly distributed in the range [0, F'] we obtain

t

Pta+ts (t) = J Pts (x)/ieiu(tiw) dx,
0

1 F
Dty +ta+ts (t) = F f DPto+is (t — .T) dx.
0

The normalized savings (server-hours) in the long-term
multiplexing scheme, as defined in is expressed as

Sir min{c: Pr(ts < 1) = (} @)

1
~L-N
where L - N is the maximum number of servers in the BBU
pool and 7 and ¢ are design parameters.



TABLE I
PARAMETERS CONSIDERED IN THE EVALUATION

Parameter Symbol  Value
Frame duration F 10
Maximum concurrent transactions per RRH L 25
Number of RRHs N 2
Mean number of requested resources 1/p 5

C. Short-term Resource Multiplexing

Recall that in the short-term multiplexing we assume instant
adaptation to the active and queued transfers in the beginning
each frame (see [[I-A). The number of transfers in the system
immediately after arrival of the scheduling requests in the
beginning of the frame is given by

Pr(q) = Y Pr(¢|q)m,.

As we assume that we can instantly switch servers on and
off, we may obtain the expected number of active servers by
marginalizing over ¢’. By further using the fact that at most ¢
servers can be active at the same time, and normalizing by c,
the expected savings of short-term multiplexing are,

1
E[Ssr] =1 -2 ) min(q, o) Pr(¢) ®)
q

One case of ¢ which is particularly interesting is where the
maximum number of servers is used in the BBU pool and
the RRHs have equal arrival rates, i.e. ¢ = L. Since we are
adapting in the beginning of each frame, the frame length
has high impact on the savings. Specifically, when the frame
length is short, we can adapt more often and the servers will be
inactive for shorter time. This is also clear from (8) where ¢
will be lower (in a stochastic ordering sense) when the frame
length is shorter due to fewer arrivals per frame.

IV. NUMERICAL RESULTS

In this section we present the numerical results of the long-
term and short-term resource multiplexing approaches. We
consider a system with the parameters specified in Table [I|
We study the case with two RRHs with equal arrival rates
A1 = Ao, as this is sufficient to show the dynamics of the
resource multiplexing.

A. Resource Multiplexing Savings

The plot presented in Fig. [5|shows the 99-percentile queuing
time experienced in a system with long-term multiplexing
for a different number of available servers and arrival rates.
The horizontal dashed line indicates 7 = 1. The intersection
between the curves and 7 = 1 corresponds to the number of
servers required to achieve a 99-percentile queuing time of
7 =1, i.e. 1/10 frame duration.

The lower bound of the queuing time, for all considered A,
occurs when ¢ = 50. On the other hand, there is a minimum
number of servers required to keep the system stable that
obeys the condition in eq. (). This point is reflected in the

99 percentile queuing time

Fig. 5. The 99-percentile queuing delay vs. the number of servers for different
arrival rates, where A = A1 = \2. The dashed horizontal line indicates 7 = 1,
and the dash-dotted lines show the asymptotes.
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Fig. 6. Long-term (LT) and short-term (ST) server-hour savings for different
mean arrival rates (reflected in pgpy) and -percentile queuing times. 1— pgppy
for the case with ¢ = 50 provides an upper bound on the savings. The
simulation results correspond to the 99- and 99.9-percentile cases.

vertical asymptotes in the plot. The fact that the queuing time
only decreases slightly when the number of servers increases
indicates that savings can be done with only limited increased
latency. This motivates the long-term multiplexing scheme
where the number of servers in the BBU pool is adapted
to the slowly varying mean arrival rate. For instance, in the
considered case with arrival rates A\; = 10, Ay = 10, only
20 servers are required to provide 99-percentile queuing time
7 = 1, which introduces considerable savings when compared
to the case where all the servers are active (i.e. ¢ = 50). Hence,
long-term multiplexing provides high savings in this case.

The savings (server-hours normalized by the server-hours
in the baseline case with 50 servers) which can be achieved
using long-term and short-term multiplexing are illustrated in
Fig. [] For long-term multiplexing we consider the minimum
number of servers required to provide a queuing delay of
7 =1 and 7 = 10 at different percentiles (. We obtain this
number by calculating the queuing time distribution functions
for different values of ¢ and choose the minimum that satisfies
the expression in (7).

The simulation results, shown for the 99- and 99.9-
percentiles, reveal that the derived analytical model fits well



for 7 = 1 but overestimates the number of servers required
in the case of 7 = 10. This effect comes from the analysis
considering each RRH queue separately, which leads to a
lower statistical multiplexing gain compared to the actual
system where high queuing delays are less likely.

As shown in Fig. [6] the case with 7 = 10 allows for
higher savings since we allow the queue to be larger and
hence can reduce the number of active servers. Likewise,
a low percentile allows for higher savings since we allow
the queuing time to exceed 7 with higher probability. This
reflects that high savings come at the cost of an increased
queuing delay. However, increasing the percentile only leads a
to minor decrease in savings, which indicates that significant
savings can be achieved with long-term multiplexing while
maintaining a very low latency.

The long-term savings approach the upper bound provided
by the normalized idle time, 1 — pgpy, as 7 — 0. Indepen-
dently of ¢ and 7, a low utilization pggy (i.e. a low arrival rate)
also leads to higher savings since less servers are required to
provide the desired queuing delay. Even by slightly increasing
the queuing time, notably 7 = 1, it is possible to achieve
significant savings when the utilization is low.

The savings achieved by short-term multiplexing are also
shown in Fig. [6] for frame durations of F' = 10 and F' = 5.
Interestingly, we see that if the delay requirements are not
too strict and 7 = 10 can be accepted, then the long-
term multiplexing provides higher savings than the short term
multiplexing with ' = 10, which is the same frame length as
in LTE. Even if only 7 = 1 can be accepted, the savings of
long-term multiplexing are only slightly lower than the short-
term multiplexing for /' = 10. If a reduced frame length of F’
is used, larger savings can be achieved; approaching the upper
bound 1 — pgpy as F' — 1.

We note that savings comparable to the short-term multi-
plexing can be achieved using long-term multiplexing, while
still offering guarantees of low latency. With the outlook to
smaller frame sizes in 5G [12] it is unlikely that servers can
be turned on and off fast enough to enable short-term multi-
plexing. Even if it became possible, short frames and faster
resource adaptation causes high levels of signaling overhead
and high complexity, meaning that long-term multiplexing
would anyways be preferred. An exception is the support of
ultra-reliable low latency communications (URLLC), where
latency violations are not acceptable. However, URLLC is not
well suited for round-robin scheduling, as considered in this
paper, and will likely require latency sensitive schedulers.

V. CONCLUSION

This paper studies the latency and energy tradeoffs in
computational multiplexing in C-RAN. We identify two mul-
tiplexing time-scales: (i) long-term multiplexing, where the
mean arrival rate varies over the time of day; and (ii) short-
term multiplexing where the statistical multiplexing in the
arrivals within each frame is exploited. The long-term mul-
tiplexing introduces additional queuing delay, but has low
implementation complexity. Short-term multiplexing does not

add queuing delay, but is difficult to realize in practice since
it requires switching resources on and off at a very high
frequency. We propose a general system model where user
transfers are modelled as jobs in a queuing system with servers
shared among several RRHs.

We show that both multiplexing schemes can provide sig-
nificant resource savings. Furthermore, it is possible to achieve
long-term multiplexing savings that are comparable to those
in the short-term while still maintaining a low queuing latency
in high percentiles. This suggests that long-term multiplexing
provides a good tradeoff between resource savings and real-
ization complexity.
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