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Abstract—This paper analyzes the achievable tradeoff between
cache size and download rate in decentralized caching sys-
tems with the uncoded cache placement originally proposed by
Maddah-Ali and Niesen. It proposes two novel delivery schemes
that take advantage of the multicasting opportunities that arise
when a file is demanded by multiple users. These delivery schemes
are extensions of known ones to the regime where the file size
is finite. Numerical evaluations for the case of file uniform
popularity show that the proposed schemes outperform previous
ones for all value of the cache size.

I. INTRODUCTION

The fundamental limits of cache-aided systems were studied
by Maddah-Ali and Niesen (MAN) in [1], [2]. In the MAN
model, a server is connected to K users, or clients, via a
shared error-free broadcast link. The server has a library of
N files, each of size F bits. Each user has a local cache
of size MF bits to store parts of the files available in the
library. There are two phases in a cache system. In the
placement phase, pieces of the files are stored within the users’
cache without knowledge of the future user demands. In the
delivery phase, the server, based on the users’ demands and
the cache contents, broadcasts packets to all users so that
each user can recover the demanded file. The objective is
to design a two-phase scheme that minimizes the number of
transmitted packets in the delivery phase. If the K connected
users are not the same during both phases, e.g., due to the
user’s mobility, each server must carry out independently
the placement phase. In this paper, for practical reasons, we
consider only decentralized caching systems.

Past Work for F → +∞: In [2] Maddah-Ali and Niesen
proposed a decentralized caching scheme, which we refer to
as decMAN, where each user fills its cache randomly and
independently of the others. After the placement phase, the
bits of each file can be divided into sub-files depending on
the users who have them in their cache. In delivery phase,
each sub-file is treated as a district message and delivered by
using a linear code as in the centralized MAN scheme [1].
The exact rate-memory tradeoffs for decMAN with uniform
demands was given in [3], where the authors proved that some
linear combinations in the original decMAN are reduandant.

For non-uniform demands, the authors of [4] proposed to
divide the files into groups depending on their popularity,

where the files in the same group taking the same amount
of cache space, and deliver them as in the original decMAN.
In [5], the authors proposed a new (compared to decMAN)
placement phase and a delivery phase based on graph colour-
ing. With the placement phase as in [5], the authors of [6]
proposed an approximate method to simply the computation of
the local chromatic number. In [7] a delivery scheme based on
decMAN, but independent of placement policy, was proposed.
With the caching policies for non-uniform demand, the sub-
files in a linear combination of decMAN may have different
sizes; instead of zero-padding the shorter sub-files, the scheme
in [7] pads with bits from other sub-files that need to be
transmitted.

In this paper we consider the more practical case of finite
file size. Note that by using the above schemes directly in
the finite file size regime, except the scheme in [7], those
schemes should be modified. For the schemes in [2], [3], [4],
since when F is finite the sub-files in each linear combination
may have different sizes, zero-padding should be used on the
shorter ones to meet the length of the longest one.

Past Work for finite F : The finite file size regime was
considered in [8], where a slightly modified caching scheme
(compared to the original decMAN) was shown to get a
multiplicative gain when the file size F grows exponentially
with this gain. In [9], the authors proposed a caching scheme
that outperforms decMAN when F is not large.

Our Contribution: In this paper, we investigate the
memory-load tradeoff for decentralized caching systems with
finite file size. The schemes in [7], [8], [9] treat each bit
demanded by each user as a district one thus not leveraging
the multicasting opportunities that arise when the same bits
are demanded by several users. We propose two delivery
schemes, independent on the used placement phase, based on
the schemes in [6] and [7], respectively. The first proposed
scheme, which can be seen as an advanced version of the
delivery algorithm in [6], while the second proposed scheme
shares with [7] the main idea in order to adapt the scheme
in [3] to the finite file size regime. Numerical evaluations for
the case of uniform demands show that our proposed schemes
outperform existing ones for finite file size regime and every
value of the cache memory.
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Paper Outline: The rest of the paper is organized as
follows. Section II presents the system model. Section III
presents the two proposed delivery schemes. Section IV
presents numerical results and complexity considerations. Fi-
nally, Section V concludes the paper.

Notation: Calligraphic symbols denote sets, | · | the
cardinality of a set or the length of a file, [n1 : n2] the set of
integers from n1 to n2, and ⊕ the bit-wise XOR operation.

II. PROBLEM FORMULATION AND AN ACHIEVABLE LOAD

Firstly we define the decentralized caching problem with
finite file size F . Secondly we revise the scheme in [3], which
is optimal for uniform demands when F → ∞ and will be
used as an outer bound in the numerical evaluations.

A. Problem Statement

We consider a decentralized caching system where a server
with N files, denoted by (F1, F2, . . . , FN ), is connected to K
users through a shared error-free link. Each file has F bits. In
the placement phase, user i ∈ [1 : K] stores some bits from
the N files in his cache of size MF bits without knowledge
of later demands, where M ∈ [0, N ]. We denote the content
of the cache of user i as Zi, and let Z := (Z1, . . . , ZK).
In decentralized systems where coordination among users’
placements is not allowed, the caching functions are arbi-
trary; based on one caching strategy denoted by C(M), the
realization of cache configuration Z is also arbitrary. In the
delivery phase, each user demands one file and the demand
vector d := (d1, d2, . . . , dK) is revealed to all parties, where
dk ∈ [1 : N ] corresponds to the file demanded by user
k ∈ [1 : K]. Let N (d) be the set of distinct files in
the demand vector d. Given (d,Z), the server broadcasts a
message Xd,Z of length R(d,Z)F bits. With Xd,Z and Zk

each user k ∈ [1 : K] recovers his demanded file without
error. The objective is to minimize the average network load

R∗(M,F ) := min
C(M)

Ed,Z[R(d,Z)], (1)

where the expectation is over the distribution induced on Z
by the adopted caching strategy C(M) and the distribution on
the demand vector d.

B. Case of uniform demands in the asymptotic regime

In the placement phase of decMAN, each user randomly
and uniformly stores MF

N bits of file Fi for i ∈ [1 : N ].
Given the cache content of all the users, the bits of the files

are grouped into sub-files Fi,W , where Fi,W is the set of bits
of file i ∈ [1 : N ] known by the users in W ⊆ [1 : K]. Since
F → ∞, by the Law of Large Numbers, the length of each
sub-file only depends on the number of users who know it,
that is, for all i ∈ [1 : N ] we have

|Fi,W |
F

→
(
M

N

)|W|(
1− M

N

)K−|W|

, in probability. (2)

In the original decMAN, the server transmits XS :=
⊕s∈SFds,S\{s} for all S ⊆ [1 : K] where S 6= ∅, so that user
i ∈ S can recover Fdi,S\{i} from XS . In [3] it was shown

that for each t ∈ [0 : K−1], among all
(

K
t+1

)
coded messages

XS with |S| = t + 1,
(
K−|N (d)|

t+1

)
of them can be obtained

by linear combinations of the remaining ones and thus need
not be transmitted. In particular, for each file i ∈ N (d), we
randomly choose a ‘leader user’ demanding this file and add
this user to the set L; then we transmit all XS with S∩L 6= ∅.
The average load is thus bounded by [3, Theorem 2]

R∗(M) ≤ N −M
M

E

[
1−

(
N −M
N

)|N (d)|
]
. (3)

In [3] a matching converse to (3) was provided for the case
of uniform demands.

We conclude this section by noting that the main difference
between decMAN and the scheme in [3] is that in the delivery
phase decMAN treats each sub-file demanded by each user
as a distinct sub-file; thus decMAN does not profit from
the multicasting opportunities that arise when sub-files are
demanded by several users, which instead is what [3] does.

III. TWO NOVEL DELIVERY SCHEMES

In this section we introduce two delivery algorithms for
the finite file size regime that work for any placement phase
and any demand distribution. In principle, decMAN and the
scheme in [3] for F → +∞ can be applied to the case of finite
F as follows: if the sub-files involved in a linear combination
do not have the same length, it suffices to zero pad the shorter
sub-files to match the length of the longest one. This simple
trick may results in unnecessary transmissions. In addition,
since one file may be demanded by several users, there are
multicasting opportunities to leverage. Based on these two
ideas, we extend the Hierarchical greedy Local Colouring
algorithm (HgLC) of [6] and the Heterogenous Coded Delivery
(HCD) of [7], which weres originally proposed for the infinite
file size regime.

A. Delivery Scheme 1: AHgLC

The placement proposed in [6] divides each file into B
packets of length F/B. Each user randomly and uniformly
chooses MB/N packets of each file to be stored. After the
placement phase, the authors of [6] proposed to generate a
directed graph H as follows. Define V as the node set and E
as the edge set. Each packet requested by a user who does not
cache it is a distinct vertex v in the graph. The user requesting
v is denoted by µ(v) while the packet corresponding to v is
denoted by ρ(v). Note that different vertices may correspond
to the same packet. A direct edge from v2 to v1 exists if µ(v2)
does not cache ρ(v1), and ρ(v1) and ρ(v2) do not represent the
same packet. The number of transmissions needed to satisfy
all users is equal to the local chromatic number of this directed
graph, which is NP-hard to compute. In [6], an approximate
algorithm, referred to as Hierarchical greedy Local Colouring
algorithm (HgLC), was proposed in order to simply numerical
computations. HgLC works as follows. For each node v let Kv

be the set of the users who either demand ρ(v) or have ρ(v)
in the cache. Divide the nodes into hierarchies, where the i-
th hierarchy is Gi = {v : |Kv| = i}, i ∈ [1 : K]. Then, run a



loop from the highest to the lowest hierarchy; at the step for
the i-th hierarchy, for each node v ∈ Gi find the largest sets
of non-adjacent nodes in Gi containing v; if the length of the
found set is not less than i, then color all the nodes in this set
by a new color and remove these nodes from Gi; otherwise,
remove v from Gi and add it into Gi−1. After colouring all the
nodes in the graph, since F/B can be arbitrary large enough
in the infinite file size regime, an MDS code is used for the
local colouring.

The pseudo-code for the proposed extension of HgLC,
referred to as Advanced Hierarchy greedy Local Colouring
Algorithm (AHgLC), is given in Algorithm 1. The first im-
provement compared to HgLC is a novel way for searching
unconnected sets. In contrast to HgLC, we do the iteration
from the lowest hierarchy 1 to the highest hierarchy K. In
addition, for each node v, instead of randomly searching
unconnected nodes, we firstly search the nodes w1 where
Kw1

⊇ Kv then the nodes w2 where Kw2
+ Kv . The second

improvement is to do the local colouring by random linear
binary combinations, in contrast to HgLC which uses the
parity-check matrix of MDS code with a large field size when
the code length is large. In the following, we introduce the
two improvements in details.

Improvement 1. For one node v, there are |Kv| users either
knowing the packet ρ(v) or demanding it. Since the nodes
demanded by the same user are surely connected, the length
of the largest possible unconnected set containing v is |Kv|.
In other words, while transmitting v, we can transmit at most
|Kv|−1 other nodes at the same time (i.e., with one color). In
addition, for each node w in an unconnected set containing v
with length |Kv|, we have Kw ⊇ Kv . Hence, we can transmit
some nodes in the same or higher hierarchies than v while
transmitting the largest unconnected set containing v. So if
we do the iteration from the highest hierarchy to the lowest
hierarchy as HgLC does, before the low level nodes we may
transmit high hierarchy nodes which can be transmitted with
the low level nodes.

For example, consider the case with K = N = 4 and the
demand vector d = {1, 2, 3, 4}; there are 7 sub-files with
equal length Fd1,{2,3}, Fd2,{1,3}, Fd3,{1,2}, Fd1,{3}, Fd2,{3},
Fd3,{2}, Fd4,∅; the iteration from high to low hierarchies gives
the code Fd1,{2,3} ⊕ Fd2,{1,3} ⊕ Fd3,{1,2}, Fd1,{3}, Fd2,{3},
Fd3,{2}, Fd4,∅ of length 5, while the inverse order gives
Fd1,{3} ⊕ Fd3,{1,2}, Fd2,{3} ⊕ Fd1,{2,3}, Fd3,{2} ⊕ Fd2,{1,3},
Fd4,∅ of length 4.

For each node in one hierarchy we want to find the uncon-
nected set I with length |Kv| −m containing it, where m is
initially 0 meaning that we desire to find the largest set. After
one loop, we increase m by 1 to relax the length constraint of
the sought unconnected set and colour the uncoloured nodes.
For node v, we firstly add the nodes representing the same
packet to I (Step (2.c.i) in Algorithm 1), then do the search
among all the nodes w in the same hierarchy where Kw ⊇ Kv

(Step (2.c.ii) to (2.c.iv) in Algorithm 1). If the found set does
not reach the length constraint, we search the nodes w in the
next hierarchy where Kw ⊇ Kv . If after searching all the

nodes w in all the hierarchies where Kw ⊇ Kv , the found
set is still smaller than the constraint, we search the nodes in
{w : Kw + Kv} (Step (2.e) in Algorithm 1). If the final found
set reach the length constraint, we colour this set by a new
colour and take its nodes out of the hierarchies. If not, we
search the unconnected set for the remaining nodes.

Improvement 2. Denote the colouring of this graph H
by cH and the number of used colors by |cH|. Denote
the packets corresponding to color c by Vc = {ρ(v) :
node v is colored by c}. For each color c, we transmit
⊕p∈Vcp. By doing so, the code G × P can be generated
for this graph colouring, where P of dimension NF × 1
represents all the bits to transmit and the dimension of G
is |cH| × NF . We then do the local colouring by random
linear combinations. For each i ∈ [1 : K], Ai represents the
set of all the colors c where all the packets in Vc are known
by user i. Hence, we should construct a binary matrix C of
dimension (|cH| −mini∈[1:K] |Ai|)× |cH| such that for each
user i ∈ [1 : K], the matrix formed by columns indexed by
the complement of Ai of C has a rank |cH| − |Ai|. If we
can construct such matrix, each user can recover G×P from
C ×G × P and so we transmit C ×G × P. Otherwise, we
transmit G×P. Algorithm 2 is used to construct such binary
matrix. Numerically we noted that such matrix can be always
constructed if |cH| −mini∈[1:K] |Ai| > K.

Algorithm 1 AHgLC

1) Input: Gi for all i ∈ [1 : K], the color set cH = ∅,
m = 0;

2) for i = 1, . . . , T where Gi 6= ∅,
a) Q = Gi;
b) randomly pick a node v from Q; I = {v}; Q =

Q \ {v};
c) for j = i, i+ 1, . . . , T where Gj 6= ∅,

i) I = I ∪ {u ∈ Gj : ρ(v) = ρ(u)};.
ii) W = {w ∈ Gj \ I : Kw ⊇ Kv};

iii) randomly pick a node w from W; W = W \
{w};

iv) if there is no edge between w and I, then I =
I ∪ {w};

v) if W 6= ∅, then go to Step (2.c.iii);
d) if I ≥ i−m, go to Step (2.f);
e) for j = i, i+ 1, . . . , T where Gj 6= ∅,

i) W = {w ∈ Gj \ I : Kw + Kv};
ii) randomly pick a node w from W; W = W \
{w};

iii) if there is no edge between w and I, then I =
I ∪ {w};

iv) if W 6= ∅, then go to Step (2.e.ii);
f) if I ≥ i−m, then

i) color all the vertices in I by |cH|+ 1;
ii) cH = cH ∪ {|cH|+ 1}; Q = Q \ I;

iii) for each n ∈ I,
A) G|Kn| = G|Kn| \ {n};



g) if Q 6= ∅, then go to Step (2.b);
3) if ∃ one i ∈ [1 : T ], s.t. Gi 6= ∅, then

a) m = m+ 1;
b) go to Step (2);

4) for each c ∈ cH,
a) Vc = {ρ(v) : node v is colored by c};
b) the code corresponds to this color is ⊕p∈Vc p;

5) denote the code corresponding to the above colouring
by G;

6) for each i ∈ [1 : K],
a) Ai = {c ∈ cH : Vc is known by user i};

7) Output RLC(|cH|,A1, . . . ,AK)×G×P;

Algorithm 2 RLC(L, ,A1, . . . ,AK)

1) Input: L, A1, . . . ,AK . Initialization: t1 = 0; times =
10;

2) Test = 1; t1 = t1 + 1; randomly generate a (L −
mini∈[1:K] |Ai|)× L binary matrix C;

3) for each i ∈ [1 : K],
a) form C1 by all the ith columns where i ∈ [1 :

L] \ Ai;
b) if the rank of C1 is less than m− |Ak|, then

i) Test = 0;
ii) break for;

4) if Test = 0 and t1 ≤ times, then go to Step (2);
5) if Test = 1, then Output C;

else, then Output IL×L;

B. Delivery Scheme 2: MHCD

When demands are not uniform, the placement depends on
the file popularity and the number of stored bits of each file in
one user’s cache may not be identical. Hence, the sub-files in
each XS where S ⊆ [1 : K] and S 6= ∅ defined in Section II-B
may have different sizes. Instead of padding zeros at the end of
shorter sub-files, [7] proposed a scheme called Heterogenous
Coded Delivery (HCD). As decMAN, HCD treats each sub-
file demanded by each user as a district one. For each t ∈
[0 : K − 1], each S ⊆ [1 : K] of size |S| = t + 1 and each
s ∈ S, if |Fds,S\{s}| < maxs∈S |Fds,S\{s}|, HCD borrows
up to maxs∈S |Fds,S\{s}| − |Fds,S\{s}| bits from the sub-files
Fds,J where s /∈ J and J ⊇ S \{s}. One can see that Fds,J
should be recovered by s while it is known by the users in S
except s. Hence, the borrowed bits need not to be sent to user
s in the later transmission.

Improvement. It can be seen that HCD is tailored for the
finite file size regime. However, the main limitation of HCD
is that it does not leverage the multicasting opportunities
arising from one file demanded by several users. In the
following, we propose a delivery scheme based on [3] and
HCD. The main difference between our proposed scheme,
referred to as (Multicasting Heterogenous Coded Delivery)
MHCD, and HCD is that MHCD adapts the borrowing bits

from the higher type sub-files idea to the scheme in [3] while
HCD adapts it to decMAN. To leverage [3], each sub-file
demanded by each user cannot be treated as a district one
as decMAN does. Instead, after the bit borrowing step, each
sub-file appearing in different linear combinations should be
identical. The following example shows this point.

Assume that user 1 and 2 demand file A, user 3 and 4
demand file B, and user 5, 6 and 7 demand file C. Assume
that decMAN and the scheme in [3] need to transmit A{3,4}⊕
B{1,4} ⊕ B{1,3} and A{3,4} ⊕ B{2,4} ⊕ B{2,3}; assume that
A{3,4} has 1 bit, both B{1,4} and B{1,3} have 2 bits, and
B{2,4} and B{2,3} have 3 bits. HCD borrows one bit from AJ1

where J1 ⊇ {3, 4} and 1 /∈ J1, and pads this bit at the end of
A{3,4} in the first linear combination. This borrowed bit need
not be sent to user 1 in the following transmission. However,
if this borrowed bit is also demanded by user 2, we should
send it to user 2 in a later transmission/linear combination.
Similarly, HCD borrows two bits from AJ2

where J2 ⊇ {3, 4}
and 2 /∈ J1 and pads these two bits at the end of A{3,4} in
the second sum. The two borrowed bits need not be sent to
user 2 in following transmissions. However, if these borrowed
bits are also demanded by user 1, we should send them to
user 1 in some linear combinations later. Thus we adapt the
borrowing bits idea to the scheme in [3]. Since A{3,4} in the
two sums should be identical, we must pad the same bits from
AJ where J ⊇ {3, 4} and {1, 2} ∩ J1 = ∅ at the end of the
A{3,4} of both sums. The borrowed bits need not to be sent
to user 1 and 2 in the following transmission.

Our proposed MHCD algorithm works as follows. Transmit
all the sub-files Fi,∅ where i ∈ N (d). In the following, we
consider the sub-files step by step from the ones known by a
single user to the ones known by K−1 users. MHCD includes
K − 1 steps, from step 1 to K − 1. In the remaining of this
subsection, we will introduce the procedure of MHCD of step
t, where all the sub-files {Fdi,J : i ∈ [1 : K],J ⊆ [1 :
K], |J | = t, i /∈ J } should be transmitted. The pseudo code
of MHCD in step t is given in Algorithm 3. We need to decide
how many bits should be borrowed for each considered sub-
file. The key point is that in each linear combination, there
exists at least one sub-file without the bits from the higher type
sub-files. Recall L is the leader set defined in Section II-B.
The scheme in [3] transmits ⊕s∈SFds,S\{s} where S ∈ CL(t)
and CL(t) = {S ⊆ [1 : K] : |S| = t + 1,S ∩ L 6= ∅}. We
divide all the elements in CL(t) into groups,

Qt,T =

{
S ⊆ CL(t) :

⋃
s∈S
{ds} = T

}
,

where T ⊆ N (d) and 1 ≤ |T | ≤ min{t + 1, |N (d)|}. For
two different T1 and T2, it can be seen that {(ds,S \ {s}) :
s ∈ S,S ∈ Qt,T1} ∩ {(ds,S \ {s}) : s ∈ S,S ∈ Qt,T2} = ∅.
Hence, we can encode each group individually such that one
sub-file in different sums is identical. In addition, for each
k ∈ [1 : K] and each J ⊆ [1 : K] where k /∈ J , we define
Dk,J as the individual requested sub-file representing the set
of bits demanded by user k which are not already transmitted



and are in the caches of the set of users in J . Then, define
the common requested sub-file

Wi,J =
⋂

k∈[1:K]:dk=i,k/∈J

Dk,J

representing the common demanded and not yet transmitted
bits of all the users who desire Fi,J . Initially, Dk,J =
Wi,J = Fdk,J where dk = i. In MHCD, the common and
individual sub-files should be updated when some of their
bits are transmitted (Step (3.c.ii.E), (3.c.iii), (4.b.ii.E) in
Algorithm 3).

For each group Qt,T , if |{k ∈ [1 : K] : dk ∈ T }|−|T | ≤ t,
it can be seen that

Qt,T = {S ⊆ [1 : K] : ∪
s∈S
{ds} = T ,S ∩ L 6= ∅, |S| = t+ 1}

= {S ⊆ [1 : K] : ∪
s∈S
{ds} = T , |S| = t+ 1}.

For such group the codes in decMAN and in [3] are identical
and such that we cannot get multicasting opportunities from
the latter one. Hence, we consider the group Qt,T , where
|{k ∈ [1 : K] : dk ∈ T }| − |T | > t. The code for this
group is ⊕

s∈S
Yds,S\{s} for each S ∈ Qt,T . In the following,

we will introduce the construction of each transmitted Yi,J
where (i,J ) ∈ {(ds,S \ {s}) : S ∈ Qt,T , s ∈ S}.

Compute at,T = minS∈Qt,T maxs∈S |Wds,S\{s}|. Then,
we focus on each pair (i,J ) in

{(ds,S \ {s}) : S ∈ Qt,T , s ∈ S}.

Let Ui,J = {k ∈ [1 : K] : dk = i and k /∈ J } representing
the users demanding Fi,J . If |Wi,J | ≥ at,T , Yi,J is equal to
the first at,T bits from Wi,J . If |Wi,J | < at,T , we borrow
at,T −|Wi,J | bits from the higher type sub-files Wi,J1 where
J1 ⊇ J ,Ui,J ∩S1 = ∅. Firstly, we borrow bits from the sub-
files Wi,J1

where |J1| = t+1 and, if this is not enough, bits
from higher type will be borrowed. Yi,J is formed by all the
bits inWi,J and the borrowed bits; if Yi,J is still shorter than
at,T , we pad at,T − |Yi,J | zeros at the end of Yi,J .

After coding each group in step t, some bits in the common
requested sub-files have been transmitted but some still remain,
which are known by t users and not yet transmitted to the de-
manders. Hence, we use HCD to transmit all the bits remaining
in Dk,J where k ∈ [1 : K] and |J | = t. In other words, for
each S ⊆ [1 : K] of size |S| = t + 1 and each s ∈ S , let
D′s,S\{s} = Ds,S\{s} and if |Ds,S\{s}| < maxs∈S |Ds,S\{s}|,
we borrow maxs∈S |Ds,S\{s}| − |Ds,S\{s}| bits from Ds,J
where s /∈ J and J ⊇ S \ {s}. The borrowed bits should
be padded at the end of D′s,S\{s}. Similarly, if there are
not enough bits to borrow, bit 0 should be padded at the
end of D′s,S\{s}. After the bit borrowing step, we transmit
⊕
s∈S
D′s,S\{s} for each S ⊆ [1 : K] of size |S| = t+ 1.

Note that in MHCD, if we need to borrow x bits from one
higher type sub-file, we take its first x bits to let the common
requested sub-files as large as possible.

Algorithm 3 Step t of MHCD

1) Input: Dk,J for each k ∈ [1 : K] and J ⊆ [1 : K]
where |J | ≥ t, Wi,J for each i ∈ N (d) and J ⊆ [1 :
K] where |J | ≥ t, L,d, t1 = t2 = t+ 1;

2) Gt = {T ⊆ N (d) : 1 ≤ |T | ≤ min{t+ 1, |N (d)|}}.
3) for each T ∈ Gt where |{j ∈ [1 : K] : dj ∈ T }|−|T | >

t,
a) Qt,T = {S ⊆ [1 : K] : ∪

s∈S
{ds} = T ,S ∩ L 6=

∅, |S| = t+ 1};
b) at,T = minS∈Qt,T maxs∈S |Wds,S\{s}|;
c) for each (i,J ) ∈ {(ds,S \ {s}) : S ∈ Qt,T , s ∈
S},
i) Ui,J = {k ∈ [1 : K] : dk = i and k /∈ J };

ii) if |Wi,J | ≥ at,T , then Yi,J =the first at,T bits
of Wi,J ;
else, then
A) Re = at,T − |Wi,J |; Yi,J =Wi,J ;
B) B = {Wi,J1

: |J1| = t1,J1 ⊇ J ,Ui,J ∩
J1 = ∅, |Wi,J1

| 6= 0};
C) W1 = Getbits(B, Re);Yi,J = Yi,J ∪W1;
D) Re = Re − |W1|;
E) for each (i,J1) where Wi,J1 ∈ B, update
Wi,J1

= Wi,J1
\ W1; for each (k,J1)

where k ∈ Ui,J and Wi,J1
∈ B, update

Di,J1
= Di,J1

\W1;
F) if t1 < K−1 and Re > 0, then t1 = t1+1

and go to Step (3.c.ii.B);
iii) for each k ∈ Ui,J , update Dk,J = Dk,J \Yi,J ;

d) for each S ∈ Qt,T , transmit ⊕
s∈S
Yds,S\{s};

4) for each S ⊆ [1 : K] where |S| = t+ 1,
a) bS = maxs∈S |Ds,S\{s}|;
b) for each s ∈ S,

i) D′s,S\{s} = Ds,S\{s};
ii) if |Ds,S\{s}| < bS , then

A) Re = bS − |Ds,S\{s}|;
B) B = {Ds,S1 : |S1| = t2,S1 ⊇ S \ {s}, s /∈
S1, |Dj,S1 | 6= 0};

C) W1 = Getbits(B, Re); D′s,S\{s} =
D′s,S\{s} ∪W1;

D) Re = Re − |W1|;
E) for each (k,S1) where Dk,S1 ∈ B, update
Wdk,S1 = Wdk,S1 \ W1 and Dk,S1 =
Dk,S1 \W1;

F) if t2 < K−1 and |Re| > 0, then t2 = t2+1
and go to Step (4.b.ii.B);

c) transmit ⊕
s∈S
D′s,S\{s};

Algorithm 4 Getbits(B, Re)

1) C = ∅; a = 1; b = 1;
2) if

∑
e∈B |e| ≤ Re, then C =all the bits of all the sub-

files in B;
else, then
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Fig. 1: Average memory-load (uniform demand) for a
decentralized system with N = 4, K = 8 and F = 400.

a) Sort the sub-files in B by length where B(1)
represents the sub-file with the max length while
B(|B|) represents the one with min length.

b) if b ≤ |B(a)|, then C = C ∪{the bth bit of B(a)};
c) if |C| = Re, then Output C;

else if a = |B|, then a = 1, b = b + 1 and go to
Step (2);
else, then a = a+ 1 and go to Step (2);

IV. NUMERICAL RESULTS AND COMPLEXITY ANALYSIS

Numerical Results: We consider a decentralized caching
system with N = 4, K = 8 and F = 400. We assume that
the demand distribution is uniform. We compare the average
load-memory tradeoffs of the two proposed schemes to the
conventional uncoded caching scheme, the caching scheme
in [3], HCD and HgLC implemented in the finite file size
regime and the scheme in [8]. In the placement of uncoded
caching schemes, each user stores the same MF/N bits of
each file and in the delivery phase the server transmits the
remaining part of each requested file. For the other schemes,
in the placement phase, each user randomly, uniformly and
independently stores MF/N bits of each file. There are some
trivial modifications in the delivery phase. First of all, for HCD
and the schemes in [8], in the simulation we directly transmit
the non-cached bits of each demanded file. Secondly, we use
Algorithm 2 instead of MDS parity-check matrix for HgLC.
Since the file size adapted to the scheme in [9] is constrainted,
we do not draw the tradeoff of this scheme. More precisely,
F/
(

K1

K1M/N

)
should be an integer where K1 is a parameter

which can be chosen in [2,∞). Hence, for M = 1, the possible
file sizes are 4, 28, 220, 1820 and so on. In addition, we also
draw the optimal memory-load tradeoff in infinite file size
regime with uniform demand proposed in [3] (given in (3)) as
an outer bound. For each tradeoff point, we use Monte Carlo
experiments to simulate 5000 realizations of the placement.
For each placement, we randomly generate one demand vector.

In Fig. 1, we can see the two proposed schemes outperform
the existing ones. Furthermore, when M is less than 1 MHCD
outperforms AHgLC while when M is larger than 1, AHgLC
performs better. In addition, we also compare our schemes
to [9] with F = 220, K = 8, N = 4, M = 1. The average load
given by [9] is 3.49 while the loads of AHgLC and MHCD
are 2.2072 and 2.27337, respectively.

One should note that when F tends to infinity, MHCD can
reach the outer bound because when F is infinity, sub-files
demanded by the same number of users have the same length
such that the borrowing bit step is not needed in MHCD.
Hence, it is equivalent to the scheme in [3].

Complexity Analysis: It can be seen that HCD and
MHCD needs at most O(22K) operations while the com-
plexities of HgLC and AHgLC are both O(K|V|2) ≡
O(K[KF (1 −M/N)]2) ≤ O(K3F 2) where |V| represents
the total number of nodes in the graph. Hence, when K is
large and F is not very large, the complexities of HgLC and
AHgLC are lower than HCD and MHCD. When F is large
and K is not very large, the complexities of HCD and MHCD
are lower than HgLC and AHgLC.

V. CONCLUSION AND FURTHER WORK

We investigated the decentralized caching problem with
finite file size and proposed two novel delivery methods lever-
aging multicasting opportunities. Numerical results showed
that in the uniform demand case our proposed schemes out-
performs previous schemes in terms of the average memory-
load tradeoff. Further work includes testing the two proposed
delivery schemes, with suitable random placement strategies,
with different demand distributions.
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