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Abstract—Over the past few years there has been an emergence
in predictive algorithms proposing to manage user mobility issues
in cellular networks. Such methods are limited by accuracy
bounds causing decreased performance when compared to non-
predictive processes, in cases where precision is sub-optimal.
In this paper, an analytical model for the minimum required
accuracy for predictive methods is derived in terms of both
handover (HO) delay and HO signaling cost. After that, the
total HO delay and signaling costs are derived for the worst-case
scenario (when the predictive process has the same performance
as the conventional one), and simulations are conducted using
a simulated cellular environment to reveal the importance of
the proposed minimum accuracy framework. In addition to this,
three different predictors; Markov Chains, Artificial Neural Net-
work (ANN) and an Improved ANN (IANN) are implemented and
compared. The results indicate that under certain circumstances,
the predictors can occasionally fall below the applicable level.
Therefore, the proposed concept of minimum accuracy plays a
vital role in determining this corresponding threshold.

I. INTRODUCTION

As the expectations for next generation cellular networks
are becoming increasingly demanding, i.e. very low latency
(order of 1ms) and higher cell density [1], there is pressure to
accommodate state of the art technologies, such as machine
learning, in order to make cellular networks more adaptive,
dynamic, and resilient [2].

One important issue in cellular networks is the case of
mobility management, as network users are constantly moving.
Handover (HO), the change of user equipment’s (UE) access
point (AP) or base station (BS) when in active mode, is
very important aspect in the context of mobility management.
In this regard, prediction on upcoming HOs is a common
method in HO management, since it enables the BS to reserve
resources in advance, reducing both HO delay and network
signaling cost.

With the help of accurate predictions, HO delay and sig-
nalling cost can be decreased significantly [3]. This is impor-
tant for providing a seamless communication for next gen-
eration cellular networks, since delay-intolerant applications;
e.g. live video streaming and tactile internet, are in significant
demand and will be used intensely in the future. However, the
focus point for a predictive HO process should be accuracy,
as this can lead to improved prediction capabilities, ultimately
improving the fluidity of network resources. On the other hand,
the predictive HO process is very prone to escalating both HO
delay and signaling cost if the accuracy level of the predictor is
low, as each incorrect prediction brings a subsequent penalty.

There have been numerous studies, which propose a HO
prediction based method in order to optimize the network,
amongst these are: Markov chains [3]-[6] and ANNs [7]-
[9] being the most popular due to high efficiency, ease of
implementation, and good performance. However, none of
these studies provides any information about the minimum
accuracy needed for each predictor. In addition, having this
information would provide knowledge on how much per-
formance degradation these systems can tolerate in order
to continue employing predictive processes. Effects, such as
revisit and ping-pong, can make the predictive processes
unimplementable by degrading the prediction performances
significantly. Therefore, it is apparent that there is a lack of
work addressing the design parameters around the predictor.

This study proposes a more standardized framework to the
issue of predictive mobility management, by introducing a
minimum accuracy requirement for every predictor. First, an
analytical model of minimum accuracy requirements for any
predictor in terms of HO delay and signaling cost are derived
by considering the worst-case scenario, which is given when
the performance of the predictor is equal to the conventional
case (no prediction). After that, the total HO delay and
signaling cost equations are also derived considering the same
worst-case scenario.

Furthermore, simulations are conducted to showcase that
the performance of predictors are subject to both improve-
ments and degradations. With these simulations, rather than
proposing a specific predictor, the intent is to emphasize the
usefulness and importance of the proposed minimum accuracy
concept. To do this, first, a revisit problem belonging to
Markov chains is introduced. Then, negative effects of this
problem on the HO delay and signaling cost are also presented.
After that, an ANN algorithm is designed to show that ANN is
a better alternative when revisits are considered. This example
reveals that switching the method of prediction can be a viable
solution if the current method is no more applicable due to
a performance degradation. Therefore, the proposed concept
allows making these kind of decisions easier by evaluating
the applicability criteria.

Finally, two different attempts on the designed ANN are
offered to increase performance. In the first attempt, one
additional input is considered, the orders of the HOs, while
in the second attempt, the n-priori locations are added to
the ANN. By doing this, it is emphasized that the accuracy
improvement is vital for such processes as more accuracy leads
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Fig. 1. Circular cell area with RWP.

to improvements in terms of HO delay and signaling cost.
The remainder of this paper is organized as follows: Section
IT presents the system model and provides detailed information
about both the minimum accuracy bounds and the designed
ANN. Section III provides the evaluation of the model and
discusses its results. Finally, Section IV concludes the paper.

II. SYSTEM MODEL
A. Minimum Accuracy in terms of HO Delay

In this paper a single circular cell was considered in order
to determine the minimum accuracy bounds. In addition, users
would move inside this cell according to the Random Way
Point (RWP) mobility model.

Let us manipulate the unit disk example from [10] to make it
convenient for a general circular area. Assuming two different
points P, and P, are placed in a circular area with a distance of
[ as in Fig. 1. First, an arbitrary point x, with a length of |x| =
z, is selected in the interior of the considered circular cell. Let
my and ms be the distances between x and the borders of the
circle, such that

my = xsing + /1?2 — 22 cos? ¢, (1)
Mo = —xsin @ + \/r2 — x2 cos? ¢ )

where r denotes the radius of the circle, and ¢ denotes the
angle between x and the normal of a tangent.

The next step is obtaining the general expression of the
probability density function (pdf)! in terms of x [10]:

flz)= E[ll]SQ/O myma(my + msa)do, 3)

where E[l] is the expected value of length, and S is the area of
the circle. After performing the required calculations, it can be
found that mime = 72 — 22 and m; +mo = 2/72 — 22s5in¢.
One can evaluate (3) and integrate the result to find the
expected value, or an alternative aproach is provided in [11],
in which the pdf of the distance between two points in a
hypersphere is given in a general manner, and this could be
utilized in order to generate the solution for a circular area, as
follows:

IThe conditional probability of finding P, within a distance of 2 from P;
when the location of P; is known.

FON) = ?z\[arccos)\—)n/(l—/\Q)}, 4

l
where \ = o Hence, (4) becomes
r

as it is also reported in [12]. By integrating (5), the expected
value of length can be obtained, such that

128
= —7r = 0.905r. (6)

2r
E[l] —/0 Lf(l)dl = 15n

Based on that, (6) represents the average length of one move
from two consecutive nodes. However, there might be many
movements between many way points in the RWP, hence the
number of movements is required to derive the total length.
To this end, let N(S) be a Poisson random variable, which
represents the number of way points in a cell with an area
of S. If the homogeneous Poisson process is assumed, the
probability of having n points in the circle is denoted by

P{N(S)=n} = (Aj) e A0, (7
The mean of N(S) is also given by
E[N(S)] = AS, (®)

and the total expected length can be approximated as:

E[N(S)]E[l] = (0.905)\7r® )

where S = 7r2.

Once (9) is obtained, we can find the model for the
expected time (E[T]) spent in a cell, since there is a direct
proportionality between length and time when considering
rectilinear motion. Hence, it is now convenient to derive the
equation for E[Txo]| as

En]E[l] _ (0.905)Amr3
E[Tgol = v v
where V is assumed to be a constant velocity.

Note that T is the time spent in a cell before handing
over to another. From (10) it can be seen that E[Txo] is a
function of n, r, and V' such that E[Txo](n,r, V). Moreover,
it can be observed that E[Tro] has a direct proportionality
with n and r, while it has an inverse proportionality with V.
This implies that HO management could be more challenging
in future cellular networks, specially considering the case of
ultra-dense small cell deployments and/or high speed users,
such as autonomous vehicles, since E[Tyo] might be very
short. Once (10) is obtained, the number of HOs can now be
derived, since it gives the average time a user spends in a cell.
Let T),,0» be a random variable, which represents the duration
that a user is mobile, with a continuous uniform distribution,
U(0,t). The pdf of T,,, is given by

(10)




1
ft(Tmob) :;a tEN+; (11)
and the expected value of T},,,;, becomes
t
E[Tho] = 3 (12)

Then, the number of HOs that a user experiences during
this time is

Ny = {E [Trmob] J

+
ETwol J, Ngo eZ™. (13)

_ tvV

B {(1.81))\7rr3
Note that floor(e) function is utilized, as the number of

HOs should be an integer. Based on this, it is now convenient

to introduce the concept of HO delay (Do), which can be

defined as the time required for the whole HO process [13]:

if cell unknown

t, +te + tc + 100ms,
Dpo = { i (14)

tp +te +t. +20ms, otherwise

where t,, t., and ¢, are the time required in without-prediction
case for HO preparation, execution, and completion, respec-
tively. If the target cell is unknown, a search delay, set to 80
ms by 3GPP [14], is added to the budget in addition to a 20
ms margin. Moreover, since the HO delay is being investigated
from the UE’s point of view, ¢. should be counted as zero, as
its Radio Resource Control (RRC) connection is performed
when the HO completion phase starts [13].

One of the alternative ways to reduce Dy is employing
a predictive HO process. If, for example, the future locations
of a user are known, preparations for upcoming HOs can be
done in advance by skipping some of the steps performed in
a conventional HO.

The expected HO delay can be expressed as

E[DH()] = ADHOC + (1 — A)DHO” (15)

where A is the prediction accuracy, Dy, is the HO delay
in case of correct prediction, and Dy, is the HO delay in
case of incorrect prediction. Prediction accuracy (A) can be
defined as

A Ny (16)
NS+ N}

where N and N;; are the numbers of correct and incorrect
predictions. It is mentioned in [3] that a predictive HO with
a correct prediction is better than the conventional process in
terms of number of steps taken during HO process. However,
whenever an incorrect prediction occurs, due to resources
being allocated to the wrong cell, the conventional process
is better than the predictive one. This implies that making an
incorrect prediction incurs a penalty in terms of HO delay
and signaling cost. In summary, the number of incorrect
predictions should be minimized in order to maximize the
effectiveness of the system.

According to [3], we can only decrease the delay of prepa-
ration phase, thus, (15) can be rearranged for ¢, by considering
te as constant, and setting ¢. to zero:

E[tp] = Atpc + (1 - A)tpi )

where ¢, and t,, are the HO preparation delays in case of
correct and incorrect predictions, respectively.

Since the main idea behind the predictive HO algorithm
is to decrease the HO delay, (17) should be smaller than ¢,
(E[tp] <t, ). From this point, a minimum required prediction
accuracy, in terms of HO delay (Ageiqy), can be derived if a
worst-case scenario is considered (¢, equals to Elt,])

tp — tp,

tpc - tpi -
If (13), (15), and (18) are combined as follows, we can

derive the equation for overall delay, which can be defined as

a multiplication of the single HO delay and the number of
HOs during E[T},0b), for the worst-case scenario

Adelay = (18)

totalpg = E[Dro|Nro
(tp —tp,) tv (

= : Dyo, — D )

(tp. — tp,) | (1.81) A3 | \7HOe 7 2HO (19)
tv
———— | Dyo,-
+{(1.81))\7ﬂ"3J HO:
B. Minimum Accuracy in terms of HO Signaling Cost

The HO signaling cost is defined as a combination of
transmissions costs caused by the messages between BSs,
between BS and UE, between BS and Mobility Management
Unit (MME); processing costs at the BS, MME, and Service
Gateaway (S-GW); and UE’s detaching and access costs.
Therefore, it is worth noting that the signalling cost mentioned
here is from both UE’s and the network’s point of view [3].

Let us define the original signaling cost of a HO (without
prediction) as follows [15]:

O = Osearch + Cmovement; (20)

where Cgearen, and Chpopement are the signaling costs for
search and movement, respectively. Since this is a predictive
process, it is better to write (20) in terms of the expected
signaling cost [3]:

E[C] = AC, + (1 — A)C; 1)

where C, and C; are the signaling costs in case of correct and
incorrect predictions, respectively.

Similarly, in order to comply with the idea of predictive
HO management, the condition of E[C] < C has to be
satisfied. For consistency with the previous section, the mini-
mum required prediction accuracy (As;4) can be obtained by
considering the worst case, which happens when the actual
and expected signaling costs are equal

Cc -G

Ay = ———1
T C— G

(22)



Moreover, the total E[C] during E[T;,0b] period can be
written as
totalc = E[C]|Ngo
_(C-0y) tvV _
- (C.—Cy) | (1.81) A3 (CC OZ)

tv
* L(l.Sl))\ﬂ'TsJ G

As seen from (18) and (22), there are two different require-
ments for prediction accuracies; thus, the overall requirement
for the minimum accuracy, by considering both (18) and (22),
can be expressed as follows:

(23)

Amin - maX(Adelay7 Asig) (24)

Equation (24) implies that the predictor accuracy is bounded
by the maximum between Ageiqy and Agq. Besides, other
minimum accuracies can be derived by considering additional
metrics.

C. Artificial Neural Network (ANN)

In the proposed study, a three-layer feed-forward conjugate
gradient ANN is utilized. In this type of ANN, transitions
between layers are performed with an activation function in
the forward pass. In this study, a hyperbolic tangent (tanh)
function is employed, so that the activation functions of each
neuron are given by

2
&) == -

Rather than using a classical backpropagation (BP) process
for a backward pass with a constant learning rate, one of the
conjugate gradient algorithms, the Scaled Conjugate Gradient
(SCG) [16] algorithm, is employed. This method is preferred
as the algorithm requires less computation power, since it
dynamically calculates the learning rate at each iteration. In
addition, the mean squared error (MSE) function is utilized as
a cost function of the backwards pass.

Fundamentally, HO prediction is treated as a classification
problem in which each different BS constitutes different
classes. In other words, the ANN learns the patterns belonging
to input layer and tries to predict which BS a user belongs to
within a certain confidence level. In this paper, the designed
ANN is utilized as a classification tool as well.

The network is composed of 1, 2, 3, and 5 input units,
according to the version of the ANN, as it will be discussed
later in this section. The inputs represent the serving BS of
the user, past n location of the user where n € {1,2,4}, and
the orders of HOs. In addition, 15 hidden layer units and 10
outputs, representing the classes of BSs that a user can be
assigned to, are used in the proposed architecture.

In order to validate the number of hidden layer units,
the considered artificial data set was split into three, mainly
training, cross validation and test set in a 70-15-15 percentage.
Intuitively, when the number of units in the hidden layer
increases, the error in the training set decreases. In contrast,

(25)

this increase may cause a generalization problem (overfitting).
Although 15 units gives suitable results for our study, this
number may vary according to an application type and/or
data size due to a consideration of aforementioned trade-off
between the training error and generalization.

In addition, some stopping criteria for the proposed ANN
were considered. First, when the algorithm meets 10~6 per-
formance gradient, it stops computing. If this is not satisfied
there is a second stopping criteria whereby, if six increases
occur in the validation error value after the last decrease during
iterations, the algorithm also stops.

In addition, in order to improve the performance of the pro-
posed ANN, two different approaches were also considered:

« Appending the orders of HOs: orders of the HOs within
a day are treated as an extra input unit of the ANN. In
this regard, each HO is labelled according to its order in
a particular day. Consider a mobile user who traverses
6 cells between his home and supermarket, for example,
the HOs between cells would be labelled as 1, 2, 3, etc.

« n-priori location: previous locations of a user can also
be considered as extra inputs, acting like a memory for
the system. In this attempt, n-priori locations, with n €
{1,2,4} were considered.

III. PERFORMANCE EVALUATION

In this study, MATLAB is used to create the cellular simu-
lation environment. In addition, the MATLAB ANN Toolbox
is also employed in order to model the Neural Network (NN).

In this paper, we start with the Markov predictor by
showcasing its revisit problem: the Markov predictor becomes
confused and starts making wrong predictions when a user
visits the pre-visited cells during a movement period. To see
why this problem occurs, it is best to analyze the Markov
process briefly. In the Markov process, each transition proba-
bility from one state to another is stored in a transition matrix
(TM). Then, when a user is located in one specific state, the
predictor selects the state, which holds the highest transition
probability from that specific state, as a next state. However,
these predictors are not very good whenever the probabilities
are equal or very close to one another, which can be caused
by a user revisiting the same cell via another cell.

The simulation models a cellular environment with 10 BSs
and the network is monitored for 200 days. The first 140 days
are used to train the ANN, the next 30 days are used for cross-
validation, and the remaining days are utilized for testing. In
each day, the HOs that a single user trigged can be from either
a predefined path, or a random neighbouring cell, similar to
the model considered in [3]. To do this, neighbouring lists
for each BS were created primarily, and the user was allowed
to travel to the neighbouring cells only. Furthermore, various
randomness degrees representing the rate of random path
selection were considered; starting from 0% until 100% with
an 10% incremental step. For 0% randomness, for example,
the user follows the same predefined route for 200 days, and
for 100% randomness degree, the user randomly selects its
path independent of the pre-defined path. In addition, based



TABLE I
SIMULATION PARAMETERS

Parameter Value
A 0.8
T 3.14
t 10 hours
Vv 5 km/h (pedestrian)
r 1 km
Number of base stations 10
Number of consecutive days 200

Performance with and without Revisit Inclusion

60 B With Revisit
— 50
xX
= a0
®
E  Without
&”-: 20 Revisit

ANN

Markov

Fig. 2. Performance comparison of Markov chains and ANN.

on the revisit problem, two different data sets were generated,
one considering revisits and another without revisits. Note that
ping-pong HOs between neighbouring cell are not allowed
during data generation process.

With the simulation parameters in Table I, number of HOs
per day is found as 10 by calculating (8), (9), (10), and (13).

In Fig. 2 the optimal Markov-based predictor proposed
in [3] and the designed ANN results are compared. These
values are averages of the different degrees of randomness.
As seen from Fig. 2, the ANN’s response when revisits are
included is not as significant as the response of the Markov-
based predictor. There is almost 22% degradation for the ANN
while it is around 63% for the Markov-based predictor. This
deep performance degradation of Markov-based predictor is
due to its highly dependence on the TM, which is prone to
have similar probabilities when revisits occur. On the other
hand, the ANN does not suffer from the revisit case as much
as Markov chains since it has a more complex structure.
This result acknowledges that the designed ANN is more
appropriate for the dataset including revisits. However, its
performance degradation is still an area for improvement.

Fig. 3 shows the performance of ANN achieved after
augmenting the input using aforementioned approaches, when
revisits are considered. Note that all these figures are obtained
by averaging different randomness degrees like Fig. 2. Fig. 3
reveals that augmenting the input with HO orders improves the
performance of the ANN by increasing its accuracy by almost
28%. This performance increase can be explained because now
the ANN is able to distinguish days from each other with the
help of labels. Moreover, these labels are also considered as

Performances of Various Improvement
70 Attempts on the ANN _ AnN

60
—_ ANN with HO
S50 —
S [ Orders
>40 m 1-priori ANN
v
S30
=] W 2-priori ANN
0 20 |
v
<1 | m 4-priori ANN
0 .

Fig. 3. Improvement on the proposed ANN.

rough representations of time within a day.

Similarly, using n-priori location(s) the performance of the
ANN improved significantly; 1-priori ANN raises the accuracy
from 48.6% to 62.7%, 2-priori ANN enhances it to 63%, and
4-priori improves to 63.7%. In other words, there is a 29.8%
increase on average. However, it was unexpected to see no
significant performance improvement for 2-priori and 4-priori
ANNS over the 1-priori ANN. One possibility for this observed
behaviour might be the simple structure of the dataset, as it
only consists of current and next locations. On the other hand,
1-priori ANN seems reasonable since it provides almost same
accuracy with 2 and 4-priori ANNs, but lower computational
complexity in which each priori adds another unit to the input
layer of the ANN.

For the HO delay and signaling cost calculations, the LTE
X2 HO process is assumed as in [3]. The HO preparation
phase consists of 4 steps in the non-predictive case, 1 step in
the correct prediction scenario, and 6 steps when an incorrect
prediction is made. Without loss of generality, we assumed
each step takes the same amount of time (k). Based on that,
Adelay can be calculated through (18) as

ty —tp,

. 4k —G6k 2
ty. —tp, 1lk—6k 5

For the signaling cost calculations, the following value of
Asig is obtained if values used in [3] are adopted:

_C-C;  94-112
C.—-C; 67T—112

From (26) and (27), it is obvious that at least 40% accuracy
is required by considering both the HO delay and signaling
cost in order to make the predictive process better than the
conventional one. The reason of why results of (26) and (27)
are equal is because the signaling cost is represented in terms
of signaling delay in [3]. However, (24) would be employed
again if results of (26) and (27) were not equal to each other.

If Fig. 2 is reconsidered with (26) and (27), it is clear that
the Markov-based predictor cannot meet the minimum accu-
racy criteria in the case of revisits (its accuracy is around 16%,
far away from the minimum required). Moreover, the Markov-
based predictor’s accuracy is very close to A,,;, even in the
revisit-free case (around 45%). Thus, these results showcase
the superiority of the designed ANN over the Markov-based
one since it improves the accuracy in both cases.

= 40%.

Adelay = (26)

A = 40%.

27)
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These results highlight that the performance of prediction
methods may decay in some circumstances. Although there are
ways to improve it, however it is sometimes advantageous to
change the prediction method to one that is more appropriate to
the environment. Therefore, the proposed minimum accuracy
concept provides an obvious benefit in the evaluation of the
applicabilities of predictors in the decision process.

It is now convenient to present the results for the HO
delay and signaling costs for each predictor in case of revisits
in order to show how performance degradations can make
predictive processes worse than the conventional one. As
seen from Figs. 4 and 5, all versions of the ANN offer
better results than the without-prediction case. Moreover, an
incremental performance increase is provided by augmenting
different features of the ANN. In addition, Markov-based
predictor performs worse than the without-prediction case in
terms of HO delay and signaling cost, demonstrating that the
Markov-based predictor proposed in [3] is not applicable to
the predictive HO process in case of revisits in its current
form. Intuitively, it is better to use either the ANN with HO
orders or 1-priori ANN, since they have similar performance.

IV. CONCLUSION AND FUTURE WORK

This work has proposed an improved predictive architecture,
contributing to advanced mobility prediction schemes. The
required minimum prediction accuracy in terms of both the
HO delay and the signaling cost were introduced and fully
derived. Moreover, the maxima of the HO delay and the
signaling cost were also investigated considering a worst case
scenario for the predictive process. Further to this, an ANN
with scaled gradient was implemented in order to compare
its performance with Markov chains in the case of revisits.

Finally, two different ways to increase the performance of the
ANN through augmenting the input with HO orders and priori
locations were presented.

Results show that if the predictor accuracy is not sufficient
due to any effect, such as revisits, or ping-pongs, for example,
it is better to improve the performance of the current predic-
tor, if possible, or to switch the prediction method. Hence,
this study provides a quantitative and standardized metric to
evaluate the sufficiency of obtained accuracy levels.

In future work, we intend to propose a more detailed design
parameter for predictors by considering more aspects of the
network, such as radio resources. In addition, we plan to
undertake the studies with a larger and more comprehensive
dataset, in order to investigate and evaluate our solution
further.
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