
HAL Id: cea-01567164
https://cea.hal.science/cea-01567164

Submitted on 21 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Throughput FPGA Implementation for regular
Non-Surjective Finite Alphabet Iterative Decoders

Thien Truong Nguyen-Ly, Valentin Savin, Xavier Popon, David Declercq

To cite this version:
Thien Truong Nguyen-Ly, Valentin Savin, Xavier Popon, David Declercq. High Throughput FPGA
Implementation for regular Non-Surjective Finite Alphabet Iterative Decoders. 2017 IEEE Interna-
tional Conference on Communications Workshops (ICC Workshops), May 2017, Paris, France. pp.961
- 966, �10.1109/ICCW.2017.7962783�. �cea-01567164�

https://cea.hal.science/cea-01567164
https://hal.archives-ouvertes.fr


High Throughput FPGA Implementation for Regular

Non-Surjective Finite Alphabet Iterative Decoders

Thien Truong Nguyen-Ly∗†, Valentin Savin∗, Xavier Popon∗ and David Declercq†

∗CEA-LETI, MINATEC Campus, Grenoble, France, {thientruong.nguyen-ly, valentin.savin, xavier.popon}@cea.fr
†ETIS, ENSEA / CNRS UMR-8051 / University of Cergy-Pontoise, France, declercq@ensea.fr

Abstract—This paper deals with the recently introduced class
of Non-Surjective Finite Alphabet Iterative Decoders (NS-FAIDs).
First, optimization results for an extended class of regular NS-
FAIDs are presented. They reveal different possible trade-offs
between decoding performance and hardware implementation
efficiency. To validate the promises of optimized NS-FAIDs in
terms of hardware implementation benefits, we propose two
high-throughput hardware architectures, integrating NS-FAIDs
decoding kernels. Implementation results show that NS-FAIDs
allow significant improvements in terms of both throughput and
hardware resources consumption, as compared to a baseline Min-
Sum decoder, with even better or only slightly degraded decoding
performance.

I. INTRODUCTION

The increasing demand of massive data rates in wireless

communication systems will require significantly higher pro-

cessing speed of the baseband signal, as compared to conven-

tional solutions. This is especially challenging for Forward

Error Correction (FEC) mechanisms, since FEC decoding is

one of the most computationally intensive baseband processing

tasks, consuming a large amount of hardware resources and

energy. The use of very large bandwidths will also result in

stringent, application-specific, requirements in terms of both

throughput and latency. The conventional approach to increase

throughput is to use massively parallel architectures. In this

context, Low-Density Parity-Check (LDPC) codes are recog-

nized as the foremost solution, due to the intrinsic capacity of

their decoders to accommodate various degrees of parallelism.

They have found extensive applications in modern communi-

cation systems, due to their excellent decoding performance,

high throughput capabilities [1]–[4], and power efficiency [5],

[6], and have been adopted in several recent communication

standards.

In a recent work [7], we have introduced a new theoretical

framework, referred to as Non-Surjective Finite Alphabet Iter-

ative Decoders (NS-FAIDs), aimed at exploring the use of im-

precise message storage mechanisms in Min-Sum (MS)-based

LDPC decoders. It allows storing the exchanged messages

using a lower precision than the one used by the processing

units, thus facilitating significant reductions of the memory

and interconnect blocks, with no or only slight degradation of

the error correction performance, as compared to the baseline

MS decoder. Since these blocks usually dominate the over-

all performance of the hardware implementation, NS-FAIDs

emerge as a promising approach to further optimizations of

cost-effective, high-throughput designs.

To validate the promises of the NS-FAID approach, in this

paper we propose two different hardware architectures for

regular Quasi-Cyclic (QC)-LDPC decoders, with both MS and

NS-FAID decoding kernels. The proposed architectures target

high-throughput and efficient use of the hardware resources.

Both architectures implement layered scheduled decoding

with fully parallel processing units. The first architecture is

pipelined, so as to increase throughput and ensure an efficient

use of the hardware resources, which in turn imposes specific

constraints on the decoding layers1, in order to ensure proper

execution of the layered decoding process. The second archi-

tecture does not make use of pipelining, but allows maximum

parallelism to be exploited through the use of full decoding

layers2, thus resulting in significant increase in throughput.

Both MS and NS-FAID decoding kernels are integrated to each

of the two proposed architectures, and compared in terms of

throughput and resource consumption. Implementation (post

place and route) results on Xilinx Zynq-7000 FPGA device are

provided, showing a Hardware Utilization Efficiency (HUE)

increase by up to 57.78%, when the NS-FAID kernel is used.

The rest of the paper is organized as follows. In Section II, a

brief description of NS-FAIDs is first provided, and then new

results on the optimization of regular NS-FAIDs are presented.

The proposed hardware architectures are presented in Section

III. Implementation results are provided in Section IV, and

Section V concludes the paper.

II. NON-SURJECTIVE FINITE ALPHABET ITERATIVE

DECODERS

A. Preliminaries

This section briefly presents the definition of NS-FAIDs;

for more details, we refer to [7]. We consider an LDPC code

defined by a bipartite graph with N variable-nodes (VNs) and

M check-nodes (CNs). The quantized Log-Likelihood Ratios

(LLRs) supplied to the decoder are denoted by γn, while VN

and CN messages are denoted respectively by αm,n and βm,n.

All of them are assumed to belong to a finite alphabet denoted

by Q = {−Q, . . . ,−1, 0,+1, . . . ,+Q}, where Q = 2q−1 − 1

1A decoding layer may consist of one or several rows of the base matrix
of the QC-LDPC code, assuming that they do not overlap.

2A decoding layer is said to be full if each column of the base matrix has
one non-negative entry is one of the rows composing the layer.



with q > 0. The A Posteriori (AP-) LLRs are denoted by

γ̃n and, as usual, they are assumed to belong to an extended

alphabet Q̃ ⊃ Q.

NS-FAIDs are based on MS decoding update rules, but

further perform a framing operation on VN-messages, as

explained below. Thus, CN-messages are updated by using the

same update rule as for MS decoding. Precisely, for a CN m,

whose set of neighbor VNs is denoted by N (m), the outgoing

βm,n messages (with n ∈ N (m)) are given by:

βm,n =





∏

n′∈N (m)\n

sgn(αm,n′)



 min
n′∈N (m)\n

|αm,n′ | (1)

For a VN n, whose set of neighbor CNs is denoted by M(n),
the outgoing αm,n (with m ∈ M(n)) messages are given by:

αm,n = F







γn +
∑

m′∈M(n)\m

βm′,n





Q



 (2)

where:

• the sum γn +
∑

m′∈M(n)\m βm′,n is assumed to be

saturated to Q, prior to applying F on it, which is

indicated by the notation [ ]Q.

• F : Q → Q is a non-surjective function (i.e. the image

set of F is a strict subset of Q), verifying:

(i) F is an odd function, i.e., F (−x) = −F (x), ∀x ∈ Z

(ii) F is a non-decreasing function, i.e., F (x) ≤ F (y)
for any x < y.

We note that the above properties also imply that F (0) = 0
and F (x) ≥ 0, ∀x > 0. In this paper, we further extend the

definition of NS-FAIDs by allowing F (0) to take on non-

zero values. To ensure symmetry of the decoder, we shall

write F (0) = ±λ, with λ ≥ 0, meaning that F (0) takes

on either −λ or +λ with equal probability. In the following,

using the terminology from [7], F will be referred to as

framing function. Note that F is completely determined by the

vector [|F (0)|, F (1), ..., F (Q)], which satisfies the following

inequalities:

0 ≤ |F (0)| ≤ F (1) ≤ · · · ≤ F (Q) ≤ Q (3)

The weight of F , denoted by W , is the number of distinct

entries in the vector [|F (0)|, F (1), ..., F (Q)]. It follows that

1 ≤ W < Q + 1. By a slight abuse of terminology, we shall

also refer to W as the weight of the NS-FAID. As shown in

[7], for a NS-FAID of weight W , the exchanged messages

can be represented by using only w = ⌈log2(W )⌉ + 1 bits

(including 1 bit for the sign). The w value is referred to as

the framing bit-length. As a consequence of the message size

reduction, the size of the memory and the interconnect network

that carries the messages from the memory to the processing

units are also reduced.

Table I provides two examples of q = 4-bit NS-FAIDs

(hence Q = 7), both of which are of weight W = 4.

Note that F1 maps 0 to 0, while F2 maps 0 to ±1. The

image sets of F1 and F2 are Im(F1) = {0,±1,±3,±7} and

Im(F2) = {±1,±3,±5,±6}.

Table I
EXAMPLES OF 4-BIT FRAMING FUNCTIONS OF WEIGHT W = 4

m 0 1 2 3 4 5 6 7

F1(m) 0 1 1 3 3 7 7 7

F2(m) ±1 1 3 3 5 5 5 6

Table II
BEST NS-FAIDS FOR (3, 6)-REGULAR LDPC CODES

F SNR-thres (dB)

w = 4 MS [0, 1, 2, 3, 4, 5, 6, 7] 1.643 (µ = 5.6)

w = 3 F (0) = 0 [0,1,1,3,3,3,7,7] 1.409 (µ = 3.8)
F (0) = ±1 [±1, 1, 1, 3, 3, 4, 4, 7] 1.412 (µ = 5.1)
F (0) = ±2 [±2, 2, 2, 3, 3, 3, 4, 7] 1.712 (µ = 7.1)
F (0) = ±3 [±3, 3, 3, 3, 3, 4, 5, 7] 2.227 (µ = 10.0)

w = 2 F (0) = 0 [0, 0, 0, 0, 0, 6, 6, 6] 2.251 (µ = 8.6)
F (0) = ±1 [±1,1,1,1,1,6,6,6] 1.834 (µ = 6.4)
F (0) = ±2 [±2, 2, 2, 2, 2, 2, 2, 7] 1.911 (µ = 8.3)
F (0) = ±3 [±3, 3, 3, 3, 3, 3, 3, 7] 2.014 (µ = 9.4)

B. Optimization of Regular NS-FAIDs

In this section, we consider the optimization of regular NS-

FAIDs for (dv = 3, dc = 6)-regular LDPC codes. To illustrate

the trade-off between hardware complexity and decoding per-

formance, we consider q = 4-bit NS-FAIDs (hence, Q = 7),

with framing bit-length parameter w ∈ {2, 3}. It can be easily

verified that the total number of regular NS-FAIDs is given

by NNS-FAID(w = 3) = 2450 and NNS-FAID(w = 2) = 196.

All regular NS-FAIDs have been evaluated by using the

density evolution (DE) technique. As explained in [7], the DE

threshold computation also encompasses the optimization of

the gain factor µ, used for input LLR quantization: quantized

LLR is obtained by first scaling the soft LLR value by µ,

and then rounding the scaled value to the closest integer in

Q. Such a quantization method, with µ optimized by DE, has

been shown to provide optimal performance in [8].

Table II summarizes the best NS-FAIDs according to w
and F (0) values (for 0 ≤ |F (0)| ≤ 3); DE thresholds and

corresponding gain factors (µ) are also reported. Best NS-

FAIDs for w = 2 and w = 3 are emphasized in bold. For

comparison purposes, the DE threshold of the baseline q = 4-

bit MS decoder is also reported: MS threshold is equal to

1.643 dB, for µ = 5.6. For w = 3, it can be observed that

best NS-FAIDs with F (0) = 0 or F (0) = ±1 have better DE

thresholds than the MS decoder. The best NS-FAID is given

by the framing function F = [0, 1, 1, 3, 3, 3, 7, 7] and its DE

threshold is equal to 1.409 dB (µ = 3.8), representing a gain

of 0.23 dB compared to MS. For w = 2, the best NS-FAID

is given by the framing function F = [±1, 1, 1, 1, 1, 6, 6, 6]
and its DE threshold is equal to 1.834 dB (µ = 6.4), which

represents a performance loss of only 0.19 dB compared to

MS. To emphasize the benefits of the proposed NS-FAIDs

extension, we note that that for w = 2, best NS-FAIDs with

F (0) = ±1, F (0) = ±2 or F (0) = ±3 have better DE

thresholds than the best NS-FAIDs with F (0) = 0. The latter

is given by the framing function F = [0, 0, 0, 0, 0, 6, 6, 6] and

its DE threshold is equal to 2.251 dB (µ = 8.6), thus resulting

in a performance loss of 0.61 dB compared to MS.
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(b) High-Level Description of the HW Ar-
chitecture with MS and NS-FAID kernels

Figure 1. Block Diagram of the Proposed Pipelined Architecture

III. HARDWARE ARCHITECTURES

We consider a QC-LDPC code dened by a base matrix

B of size R × C, and expansion factor z, corresponding to

a parity check matrix H of size M × N , with M = zR
and N = zC. A decoding layer consists of one or several

consecutive rows of B, assuming that they do not overlap

(i.e. each column has at most one non-negative entry within

each layer). It is assumed that the same number of rows of

B participate in each decoding layer, which is denoted by

RPL (rows per layer). Hence, the number of decoding layers

is given by L = R/RPL. We further define Z = z × RPL,

corresponding to the number of parity checks (rows of H)

within one decoding layer, and referred to as the parallelism

degree (of the hardware architecture).

Both hardware architectures proposed in this section assume

that all CNs have the same degree, denoted by dc (although

they can be easily modified to accommodate irregular CN

degrees). No assumptions are made concerning VN degrees.

We present each architecture assuming the MS decoding kernel

is being implemented, then we discuss the required changes

in order to integrate the NS-FAID decoding kernel.

A. Pipelined architecture

Proposed architecture with MS decoding kernel is detailed

in Figure 1(a). A high-level representation is also shown in

Figure 1(b), for both MS and NS-FAID decoding kernels.

For the sake of simplicity, in Figure 1(a) we assume that a

decoding layer corresponds to a row of the base matrix (hence

RPL = 1 and Z = z).

Input/Output buffers. The input buffer, implemented as a

number of Serial Input Parallel Output (SIPO) shift registers,

is used to store the input LLR values (γn) received by the

decoder. The output buffer, is used to store the hard bit

estimates of the decoded word. Input/output buffers allow data

load/offload operations to take place during the decoding of

the previous/following codeword.

Memory blocks. Two memory blocks are used, one

for AP-LLR values (γ̃ memory) and one for CN-messages

(β memory). γ̃n values are quantized on q̃ bits, while βm,n

messages are quantized on q bits, with q̃ > q. γ̃ memory is

implemented by registers, in order to allow massively parallel

read or write operations. It is organized in C blocks, denoted

by APi(i = 0, · · · , C − 1) corresponding to the columns of

base matrix, each one consisting of z × q̃ bits. Data are read

from/write to blocks corresponding to non-negative entries

in the decoding layer being processed. β memory is imple-

mented as a dual port Random Access Memory (RAM), in

order to support pipelining, as explained below. Each memory

word consists of Z × β messages, corresponding to one

decoding layer. Depending on the Check Node Unit (CNU)

implementation, β messages can be either “uncompressed”

(i.e., for a check-node m, the corresponding β message is

given by the dc values [βm,n1
, . . . , βm,ndc

], where n1, . . . , ndc

denote the variable nodes connected to m) or “compressed”

(i.e., for a check-node m, the corresponding β message is

given by the signs of the above βm,ni
messages, their first

and second minimum, denoted by min1 and min2, and the

index of the first minimum, denoted by indx min1) [9].

Read and Write Permutations (PER R, PER W).

PER R permutation is used to rearrange the data read from

γ̃ memory, according to the processed layer, so as to ensure

processing by the proper VNU/CNU. PER W block operates



oppositely to PER R.

Barrel Shifters (BS INIT, BS R). Barrel shifters are used

to implement the cyclic (shift) permutations, according to

the non-negative entries of the base matrix. The γ̃ memory

is initialized from the input LLR values stored in the input

buffer. However, input LLR values are shifted by BS INIT

block before being written to the γ̃ memory, according to

the last non-negative shift factor on the corresponding base

matrix column. BS R blocks are then used to shift the LLR

values read from the γ̃ memory, such that to properly align

them with the right VNU. Note that there are dc BS R blocks,

corresponding to the dc columns with non-negative entries in

the current layer ℓ. Hence, the cyclic shift implemented by

each BS R block is given by −bℓ′ + bℓ, where bℓ′ and bℓ
denote respectively the previous and the current non-negative

entries of the corresponding column (previous means previous

layer with non-negative entry on the corresponding column).

These values are computed offline for each layer ℓ. This avoids

the use of barrel shifters when the data is written back to

the γ̃ memory, thus reducing the critical path of the design.

Finally, the BS INIT block operates oppositely to BS INIT,

and is used to shift back the hard decision bits into appropriate

positions.

Variable Node Units (VNUs) and AP-LLR Units. These

units compute VN-messages (αm,n) and AP-LLR values (γ̃n).

Saturators (SATs). Prior to CNU processing, αm,n values

are saturated to q bits.

Check Node Units (CNUs). These processing units com-

pute the CN-messages (βm,n). For simplicity, Figure 1(a)

shows one CNU block with dc inputs, each one of size Z × q
bits. Thus, this block actually includes Z computing units,

used to process in parallel the Z check-nodes within one

layer. The CNU is implemented by using either: (i) the high-

speed low-cost tree-structure (TS) approach proposed in [10]

for “compressed” CN-messages, or (ii) comparator trees for

“uncompressed” CN-messages.

Decompress (DCP). This block is only used in case that

the CN-messages are in compressed format (signs, min1, min2,

indx min1). It converts the β messages from compressed to

the uncompressed format.

Pipelining. To increase the operating frequency, the data

path is pipelined by adding a set of registers after the VNU-

blocks. Hence, processing one layer takes 2 clock cycles,

but at each clock cycle the two pipeline stages work on two

consecutive layers of the base matrix. This imposes specific

constraints on the base matrix, as consecutive layers must

not overlap, in order to avoid γ̃ memory conflicts (note that

memory stall cycles would cancel the pipelining effect). An

example of dc = 6 regular base matrix with this property

is given in Figure 2 (assuming that each decoding layer

corresponds to a row of the base matrix).

NS-FAID decoding kernel. The changes required to inte-

grate the NS-FAID decoding kernel are shown in Figure 1(b).

First, the Saturation (SAT) block used within the MS-decoding

kernel is replaced by a Framing (FRA) block. Note that

the output of the VNU consists of q̃-bit (unsaturated) VN-

49 -1 -1 -1 -1 43 -1 -1 -1 -1 50 -1 -1 -1 -1 2 -1 27 -1 -1 -1 -1 -1 49

-1 -1 -1 10 41 -1 -1 -1 -1 52 -1 -1 32 -1 -1 -1 -1 -1 50 -1 50 -1 -1 -1

-1 -1 20 -1 -1 -1 -1 20 -1 -1 -1 51 -1 10 -1 -1 47 -1 -1 -1 -1 -1 33 -1

-1 24 -1 -1 -1 -1 22 -1 53 -1 -1 -1 -1 -1 31 -1 -1 -1 -1 18 -1 47 -1 -1

10 -1 -1 -1 15 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 50 -1 13 -1 -1 -1 -1 -1 53

-1 -1 44 -1 -1 6 -1 -1 -1 -1 -1 29 -1 40 -1 -1 16 -1 -1 -1 13 -1 -1 -1

-1 2 -1 -1 -1 -1 -1 13 41 -1 -1 -1 -1 -1 42 -1 -1 -1 -1 48 -1 49 -1 -1

-1 -1 -1 36 -1 -1 24 -1 -1 50 -1 -1 12 -1 -1 -1 -1 -1 10 -1 -1 -1 48 -1

-1 -1 47 -1 50 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 9 -1 7 -1 -1 -1 -1 -1 28

6 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 13 -1 3 -1 -1 29 -1 -1 -1 16 -1 -1 -1

-1 -1 -1 35 -1 16 -1 -1 37 -1 -1 -1 4 -1 -1 -1 -1 -1 24 -1 -1 -1 29 -1

-1 24 -1 -1 -1 -1 -1 51 -1 38 -1 -1 -1 -1 6 -1 -1 -1 -1 23 -1 16 -1 -1

Figure 2. Base matrix of the (3, 6)-regular QC-LDPC code

messages. Hence, the FRA block actually implements the

concatenation of the following operations:

[−Q̃, . . . , Q̃]
sat
−→ [−Q, . . . , Q]

F
−→ Im(F )

∼
−→ [−W, . . . ,W ],

where [−Q̃, . . . , Q̃] is the alphabet of unsaturated messages

(Q̃ = 2q̃−1−1), F is the framing function being used, Im(F ) is

the image of F (which is a subset of [−Q, . . . , Q] according to

the framing function definition), and the last operation consists

of a re-quantization of the Im(F ) values on a number of w-

bits, where w = ⌈log2(W )⌉+1 is the framing bit-length. The

De-framing (DE-FRA) block simply converts back from w-

bit to q-bit values ([−W, . . . ,W ]
∼
→ Im(F ) ⊂ [−Q, . . . , Q]),

i.e. it inverts the re-quantization operation above. Although we

have to add the de-framing blocks, the reduction of the CN-

messages size may still save significant hardware resources,

as compared to MS decoding. This will be discussed in more

details in Section IV.

B. Full layers architecture

A different possibility to increase throughput is to increase

the hardware parallelism, by including several non-overlapping

rows of the base matrix in one decoding layer. For instance,

for the base matrix in Figure 2, we may consider RPL = 4
consecutive rows per decoding layer, thus the number of

decoding layers is L = 3. In this case, each column of

the base matrix has one (and only one) non-zero entry in

each decoding layer; such a decoding layer is referred to as

being full. Full layers correspond to the maximum hardware

parallelism that can be exploited by layered architectures,

but they also prevent the pipelining of the data path. The

architecture proposed in this section, shown in Figure 3,

is aimed at providing an effective way to benefit from the

increased hardware parallelism enabled by the use of full

layers. We discuss below the main changes with respect to the

pipelined architecture from the previous section, consisting of

the α memory and the barrel shifters blocks (the other blocks

are the same as for the pipelined architecture), as well as a

complete reorganization of the data path.

α memory. This memory is used to store the VN-messages

for the current decoding layer (unlike the previous architecture,

the AP-LLR values are not stored in memory). Since only one

q̃-bit (unsaturated) VN-message is stored for each variable-

node, this memory has exactly the same size as the γ̃ memory

used within the previous pipelined architecture. VN-messages

for current layer ℓ are read from the α memory, then saturated

or framed depending on the decoding kernel, and supplied
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Figure 3. Proposed full layer architecture with MS and NS-FAID kernels

to the corresponding CNUs. CN-messages computed by the

CNUs are stored in the β memory (location corresponding

to layer ℓ), and also forwarded to the AP-LLR unit, through

the DCP (decompress) and DE-FRA (de-framing) blocks,

according to the CNU implementation (compressed or uncom-

pressed) and the decoding kernel (MS or NS-FAID). The AP-

LLR unit computes the sum of the incoming VN- and CN-

messages, which corresponds to the AP-LLR value to be used

at layer ℓ+1 (since already updated by layer ℓ). The AP-LLR

value is forwarded to the VNU, through corresponding BS

and PER blocks. Eventually, the VN-message for layer ℓ+1 is

computed as the difference between the incoming AP-LLR and

the corresponding layer-(ℓ+ 1) CN-message computed at the

previous iteration, the latter being read from the β memory.

While the data path is completely reorganized, it can be easily

verified that both architectures are logically equivalent, i.e.,

they both implement the same decoding algorithm.

PER / BS blocks. PER 1 / BS 1 blocks permute / shift the

data read from the input buffer, according to the positions /

values of the non-negative entries in the first decoding layer.

Similarly, the PER WR / BS WR blocks permute / shift the

AP-LLR values, according to the difference between the

positions / values of the current layer’s (ℓ) non-negative entries

and those of the next layer (ℓ + 1). This way, VN-messages

stored in the α memory are already permuted and shifted for

the subsequent decoding layer.

IV. IMPLEMENTATION RESULTS

Throughout this section we consider the (3, 6)-regular QC-

LDPC code, with base matrix B of size R × C = 12 × 24,

shown in Figure 2. The expansion factor z = 54, thus the

codeword length is N = zC = 1296 bits.

Figure 4 shows the Bit-Error Rate (BER) performance of

the MS decoder with quantization parameters (q, q̃) = (4, 6),
as well as q = 4-bit NS-FAIDs with w = 2 and w = 3
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Figure 4. BER performance of optimized regular NS-FAIDs

(framing functions F corresponding to w and F (0) values in

the legend are those from Table II). Additive White Gaussian

Noise (AWGN) channel model is considered, with 20 decoding

iterations. Note that both decoding architectures discussed in

the paper have the same decoding performance. It can be seen

that the simulation results corroborate the analytic analysis

from Section II-B, in terms of SNR gain / loss provided by

NS-FAIDs, as compared to MS. For comparison purposes, we

have further included simulations results for the Offset MS

(OMS) decoder with (4, 6)-quantization and offset factor = 1,

as well as the MS decoder with (3, 5) and (2, 4)-quantization.

Implementation (post place and route) results on Xilinx

Zynq-7000 FPGA device are shown in Table III, for the

MS(4, 6) decoder and the NS-FAIDs with (w = 3, F (0) = 0)
and (w = 2, F (0) = ±1), indicated in the table as NS-

FAID-3 and NS-FAID-2, respectively. The first (Variant) row

in Table III indicates the architecture (pipelined or full layers)

and the CNU type (compressed or uncompressed). We also

note that for the NS-FAID-2, the assumption that 0 is mapped

to either −1 or +1, with equal probability, is only needed

for theoretical analysis (the symmetry of the decoder allows

reducing the analysis to the all-zero codeword). However, in

practical situations one may always map 0 to +1, since random

codewords are transmitted (in telecommunications systems,

pseudo-randomness of the transmitted data is ensured by a

scrambling mechanism).

Throughput reported in Table III is given by the formula:

Throughput =







N×fmax

L×niter
, full layers architecture

N×fmax

1+L×niter
, pipelined architecture

(4)

where N is the codeword length, fmax is the maximum

operating frequency (post-place and route), L is the number of

decoding layers and niter is the number of decoding iterations

(set to 20). To keep the throughput comparison on an equal



Table III
FPGA POST-PAR IMPLEMENTATION RESULTS ON ZYNQ-7000 (XC7Z045FFG900-1) – 2016.2

Variant pipeline.uncompressed pipeline.compressed full layers.uncompressed full layers.compressed

Decoder MS(4,6) NS-FAID-3NS-FAID-2 MS(4,6) NS-FAID-3NS-FAID-2 MS(4,6) NS-FAID-3NS-FAID-2 MS(4,6) NS-FAID-3NS-FAID-2

No. occupied slices 9776 9204 8844 10163 10091 9617 17578 16812 15018 21317 18313 17712

(% utilization) (17.89) (16.84) (16.18) (18.60) (18.46) (17.60) (32.16) (30.76) (27.48) (39.01) (33.51) (32.41)

Max. freq (MHz) 98 108 138 95 102 125 69 75 80 58 71 76

No. layers (L) 12 12 12 12 12 12 3 3 3 3 3 3

Throughput (Mbps) 527 580 742 510 548 672 1490 1620 1728 1252 1533 1641

HUE (Mbps) 2945 3444 4585 2741 2968 3818 4633 5266 6288 3209 4574 5063

±% w.r.t. MS(4,6) 0% +16.94% +55.69% 0% +8.28% +39.29% 0% +13.66% +35.72% 0% +42.53% +57.78%

Table IV
COMPARISON OF FPGA IMPLEMENTATIONS FOR (3, 6)-REGULAR LDPC

CODES

Decoders
Karkooti’04

[1]

Chen’11

[2]

Vikram’15

[3]

This work

NS-FAID-3

Device Virtex 2 Virtex 2 Virtex 5 Zynq-7000

Codeword length 1536 1536 2304 1296

No. occupied slices 11352 6102 8430 16812

No. BRAMs 66 24 232 0

No. iterations 20 3 (avg) 8 (avg) 20

Max. freq (MHz) 121 149.8 114 75

Throughput (Mbps) 127 830.6 (avg) 1096 (avg) 1620

basis, we further define the Hardware Usage Efficiency (HUE)

metric, as the throughput corresponding to 100% utilization of

the hardware resources:

HUE =
Throughput

%Number of occupied slices
(5)

While the NS-FAID-3 decoder outperforms the baseline

MS(4, 6) decoder by 0.19 dB at BER = 10−5 (Figure 4),

it can be seen from Table III that is also exhibits a HUE

improvement between 8.28% and 42.53%, depending on the

hardware architecture and CNU type. As predicted, the NS-

FAID-2 decoder exhibit a performance loss of 0.21 dB com-

pared to MS(4, 6), but yields a significant HUE improvement,

by 35.72% to 57.78%.

To further emphasize the high-throughput characteristic of

the proposed architectures, Table IV provides a comparison be-

tween state of the art FPGA implementations of (3, 6)-regular

LDPC decoders and the uncompressed full layers architecture

with NS-FAID-3 decoding kernel, presented in this work. Our

implementation achieves a significantly increased throughput,

which has also to be reported to the number of decoding

iterations.

V. CONCLUSIONS

This paper first extended the previous definition of NS-

FAIDs, and presented DE-based optimization results for reg-

ular NS-FAIDs. The proposed extension (allowing framing

functions with F (0) = ±λ) proved to be particularly useful

for NS-FAIDs with framing bit-length w = 2. Then, two

hardware architectures have been presented, making use of

either pipelining or increased hardware parallelism in order to

increase throughput. Both hardware architectures have been

implemented in FPGA, using MS and NS-FAID decoding

kernels. Implementation results revealed that NS-FAIDs allow

significant improvements in terms of hardware usage efficiency

as compared to the baseline MS decoder, with even better or

slightly degraded decoding performance.
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