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Abstract—Driven by the rapid development of wireless com-
munication system, more and more vehicular services can be
efficiently supported via vehicle-to-everything (V2X) communi-
cations. In order to allocate radio resource with the reasonable
implementation complexity in dense urban intersection, a two-
stage allocation algorithm is proposed in this paper, whose
main objective is to minimize delay and ensure reliability. In
particular, as for the first stage, the allocation policy is based on
traffic density information (TDI), which is different from utilizing
channel state information (CSI) and queue state information
(QSI) in the second stage. Moreover, in order to reflect the
influence of TDI on delay, a macroscopic vehicular mobility
model is employed in this paper. Simulation results show that
the proposed algorithm can acquire an asymptotically optimal
performance with the acceptable complexity.

Index Terms—Low latency and high reliability, radio resource
allocation, dense urban intersection, macroscopic mobility model.

I. INTRODUCTION

With the rapid development of wireless communication

systems, intelligent transportation systems (ITSs) have been

widely studied in recent years. More and more vehicular

services can be efficiently supported by the evolving wireless

networks [1], [2]. As a typical dense scenario in vehicular

networks, urban intersection is studied in this paper. In order to

meet various vehicular requirements, there exist two categories

of applications in urban environments, namely non- and delay-

sensitive ones [3]. In general, the delay-sensitive services are

safety-related, and mainly focus on the performance metrics

about low latency and high reliability, such as cooperative driv-

ing and road safety, etc. On the other hand, as for non-delay-

sensitive services, data rate is a key performance indicator.

Because of the poor deployment of roadside infrastructures,

dedicated short range communication (DSRC) systems are

paid less attention in current vehicular networks. Instead, long

term evolution (LTE) and its beyond are regarded as the

most promising solution to meet various vehicle-to-everything

(V2X) communications. Recently, the 3rd generation partner-

ship project (3GPP) declares that LTE-based V2X services

adopt PC5, Uu interface and their hybrid to implement infor-

mation exchange.

A theoretical analysis about radio resource management for

D2D-based vehicle-to-vehicle (V2V) communication is given

in [4], where the scenario of cellular and vehicular users

coexistence is studied in detail. However, the characteristics of

mobility are not considered in that paper. Although the authors

consider traffic model in [5], their optimization objective

is just the delay without paying attention to the reliability.

Moreover, their research scenario is focused on the highway.

Besides the above work, some other problems about vehicular

communications are also studied in [6]–[12], such resource

allocation and performance analysis, etc.

Therefore, motivated by the above facts, this paper focuses

on the scenario of urban intersection, and aims to investigate

radio resource allocation policy to minimize the latency of

delay-sensitive services, where the corresponding reliability is

considered at the same time. Furthermore, in order to reduce

the complexity, a two-stage allocation policy is also proposed,

where the allocation based on the traffic density information

(TDI) is separately considered. Finally, with the aid of traffic

flow theory, we develop a delay utility function adopting

macroscopic vehicular mobility model in this paper.

The remainder of this paper is organized as follows. In

Section II, the system model and some assumptions are

introduced. Section III first studies the allocation policy of

Stage two based on channel state information (CSI) and

queue state information (QSI). Then, Stage one based on

TDI, namely inter-subregion resource allocation is discussed in

Section IV. Finally, Section V illustrates the simulation results

and conclusions are drawn in Section VI.

II. SYSTEM MODEL

A. Scenario Description

As shown in Fig. 1, consider an urban vehicular network

with one base station (BS). Assume that each vehicle asso-

ciating with BS is equipped with one receiving antenna and

NT transmitting antennas. There exist two kinds of services in

the network, namely non- and delay-sensitive V2V services.

As for delay-sensitive V2V services, LTE-based D2D com-

munication is utilized. On the other hand, non-delay-sensitive

services can be provided via traditional LTE network. Note

that we only pay attention to the uplink (UL) in this paper.

In order to efficiently allocate radio resources in dense urban

intersection and reduce the complexity, we propose a two-

stage allocation policy. As illustrated in Fig. 1, the intersection
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Fig. 1. Scenario of urban vehicular networks.

is divided into four subregions. The first stage is to allocate

the resources of each subregion based on the corresponding

TDI. Here we assume that different subregions use orthogonal

resources. The second stage is about the allocation among

intra-subregion. In contrast to that of Stage one, Stage two

uses reusable resources.

Assume that the number of non- and delay-sensitive vehi-

cles in a subregion are N1 and N2, respectively. Since the

broadcast characteristic of delay-sensitive services, a number

of broadcast links are equivalent to one link for simplicity in

this paper. Then the total number of links in the subregion is

NL = N1+N2. Moreover, there are NRB independent resource

blocks (RBs) in the subregion. Each link can be allocated

at most one RB. Based on the assumption in most existing

works [13], the resource allocated to a delay-sensitive link

can be reused by at most one non-delay-sensitive link.

B. Channel Model

The network is assumed to work in slotted time t ∈
{1, 2, · · · }, and we use slot t to denote the time interval

[t, t + 1). Let Hk
ij(t) =

√

Lij(t)h
k
ij(t) ∈ C1×NT denote

the CSI matrix from transmitter i to receiver j on k-th RB

during slot t, where Lij(t) is the large-scale fading coefficient

containing the path loss and shadow, and h
k
ij(t) is the small-

scale fading random variable. Assume that the elements of

h
k
ij(t) = [hk

ij1, h
k
ij2, · · · , h

k
ijNT

] are independent and identi-

cally distributed (i.i.d) complex Gaussian random variables,

namely hk
ijm

i.i.d.
∼ CN(0, 1). Note that j = 0 represents the

receiver is BS. At last, let H(t) = {Hk
ij(t)} ∈ H denote

the network CSI at slot t.

C. Queue Model

Each vehicle maintains one traffic queue with a finite queue

length NQ < ∞. Let Qi(t) denote the QSI (the number of

bits) of vehicle i at the beginning of slot t. Hence, the queue

dynamic is given by

Qi(t+ 1)

= min {NQ,max {0, Qi(t)− µi(t)}+Ai(t)} , (1)

where Ai(t) denotes the traffic arrival at the end of slot t, and

the traffic departure at slot t is given by µi(t). We assume that

the traffic arrival Ai(t) is independent w.r.t. i and i.i.d. over

slots obeying a general distribution with mean E[Ai(t)] = Ai.

Let Q(t) = {Qi(t)} ∈ Q denotes the network CSI at slot t.

D. Performance Metrics

Each service has its specific communication requirements

in vehicular network. Hence, it is necessary to study the

performance metrics of different services. Let slk(t) be the

RB allocation at slot t, the value of slk(t) is defined as

slk(t) =

{

1, k-th RB is allocated to link l at slot t,

0, otherwise,
(2)

where k ∈ {1, 2, · · · , NRB} and l ∈ {1, 2, · · · , NL}.

1) Delay-sensitive Service Metric: As for delay-sensitive

services, we first focus on the packet reception ratio (PRR)

which is defined in [1]. So we have the following definition.

Definition 1 (Packet Reception Ratio): Let Ni(t) denote the

number of the neighborhoods of vehicle i at slot t, then the

PRR is defined as the ratio of successful reception among

Ni(t), i.e.,

pi(t) ,
1

Ni(t)

Ni(t)
∑

j=1

1
{

ρ
(i)
j (t) > ρth

}

=
1

Ni(t)

Ni(t)
∑

j=1

1

{ NRB
∑

k=1

sik(t)Pi(t)|H
k
ij(t)|

2

σ2 +
N1
∑

m=1
smk (t)Pm(t)|Hk

m0(t)|
2

> ρth

}

, (3)

where ρ
(i)
j (t) is the receiving signal-to-interference-plus-noise

ratio (SINR) of vehicle j among Ni(t), Pi(t) is the transmit

power of vehicle i, and σ2 is the power of additive white

Gaussian noise. Here successful reception is considered as

the fact that SINR is greater than or equal to a threshold

ρth. Specially, the average PRR pi can be calculated by the

following formula, i.e.,

pi = lim sup
T→∞

1

T

T
∑

t=1

E
Ω [pi(t)] . (4)

The PRR is a good proxy for reliability. As for delay, we

have the following definition.

Definition 2 (Average Queue Length): Assume that Q(t) is

a discrete time queue, then the average queue length under a

policy Ω is given by

Q , lim sup
T→∞

1

T

T
∑

t=1

E
Ω [Q(t)] . (5)

Furthermore, if the average queue length Q < ∞, the discrete

time queue is strongly stable. A network of queues is stable if

all individual queues of the network are stable. Based on the

Little’s law, we can also calculate the average delay.



2) Non-delay-sensitive Service Metric: With the regard to

the non-delay-sensitive services, we mainly focus on the data

rate. In order to simplify the communication model, the perfect

CSI at the receiver and transmitter are assumed. Therefore, the

maximum achievable data rate of vehicle i at slot t is given

by

ri(t) , B log (1 + ρi(t)) , (6)

where B denotes the bandwidth of one RB, and ρi(t) can be

calculated as

ρi(t) =

NRB
∑

k=1

sik(t)Pi(t)|H
k
i0(t)|

2

σ2 +
N2
∑

j=1

sjk(t)Pj(t)max
m

{

|Hk
jm(t)|2

}

, (7)

where m ∈ {1, 2, · · · , Nj(t)}. Similarly, we can also utilize

Equ. (4) to calculate the average data rate ri.

III. INTRA-SUBREGION RESOURCE ALLOCATION

A. Resource Allocation Policy

In general, a resource allocation policy is a mapping func-

tion from the system state to the resource allocation actions.

A policy is called feasible if the relevant actions satisfy

the required constraints. As previously mentioned, our policy

of intra-subregion resource allocation satisfies the following

constraints, i.e.,

N1
∑

i=1

ski 6 1, ∀k ∈ {1, 2, · · · , NRB}, (8)

N2
∑

i=1

ski 6 1, ∀k ∈ {1, 2, · · · , NRB}, (9)

NRB
∑

k=1

ski 6 1, ∀i ∈ {1, 2, · · · , NL}. (10)

B. Problem Formulation

In this paper, our main objective is to minimize the latency

of delay-sensitive services, while satisfying corresponding

reliability requirements and data rate requirements. Thus, we

consider the following optimization problem, i.e.,

Problem 1 (Delay-optimal Policy for Intra-subregion Re-

source Allocation): Given a set of feasible policies {Ω},

and assuming rth = [r(th)
1 , r(th)

2 , · · · , r(th)
N1

]T and pth =

[p(th)
1 , p(th)

2 , · · · , p(th)
N2

]T are the minimum data rate of all non-

delay-sensitive vehicles and reliability requirements of all

delay-sensitive vehicles, the optimization problem is then

formulated as

min
Ω

dsum(Ω) ,
N2
∑

i=1

αidi(Ω)

s.t.



















pi > p(th)
i ,

rj > r(th)
j ,

max
i

{

Qi

Ai

}

6 min
j

{

Qj

Aj

}

,

(11)

where i ∈ {1, 2, · · · , N2}, j ∈ {1, 2, · · · , N1}, and αi is the

positive weighted factor for each delay-sensitive vehicle.

In general, with the regard to a unichain policy Ω, the

induced Markov chain is ergodic and there is a unique steady

state distribution π(Ω). Hence, we have

di(Ω) = lim sup
T→∞

1

T

T
∑

t=1

E
Ω [f(Qi(t))]

= E
π(Ω)

[

f(Qi)
]

, (12)

where f(Qi) = Qi/Ai denotes the average delay.

C. Elements of MDP

The optimization problem is formulated as an infinite hori-

zon average cost constrained Markov decision process (MDP).

In general, MDP is characterized by five elements, i.e., system

state space, action space, state transition kernel, average cost

function and constraint conditions as follows.

• System State Space: {χ(t)} = {H(t),Q(t)} ∈ X =
H×Q.

• Action Space: {Ω(χ(t))}, which is a set of unichain

feasible policies under the system state χ(t).
• State Transition Kernel: Pr[χ(t+1)|χ(t),Ω(χ(t))]. Since

the property of Markov process, we have

Pr[χ(t+ 1)|χ(t),Ω(χ(t))]

= Pr[H(t+ 1)|χ(t),Ω(χ(t))] Pr[Q(t+ 1)|χ(t),Ω(χ(t))]

= Pr[H(t+ 1)] Pr[Q(t+ 1)|χ(t),Ω(χ(t))]. (13)

• Average Cost Function and Constraint Conditions: They

are described in detail at Equ. (11).

Because of the constraints in Problem 1, the standard

Lagrangian approach is utilized here. Then the constrained

MDP can be transformed to the unconstrained MDP, and the

Lagrange dual function is also defined as Equ. (14) listed at

the top of this page, where β = {βi > 0}, γ = {γj > 0},

η = {ηl > 0} and λ > 0 are the Lagrange multipliers.

Therefore, the average cost function of the corresponding

unconstrained MDP can be obtained from Equ. (14). As a

rule, the delay-optimal policy can be obtained by solving the

Bellman equation [14], we discuss it in the next subsection.

D. Optimal Solution of MDP

As previously mentioned, we have converted Problem 1 into

the unconstrained MDP, thus it can be solved by Bellman

equation expressed as follows.

Lemma 1 (Bellman Equation): For any given β, γ, η and λ,

if there exist a scalar θ and a vector V =
[

V (χ1), V (χ2), · · ·
]

satisfy the Bellman equation for the delay-optimal uncon-

strained MDP in Equ. (14), namely

θ + V (χi)

= min
Ω(χi)

{

g(χi,Ω(χi),β,γ,η, λ)

+
∑

χj

Pr
[

χj |χi,Ω(χi)
]

V (χj)
}

, ∀χi ∈ X , (15)

then θ = minΩ L(Ω,β,γ,η, λ) is the optimal average cost

per-stage, and the optimal policy for Problem 1 is Ω∗, which



H(β,γ,η, λ) = min
Ω

L2(Ω;β,γ,η, λ)

= min
Ω

lim sup
T→∞

1

T

T
∑

t=1

E
Ω

{ N2
∑

i=1

[

αif (Qi(t)) − βi

(

pi(t)− p(th)
i

)]

−

N1
∑

j=1

γj

(

rj(t)− r(th)
j

)

+λ

(

max
i

{

Qi

Ai

}

−min
j

{

Qj

Aj

})

+

NL
∑

l=1

ηl1 (Ql(t) = NQ)

}

= min
Ω

lim sup
T→∞

1

T

T
∑

t=1

E
Ω [g (χ(t),Ω(χ(t)),β,γ,η, λ)] . (14)

minimizes the R.H.S. of Equ. (15) for any state χi ∈ X .

Similarly, as for a unichain policy, there is a unique solution

to Equ. (15). Therefore, we only consider the unichain feasible

policy in this paper.

It is well known that the system state space gradually be-

comes huge with the increasing number of vehicles. Therefore,

in order to reduce the complexity, the reduced-state Bellman

equation can be adopted to solve Problem 1 [15], which only

takes advantage of the QSI. Then we have the following

lemma, i.e.,

Lemma 2 (Reduced-State Bellman Equation): In general, the

equation can be given by

θ + Ṽ (Qi)

= min
Ω(Qi)

{

g̃(Qi,Ω(Qi),β,γ,η, λ)

+
∑

Qj

f̃
(

Q
j |Qi,Ω(Qi)

)

Ṽ (Qj)
}

, ∀Qi ∈ Q, (16)

where Ṽ (Q) = E[V (χ)|Q], g̃(Q,Ω(Q),β,γ,η, λ) =
E[g(χ,Ω(χ),β,γ,η, λ)|Q] and f̃(Qj |Qi,Ω(Qi)) =
E[Pr(Qj |χi,Ω(χi))|Qi] are conditional potential function,

average cost per-stage and average transition kernel,

respectively.

IV. INTER-SUBREGION RESOURCE ALLOCATION

A. Fundamentals of Traffic Flow Theory

According to the different traffic characteristics, vehicular

mobility models are usually classified into two categories,

namely macroscopic and microscopic models. Each category

of model focuses on different performance indicators. The

macroscopic models generally describe the average behavior

of many vehicles at specific location and time, treating traffic

flow as fluid dynamics. Therefore, vehicular density and mean

velocity are considered in the macroscopic models, which

raises the traffic flow theory. However, the microscopic models

describe the precise behavior of each system entity (i.e.,

vehicle or driver), hence they are more complicated than the

macroscopic models.

In order to allocate wireless resources efficiently among

inter-subregion, we model the TDI adopting the traffic flow

theory. It is well known that there are many macroscopic

models, such as Greenshield’s model, Greenberg’s model,

Underwood’s model, etc. For the sake of simplicity, we utilize

f
max

0 �
jam

 / 2

F
lo

w
Density

�
jam

Fig. 2. Illustration of density and flow in the Greenshield’s model.

linear Greenshield’s model in this paper. Here we give a brief

introduction about Greenshield’s model. In general, there exist

two parameters in the Greenshield’s model, namely free flow

speed vfree and jam density κjam [16]. The relationship between

flow f and density κ is given by

f = κvfree −
κ2

κjam

vfree. (17)

We plot Equ. (17) in Fig. 2 to illustrate this relationship. As

we see, Fig. 2 clearly illustrates that the flow increases with

the increasing density when κ 6 κjam/2. It just is a simple

parabola.

B. Delay Utility Function

In order to reflect the influence of TDI on delay-sensitive

services, we construct a delay utility function with the help

of the Greenshield’s model. As illustrated in Fig. 2, the utility

function should satisfy the following properties, i.e.,

• When κi 6 κjam/2, the flow increases with the increase

of density, hence the number of delay-sensitive services

increases, and the delay requirement gradually increases;

and

• When κi > κjam/2, the flow decreases with the increase

of density, hence the delay requirement gradually de-

creases for the same reason; and

• Furthermore, no matter how much the value of κi, the

delay requirement is not equal to zero. Meanwhile, the

requirement is normalized for the sake of simplicity; and



• Let εi denote the ratio of allocation for subregion i. For

any εi ∈ [0, 1], the allocation efficiency increases with

the increase of εi.

In conclusion, the utility function is given by

Ui(κi, εi) = exp

(

−
(κi −

κjam

2 )2

c1

)

log (1 + c2εi) , (18)

where c1, c2 > 0 are constants, which is related to the practical

traffic condition. The logarithmic utility function can ensure

the fairness, and thus is employed in this paper. In Equ. (18),

the first and second terms represent the normalized delay

requirement and the allocation efficiency, respectively. Note

that the utility function is just a proxy for delay, not the true

value.

C. Problem Formulation

Comparing to the CSI and QSI in Stage two, the TDI in

Stage one changes at a longer time-scale. Therefore, we can

formulate a new problem independent of Problem 1. The main

objective of Stage one is to maximize the sum of delay utility

defined in Equ. (18) based on the corresponding TDI. The

following optimization problem is considered, i.e.,

Problem 2 (Delay-optimal Policy for Inter-subregion Re-

source Allocation): Given the TDI of four subregions κ =
[κ1, κ2, κ3, κ4]

T, the utility maximization problem of Stage

one is then formulated as

max
ε

Usum(ε) ,
4
∑

i=1

Ui(κi, εi)

s.t.







εi > 0,
4
∑

i=1

εi = 1.

(19)

D. Resource Allocation for Stage One

Since the logarithmic function is convex, the compound

utility function is convex. We can solve Problem 2 utilizing

convex optimization theory [17]. First of all, we write the

Lagrange function of Problem 2 as follows.

L1(ε; δ, ω) = −
4
∑

i=1

Ui(κi, εi)−
4
∑

i=1

δiεi + ω

(

4
∑

i=1

εi − 1

)

,

(20)

where δ = {δi > 0} and ω are the Lagrange multipliers.

Therefore, based on the Karush-Kuhn-Tucker (KKT) condi-

tion, we get

εi > 0,

4
∑

i=1

εi = 1, δi > 0, δiεi = 0,

∂L1(ε; δ, ω)

∂εi
= −

exp(−
(κi−

κjam

2
)2

c1
)c2

1 + c2εi
− δi + ω = 0,

(21)

where i ∈ {1, 2, 3, 4}. Then, the utility maximization resource

allocation can be given by

εi = max

{

0,
1

c2

(

c2
ω

exp

(

−
(κi −

κjam

2 )2

c1

)

− 1

)}

, (22)

where the Lagrange multiplier ω is determined by equation
∑4

i=1 εi = 1.

Algorithm 1. Resource allocation algorithm for urban vehic-

ular network

Initialization:

• There are a total of N total
RB RBs at the BS.

• BS gathers the periodic TDI κ = [κ1, κ2, κ3, κ4]
T from

the traffic monitor nodes.

• All vehicles send the QSI to BS.

• BS sets the initial number of subregions M = 0, and the

Lagrange multiplier ω = ∞.

Step 1: Resource allocation for Stage one

• Calculate the Lagrange thresholds ωi (i = 1, 2, 3, 4) based

on Equ. (23).

• Sort the thresholds with descending order, and obtain the

vector [ω(1), ω(2), ω(3), ω(4)]
T.

loop m = 1 → 4
1) Calculate ωm according to Equ. (24).

2) If ωm < ω(m), let M = m, ω = ωm and continue;

Else break.

end loop

• Calculate the ratio of allocation εi (i = 1, 2, 3, 4) for each

subregion based on Equ. (22) with the obtained ω.

Step 2: Resource allocation for Stage two

• Calculate the number of RBs for each subregion N
(i)
RB =

⌊εiN
total
RB ⌋.

• At the beginning of each scheduling slot, execute the algo-

rithm described in Equ. (16) for each subregion according

to the corresponding QSI.

• If the current slot is the moment of periodic TDI report,

go to Step 1 and continue; Else loop Step 2.

E. Resource Allocation Algorithm for Urban Vehicular Net-

work

According to the above discussions, we summarize each

step of resource allocation for urban vehicular network in

detail at Alg. 1. In Alg. 1, the Lagrange thresholds ωi can

be calculated by

ωi = c2 exp

(

−
(κi −

κjam

2 )2

c1

)

, (23)

and ωm can be calculated by

ωm =

m
∑

i=1

exp(−
(κi−

κjam

2
)2

c1
)

1 + m
c2

. (24)

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed alloca-

tion algorithm, part of the simulation results are shown in this

section. For the purpose of better illustration, some simulation

assumptions are summarized in Table as follows.

Fig. 3 illustrates that the performances of average delay

versus average arrival rate. As can be seen from Fig. 3, the

average delay increases with the increasing TDI κ, where

the high and low TDI are generated by Uniform(0,0.5) and



TABLE I
SIMULATION PARAMETERS.

Parameter Assumption

Bandwidth 5 MHz

NT 2 transmitting antennas

Average packet size
20 bytes for delay-sensitive services
300 bytes for non-delay-sensitive ones

Average arrival rate 5:5:30 packets/s

Queue size 10 packets

Scheduling slot 1 ms (one slot in LTE)

TDI update interval 500 ms

κjam 2

5 10 15 20 25 30
0
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T
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T
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Fig. 3. Delay performance versus various arrival rates.

Uniform (0.8,1.2), respectively. Moreover, we also find that the

optimal policy solved by the original Bellman equation has the

best delay performance at the expense of high implementation

complexity. As for the proposed algorithm, it acquires an

asymptotically optimal performance, but its complexity has

a significant decrease, which is very satisfactory. In particular,

when Ai = 25 packets/s, the proposed algorithm has the

approximately equal performance with the optimal one in the

case of high TDI.

VI. CONCLUSION

In order to reduce the allocation complexity in dense

urban intersection, this paper proposed a two-stage allocation

algorithm, where Stage one utilized the TDI of corresponding

subregion to maximize the delay utility. While for Stage two,

its main optimization objective was to minimize the latency of

delay-sensitive services, meanwhile satisfying the correspond-

ing reliability requirements and data rate requirements. Finally,

comparing to the optimal solution of MDP, simulation results

illustrated that the proposed scheme can acquire an asymp-

totically optimal performance with the reasonable complexity

comparing to the optimal one.
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