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Abstract—Multi-access edge computing (MEC) plays a key role
in fifth-generation (5G) networks in bringing cloud functionalities
at the edge of the radio access network, in close proximity to
mobile users. In this paper we focus on mobile-edge computation
offloading, a way to transfer heavy demanding, and latency-
critical applications from mobile handsets to close-located MEC
servers, in order to reduce latency and/or energy consumption.
Our goal is to provide an optimal strategy to associate mobile
users to access points (AP) and MEC hosts, while contextually
optimizing the allocation of radio and computational resources
to each user, with the objective of minimizing the overall user
transmit power under latency constraints incorporating both
communication and computation times. The overall problem is a
mixed-binary problem. To overcome its inherent computational
complexity, we propose two alternative strategies: i) a method
based on successive convex approximation (SCA) techniques,
proven to converge to local optimal solutions; ii) an approach
hinging on matching theory, based on formulating the assignment
problem as a matching game.

Index Terms—Multi-access edge computing, computation of-
floading, resources allocation, cloud assignment.

I. INTRODUCTION

The main goal of 5G communication networks is to design
a communication infrastructure that will enable an efficient
integration of cross-domain networks serving multiple sectors,
or verticals, such as Industry 4.0, automotive, multimedia,
energy, etc [1], [2]. A plethora of new mobile applications and
services for 5G are envisioned, such as interactive gaming,
virtual reality and natural language processing, to name a
few. Most of these applications are rather demanding in
terms of computation needs and energy consumption. This
trend raises a conflict between resource-hungry applications
and the limited battery lives of mobile devices. This conflict
poses a significant challenge to the implementation of the
novel mobile applications in an energy efficient manner. One
promising solution is to leverage Multi-access Edge Com-
puting (MEC), a new architecture that provides information
technologies (IT) and cloud-computing services within the
Radio Access Network (RAN), in close proximity to mobile
subscribes [3]. Exploiting MEC, a mobile user equipment
(UE) can offload computation-intensive and latency-critical
applications to the MEC servers at the edge of the network,
rather than utilizing the servers in the core network. Thanks
to proximity, offloading to MEC servers is convenient for
reducing latency, saving mobile users energy consumption
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and enabling simple devices, like inexpensive sensors, to run
sophisticated applications [4]. From a user perspective, one
of the parameters mostly affecting the quality of experience is
the end-to-end (E2E) latency, i.e. the time necessary to get the
result of running an application. Using computation offloading,
the E2E latency includes the transmission time to send bits
from the UE to the MEC server to transfer the program
execution plus the execution time needed to run the application
remotely. Therefore the overall latency couples communication
and computation resources. This motivates the joint allocation
of these resources, as proposed in [4], [5]. A further substantial
improvement to computation offloading comes from the intro-
duction of millimeter wave (mmWave) links. Merging MEC
with an underlying mmWave physical layer creates indeed a
unique opportunity to bring IT services to the mobile user
with very high data rate. This merge is indeed one of the main
objectives of the joint Europe/Japan H2020 Project called 5G-
MiEdge (Millimeter-wave Edge Cloud as an Enabler for 5G
Ecosystem) [6]. Since mmWave links are prone to blocking
events, which may jeopardize the benefits of computation
offloading, a possible way to counteract blocking events in
mmWave links was proposed in [7], [8].

Several works investigated computation offloading opti-
mization strategies in MEC systems in the multi-user case
[9]–[12]. In [9], a joint optimization of radio and computation
resources was investigated, in a multi-user MIMO scenario,
taking into account inter-cell interference. In [10], the authors
minimize the overall energy consumption at the mobile side,
in case of TDMA and OFDMA systems, while the authors
of [11] proposed a joint optimization of offloading decision
and allocation of computation and communication resources.
In [12], MEC computation offloading decision was formulated
as a computation offloading game. Only few works focus on
the association of users to APs and MEC servers. In [13],
we proposed a sub-optimal association strategy minimizing
the users energy consumption, taking into account radio and
computation parameters jointly. The server selection problem
was studied in [14] for a multiuser system to decide whether to
offload computation either to the edge server or to the central
cloud. In [15], the server selection over multiple MEC servers
is formulated as a congestion game. Another approach for the
Cloud Radio Access Networks (C-RAN) is presented in [16],
based on matching theory.

In this paper we consider a mmWave edge cloud scenario,
composed of multiple APs and multiple MEC servers concur-



ring to serve multiple UEs. The association of a UE to a pair
of AP and MEC server depends not only on radio channel
parameters, but also on the availability of computational
resources at the MEC server and the state of the backhaul
network. A UE can get radio access from a certain AP, but
its application can run on a MEC server located elsewhere,
exploiting wired or wireless backhaul. We formulate the of-
floading problem as the jointly optimal association between
UEs, APs and MEC servers, and allocation of mobile radio
and computational resources. To solve the resulting mixed-
binary problem with affordable complexity, we propose two
alternative sub-optimal strategies: i) a method based on SCA
techniques, as developed in [17], which extends our previous
approach [13] by incorporating the penalty method recently
proposed in [18]; ii) a method based on matching theory
[19], extending the approach of [20] to deal with computation
offloading.

II. SYSTEM MODEL

Let us consider a mmWave based cloud access network
where multiple users may get radio access through multiple
APs and multiple MEC servers. In particular, we consider a
system composed of Nb small cell access points, Nc MEC
servers and K mobile users. Denote with I , {k : k =
1, . . .K} the set of users asking for computation offloading of
their applications to a set of MEC servers. From the offloading
point of view, we simplify the classification of applications
by assuming that each of them is characterized through the
following parameters: i) the number bk of bits to be transmitted
from the mobile user to the MEC server to transfer the program
execution; ii) the number of CPU cycles ωk needed to run the
application. We denote by Lk the E2E latency requested by
UE k to run its application. In case of offloading, the overall
latency experienced by the k-th UE for accessing the network
through the access point n when served by cloud m, is given
by

Tknm = T exe
mk + T tx

kn + T rx
knm + TBnm. (1)

The first term in (1) is the server execution time:

T exe
mk = ωk/fmk, (2)

where ωk is the number of CPU cycles to be executed and
fmk is the number of CPU cycles/second allocated by the m-
th server to the k-th UE; T rx

knm is the time necessary for the
server to send the result back to the k-th UE; TBnm is the
backhaul delay between access point n and MEC server m;
T tx
kn is the time spent to send the program state and input

(encoded with bk bits) from the k-th UE to the n-th AP. This
time enables the transfer of the program execution from the UE
to the MEC server. More specifically, the time T tx

kn necessary
for UE k to transmit bk bits over a channel of bandwidth B
to the n-th AP is

T tx
kn(pkn) =

ck
rkn(pkn)

(3)

where ck = bk/B and rkn(pkn) is the spectral efficiency,
which, in the interference-free regime, assumes the form

rkn(pkn) = log2 (1 + αknpkn) (4)

where pkn is the transmit power of user k and αkn is an
equivalent channel coefficient. We assume mmWave com-
munications for the radio access and, under Line Of Sight
(LOS) conditions, we use Friis formula to model the path loss.
Each pair of UE and AP is supposed to be equipped with,
respectively, nT transmit antennas and nR receive antennas.
We also denote with dkn the distance between UE k and AP
n. In a LOS condition with a single path with isotropic array
elements, the channel matrix Hkn ∈ CnR×nT between UE
k and AP n is rank one. In this case, the channel coefficient
αkn in (4) is αkn , v2knξkn/σ

2
n with ξkn the eigenvalue of the

rank one matrix HknH
H
kn; σ2

n is the noise variance; and the
coefficient vkn is defined as vkn , λζ

4π (dkn/d0)
e−β dkn/2 where

ζ incorporates some efficiency terms, λ is the wavelength
associated to the carrier frequency, d0 is the far field reference
distance, β is the atmospheric absorption coefficient.

Within this edge-cloud scenario, the association of a UE to
a pair of AP and MEC server depends not only on the radio
channel parameters, but also by the computation resources
availability of the MEC servers. Therefore, by extending our
previous approach in [13], in the next section we propose an
optimization strategy to jointly find the optimal computation
and communication resources allocation and the optimal as-
sociation between UEs, APs and MEC servers.

III. MEC OFFLOADING OVER MULTI-SERVER NETWORKS

Our goal is now to devise an optimal strategy to assign
each user to an access point and to a MEC server, while jointly
optimizing the radio and computation resources allocation. The
objective is to minimize the transmit power consumption of
all users, under power budget and latency constraints. The
assignment is performed by properly selecting the binary
values aknm ∈ {0, 1} for k = 1, . . . ,K, n = 1, . . . , Nb,
m = 1, . . . , Nc, where the subscripts k, n, and m denote,
respectively, UE, AP, and MEC server indexes. For the sake
of simplicity, we assume that each user is served by a single
AP and a single MEC server. Therefore, for each k, aknm = 1
if user k accesses the network through AP n and it is served
by the m-th MEC server, while aknm = 0 otherwise.

The objective function we wish to minimize is the sum of
the powers spent by all UE’s:

f(p,a) ,
K∑
k=1

Nb∑
n=1

Nc∑
m=1

pknaknm

where p , (pk)k∈I , pk , (pkn)∀n, a , (ak)k∈I , ak ,



(aknm)∀n,m. The resulting optimization problem is:

min
p,f ,a

f(p,a) ,
K∑
k=1

Nb∑
n=1

Nc∑
m=1

pknaknm (P)

s.t. i) gknm(pkn, fmk, aknm) ≤ Lk,∀ k, n,m

ii) pkn ≤ Pk, pkn ≥ 0,∀ k, n

iii) hm(f ,a) ,
K∑
k=1

Nb∑
n=1

aknmfmk ≤ Fm, ∀m, f ≥ 0

iv)

Nb∑
n=1

Nc∑
m=1

aknm = 1, aknm ∈ {0, 1}, ∀ k, n,m

(5)
where we define the function gknm(pkn, fmk, aknm) ,

aknm

(
ck

rkn(pkn)
+

wk
fmk

+ TBnm

)
. The above constraints

have the following meaning: i) the overall latency of each
user k must be lower than the maximum value Lk; ii) the
total power spent by each user must be lower than a fixed
total power budget Pk; iii) the sum of the computational
rates fmk assigned by each server cannot exceed the server
computational capability Fm; iv) each mobile user should
be served by one AP-MEC server pair, so that we enforce

the constraint
Nb∑
n=1

Nc∑
m=1

aknm = 1, for each k. For simplicity

we have incorporated the term T rxknm in the latency limit
Lk. It can be noted from the latency expression in (1) the
interplay between radio access and computational aspects and
this calls for a joint optimization of the radio resources, the
transmit power p of the UEs and the computational rates
f , (fmk)∀m,k. Unfortunately, problem P is a mixed-binary
problem and, in general, NP-hard. To handle its computational
cost with affordable complexity, in the following we propose
two alternative suboptimal strategies.

IV. SCA-BASED OPTIMIZATION STRATEGY

In this section we propose a suboptimal optimization strat-
egy to solve problem P , combining our previous approach
in [13] with the successive convex approximation strategy
proposed in [17] and incorporating an efficient penalty term,
recently proposed in [18], to relax the binary variables to be
real while driving the solution towards the situation where
each UE is served by a single AP and a single MEC cloud.
More specifically, the penalty method in [18] is based on the
fact that, given the following problem,

min
ak

‖ ak + ε1 ‖qq,
Nb∑
n=1

Nc∑
m=1

(aknm + ε)q

s.t. ‖ ak ‖1= 1,

aknm ∈ [0, 1], ∀n,m

(6)

where q ∈ (0, 1), ε > 0, the optimal solution of (6) is binary,
i.e. only one element is one and all the others are zero. The
optimal solution is cε,k = (1+ ε)q+(NbNc−1)εq . Therefore,

we relax our binary variables aknm to be real and belonging
to the following convex set

A = {(ak)k∈I : aknm ∈ [0, 1],

Nb∑
n=1

Nc∑
m=1

aknm = 1,∀ k, n,m},

and we add a penalty to the objective function so that our
relaxed optimization problem becomes

min
p,f ,a

fPσ (p,a) , f(p,a) + σPε(a) (Pσ)

s.t. i) gknm(pkn, fmk, aknm) ≤ Lk,∀ k, n,m

ii) hm(f ,a) ,
K∑
k=1

Nb∑
n=1

aknmfmk ≤ Fm, ∀ m, f ≥ 0

iii) pkn ≤ Pk, pkn ≥ 0,∀ k, n, a ∈ A
(7)

where σ > 0 is the penalty parameter and

Pε(a) ,
K∑
k=1

‖ ak + ε1 ‖qq −cε,k. (8)

Even by relaxing the binary variables a, problem Pσ is still
non-convex, since the objective function and the constraints i),
ii) are non convex. In what follows, we exploit the structure
of problem Pσ and building on some recent advances on SCA
techniques [17], we devise an efficient iterative penalty SCA
approximation algorithm (PSCA) converging to a local optimal
solution. To solve the non-convex problem Pσ efficiently, we
adopt an SCA-based algorithm where the original problem is
replaced by a sequence of strongly convex problems. To do
this, we start by finding a suitable convex approximation of
the nonconvex objective function that is the sum of the non-
convex term f(p,a) and the concave function Pε(a).

Let x , (p, f ,a) and xk , (pk, fk,ak) with fk ,
(fmk)∀m. We denote by X the feasible set of problem Pσ
and we denote by xν , (pν , fν ,aν) the set of variables
at iteration ν of SCA. Following [17], the main idea is to
approximate around the current iterate xν ∈ X , the original
nonconvex nonseparable term with a strongly convex function,
say f̃Pσ (x;x

ν), that has the same first order behaviour of the
original objective function at xν . To find a convex approximant
of the objective function observe that f(p,a) has a bilinear
structure, since it is the sum of the terms sknm(pkn, aknm) ,
pknaknm. Therefore, as suggested in [17], sknm can be written
as a difference of convex (DC) functions, i.e.

sknm(pkn, aknm) =
1

2
(pkn+ aknm)2− 1

2
(p2kn+ a2knm). (9)

A valid convex upper approximation of sknm, for any given
(pνkn, a

ν
knm) ∈ R2, is then

s̃knm(pkn, aknm; pνkn, a
ν
knm) ,

1

2
(pkn + aknm)2 − 1

2

(
pν 2
kn+

aν 2
knm

)
− pνkn(pkn − pνkn)− aνknm(aknm − aνknm).

Finally, the concave function Pε(a) can be approximated by
its first order approximation at the iterate aν , i.e.

Pε(a) ≈ Pε(aν) +∇Pε(aν)T (a− aν). (10)



Then, a convex approximation of fPσ (p,a) can be defined as:

f̃Pσν (x;x
ν) ,

K∑
k=1

[
Nb∑
n=1

Nc∑
m=1

s̃knm(pkn, aknm; pνkn, a
ν
knm)+

σν∇Pε(aνk)T (ak − aνk) +τp ‖pk − pνk‖2+τf ‖ fk − fνk ‖2+
τa ‖ak − aνk‖2

]
,

(11)

where we added quadratic regularization terms to make f̃Pσ
strongly convex with respect to x. Note that in (11) we use a
monotonically increasing penalty sequence {σν}ν to guarantee
that the obtained solution a is binary [18].
We show now how to reduce the non-convex constraint
gknm(pkn, fmk, aknm) to a convex form. To do so, observe
that at any feasible point (p, f ,a), it must be rkn(pkn) > 0,
fmk > 0 and Lk > TBnmaknm − ωkaknmfmk, for all
k, n,m, then the constraints gknm(pkn, fmk, aknm) in (7) can
be rewritten as

gknm(pkn, fmk, aknm) =− rkn(pkn) + qknm(fmk, aknm)

that is the sum of the convex term −rkn(pkn)
and the convex function qknm(fmk, aknm) ,

ckaknmfmk
fmk(Lk − TBnmaknm)− ωkaknm

.

Finally, the non-convex bilinear constraint hm(f ,a) may be
replaced by the following convex approximation

h̃m(f ,a;xν) ,
K∑
k=1

Nb∑
n=1

1

2
(aknm + fmk)

2 − 1

2
(aν 2
knm + fν 2

mk)

− aνknm(aknm − aνknm)− fνmk(fmk − fνmk).
We can now introduce the proposed convex approximation

of the nonconvex problem Pσ . Given the feasible point xν ∈
X , we have

x̂(xν) , argmin
x=(p,f ,a)

f̃Pσν (x;x
ν) (Pν)

s.t. gknm(pkn, fmk, aknm) ≤ 0, ∀k, n,m

h̃m(f ,a;xν) ≤ Fm, ∀m

fmk ≥ 0, ∀k,m

pkn ≤ Pk, pkn ≥ 0,∀ k, n, a ∈ A

where we denoted by x̂(xν) , (p̂(xν), f̂(xν), â(xν)) the
unique solution of the strongly convex optimization problem
Pν . The proposed solution method consists in solving itera-
tively problem Pν , starting from a feasible point x0. First we
find out an optimal solution x̂ of Pν by setting the penalty
coefficient σ to zero. Hence, taking this optimal solution
as initial point, we iteratively solve Pν with an increasing
penalty coefficient σν . In Algorithm 1 below we provide a
formal description of the algorithm. The convergence proof of
the proposed algorithm is given in [21] and is omitted here
because of space limitation.

Note that in Step 2 of the algorithm we allow a memory in
the update of the iterate xν , (pν , fν ,aν).

Algorithm 1 : PSCA Algorithm for P
Data: x0 , (p0, f0,a0) ∈ X , {γν}ν ∈ (0, 1], τp, τf > 0; τa > 0,
0 < η < 1 < β, ε0 > 0, σ0 > 0. Set ν = 0;
(S.1): If xν satisfies a suitable termination criterion, go to (S.5);
(S.2): Compute x̂(xν) , (p̂(xν), f̂(xν), â(xν)) by solving Pν with
σ = 0;
(S.3): Set xν+1 = xν + γν (x̂(xν)− xν);
(S.4): ν ← ν + 1 and go to (S.1);
(S.5): If âν is binary, stop;
(S.6): Else initialize x0 , xν , Nmax, Tmax < Nmax, ν = 0;
(S.7): While ν < Nmax do
(S.8): Compute x̂(xν) by solving Pν ;
(S.9): Set xν+1 = xν + γν (x̂(xν)− xν);
(S.10): If âν is binary, stop;
(S.11): Otherwise set ν = ν + 1;
(S.12): If ν ≤ Tmax, then σν = βσν−1, εν = ηεν−1;
(S.13): End

V. MATCHING THEORY BASED OPTIMIZATION

In this section, we propose an alternative approach to over-
come the combinatorial complexity of the assignment problem
by devising an optimization strategy based on matching theory
[19]. Inspired by [20], which used matching theory for the
uplink selection of AP, we generalize the approach of [20] to
computation offloading. The assignment problem is formulated
as a matching game in which users and AP-MEC pairs rank
one another using suitable preference functions associated to
the transmit power used by each user to implement computa-
tion offloading under latency constraints. Matching theory is a
powerful and simple tool to associate agents of two different
sets using suitable preference lists. A typical matching problem
is the college admission problem [22], where students apply to
colleges based on their preference lists and are accepted based
on colleges’ preference lists. Each college cannot accept more
students than a certain number, defined as its quota q. The aim
of matching theory algorithms is to find a stable assignment.
An assignment of applicants to colleges is called unstable if
there are two applicants α and β who are assigned to colleges
A and B, respectively, although β prefers A to B and A
prefers β to α. Matching theory has been extensively used
in economics, and recently introduced in wireless networks
[23]. In the context of C-RAN, the authors in [16] find an
assignment of UE’s to Radio Remote Head (RRH), Base
Band Unit (BBU) and computing resources to minimize the
refusal ratio, i.e. the portion of requests that cannot meet their
deadlines. The preference function is based on the expected
latency that a user would experience choosing a certain triple
RRH, BBU, and computing resource. In [22], the Deferred
Acceptance (DA) algorithm is presented and proved to con-
verge to a stable matching. In the DA algorithm, students
apply to their preferred college, which subsequently accept
students based on their preference lists, rejecting the least
preferred ones. Applying matching theory, and in particular
the DA algorithm to problem P is not straightforward due
to inter-dependencies of utility functions necessary to build
preference lists. In fact, while users get accepted by a pair
AP-MEC server, the convenience of being assigned to that
pair changes due to the need for resource sharing. As pointed



out in [20], in case of interdependent preferences, the general
college admission game becomes complex. In [20], matching
is used only for the uplink selection of AP, and the R-factor,
a parameter that incorporates both the delay and the packet
success rate, is used as utility function. To overcome the
problem of interdependent preferences, the authors propose
to divide the problem into two interdependent subgames: a
matching game, where users build their preferences based on
the potential R-factor guarantees (supposing that each access
point n fills up its quota qn), and a second subgame, where
users can request to be transferred to another AP to improve
their R-factors.

Generalizing this approach to our assignment problem, we
first need to define a utility function to build the users’
preference lists. In our joint allocation of communication and
computation resources, we incorporate both communication
and computation parameters in the preference function. As
in Section III, for the sake of simplicity we assume perfect
beamforming and interference-free channels. In particular,
every UE is supposed to be served with the same frequency
band at the same time. We focus instead on the delay caused
by computation resource sharing. To define the utility function,
we consider constraint i) of problem P . Even though we do
not have any a priori information on allocated resources, we
can get an approximate estimation of the minimum transmit
power that a user would experience choosing a certain pair
AP-MEC server using the delay constraint. To do this, we
compute an expected minimum transmit power in case of a
disjoint allocation. In particular, given a certain allocation of
computation resources, the minimum transmit power necessary
to meet the latency constraint can be easily found. As we do
not know a priori the assignment of users to each pair AP-
MEC server, initially we assume that each MEC server m
serves all users as far it does not exceed its quota qm, in order
to consider the maximum computation delay. Thus, for the
first assignment, we compute fmk, for each user k and server
m, with a proportional rule as follows

fmk =
wk∑K
i=1 wi

Fm. (12)

Replacing (12) in the execution delay expression given in (2),
the minimum rate to meet the latency constraint Lk can be
written as

rmin
knm =

ck
Lk − LBnm − wk

fmk

. (13)

Inverting (4), the associated minimum transmit power is then

pminknm =
2r

min
knm − 1

αkn
. (14)

We define the utility function for user k accessing AP n and
MEC server m as

Uknm = −pminknm. (15)

Based on this utility function, each user builds its preference
list. Similarly, each AP build its preference list based on the
best SNR. For simplicity, we assume that all MEC servers can

accept an unlimited number of users. However, this condition
can lead to a solution very far from the optimum, since a
single MEC server has limited resources. Indeed, a first stage
for the assignment is not sufficient due to interdependency of
the preference functions of all users. For this reason, as in
[20], we perform a second stage with a coalitional game to
transfer users given the new conditions. A coalition Cnm is the
set of all users associated to AP n and MEC server m. Once
users are assigned with the DA algorithm, one can compute the
new proportional disjoint allocation of computation resources
as follows:

fmk =


wk∑Nb

j=1

∑
i∈Cjm

wi
Fm, if ∃ j : k ∈ Cjm

wk∑Nb
j=1

∑
i∈Cjm

wi+wk
Fm, if @ j : k ∈ Cjm.

(16)

Computing the new approximate computation delays, we can
compute the expected minimum transmit powers from (14) and
build the new preference lists. Now, users can request to be
transferred, based on the new utility functions. In particular,
as in [20], user k requests to be transferred to coalition Cn′m′

from coalition Cnm if Ukn′m′ > Uknm. If more users request
to be transferred to a certain coalition, only the most preferred
user is considered. Each transfer is accepted if the following
two conditions hold [20]:

1) MEC server m′ does not exceed its quota qm′ ;
2) The social welfare, represented by the sum of users’

utility functions.
Formally, the second condition can be written as follows:

W (Cnm \ {k}) +W (Cn′m′ ∪ {k}) > W (Cnm) +W (Cn′m′)

where W (Cnm) =
∑
k∈Cnm Uknm, and Cnm \ {k} is defined

as the set obtained by removing user k from Cnm. This stage
stops if there are no more transfer requests or the social welfare
is not improved by any transfer. In [20] it is proved that,
given any initial assignment, this second game will converge
to a Nash-stable partition, where no user has any incentive to
execute a transfer. Once the assignment has been performed,
for every MEC server, we optimize the radio and computation
resources jointly as in P . This second stage is solved in closed
form using our previous work [8].

VI. NUMERICAL RESULTS AND CONCLUSIONS

To test the effectiveness of the proposed offloading strat-
egy, in Fig. 1 we report the optimal total transmit power
consumption vs. the maximum latency Lk, assumed equal
for all users. To test the effectiveness of the proposed algo-
rithms, we compare their performance with the optimal results
achieved with the exhaustive search. We consider a network
composed of K = 4 users, a number of base stations equal
to the number of clouds, i.e. Nb = Nc = 2. The other
parameters are set as follows: F1 = 2.7 · 109, F2 = 3 · 108,
Pk = 1.35 · 10−1, q = 0.7. We may observe that both the
PSCA and the matching game algorithms provide results very
close to the exhaustive search algorithm whose complexity
is exponential. Additionally, we consider as comparison term
the SNR-based association method, in both cases where the
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radio and computational resources are jointly and disjointly
optimized. It can be noted that both proposed approaches
yield considerable power savings with respect to SNR-based
methods, taking advantage of the optimal assignment of each
user to a cloud through the most convenient base station. It
has to be remarked that the complexity of the matching-based
algorithm has a polynomial growth with the number of players
(users and AP-MEC pairs), although the reached final solution
could be suboptimal, as the preference lists are built based
on an approximate a priori knowledge. To further test the
effectiveness of the matching algorithm, in Fig. 2 we show the
ratio ρ between the overall power consumptions achieved with
two different association rules and the global optimal solution,
averaged over the channel realizations. It is interesting to note
from Fig. 2 that ρ keeps quite close to 1 for the proposed
matching algorithm.

In summary, in this paper we formulated the offloading
problem in MEC systems as a joint optimization of the
association between users and AP-MEC server pairs and
the allocation of radio and computation resources. To solve
the resulting mixed-binary nonconvex problem, we proposed
two alternative strategies that, albeit suboptimal, converge to
solutions very close to the results achieved with an exhaustive
search.
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