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Abstract—Non-orthogonal multiple access (NOMA) technique
has sparked a growing research interest due to its ability to
enhance the overall spectral efficiency of wireless systems. In
this paper, we investigate the pairwise error probability (PEP)
performance of conventional NOMA systems, where an exact
closed form expression for the PEP is derived for different users,
to give some insight about the reliability of the far and near users.
Through the derivation of PEP expressions, we demonstrate that
the maximum achievable diversity order is proportional to the
user’s order. The obtained error probability expressions are used
to formulate an optimization problem that minimizes the overall
bit error rate (BER) under power and error rate threshold
constrains. The derived analytical results, corroborated by Monte
Carlo simulations, are presented to show the diversity order and
error rate performance of each individual user.

Index terms— NOMA, pairwise error probability, reliabil-

ity, diversity gain, optimization.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is a promising

technique for the upcoming fifth generation (5G) wireless

communications, and it has attracted an increased research

interests in recent years. Enhanced latency, spectral efficiency

and connectivity are the main factors that stimulated the emer-

gence of NOMA systems, in which multiple users are allowed

to share the same time and frequency resources [1]. The key

point of NOMA systems is to permit a constrained level of

interference from other users that allows the receiver to per-

form successive interference cancellation (SIC) for the other

users’ signals before detecting its own signal. NOMA systems

rely on exploiting the power domain multiplexing to control

interference and maintain user fairness, in a way that grants

the far users higher power coefficients and assign low power

coefficients to near users [2]. Although NOMA technique

enhances users’ fairness, in comparison with the conventional

systems such as orthogonal multiple access (OMA) systems,

quality of service (QoS) of far users is relatively low, which is

considered as a performance limiting factor in many scenarios

due to error propagation.

Extensive research efforts have been conducted to study the

performance of NOMA systems from different perspectives

and under different scenarios. In [3], the authors investigated

the outage probability and the ergodic sum rates performance

in downlink NOMA systems with randomly deployed users.

The derived analytical results in [3] show that the outage

probability of NOMA systems highly depends on the targeted

data rates and the allocated power for each user. Ding et al.

[4] studied the effect of user pairing on the outage probability

performance and the sum rate for two scenarios, fixed power

allocation and cognitive-radio inspired NOMA. As reported in

[4], selecting users with distinctive channel gains can enhance

the achieved sum rate.

Dynamic power allocation for uplink and downlink NOMA

systems is presented in [5] with guaranteed QoS for dif-

ferent users. Unlike conventional techniques, such as fixed

power allocation and cognitive-radio inspired NOMA, dy-

namic power allocation provides more flexibility by allowing

tradeoffs between user fairness and overall system throughput.

Performance analysis of NOMA systems is evaluated in [6]

from users’ fairness standpoint. In particular, the authors

investigate the outage probability and the sum rate of different

power allocation scenarios, where instantaneous and average

channel gains are considered.

Although performance analysis of NOMA systems is well

investigated in the literature [7]–[12], most of the reported

work concentrates on evaluating the system’s performance in

terms of outage probability, individual sum rate and average

sum rate. To the best of the authors knowledge, none of the

reported work addressed the error rate performance analysis

of NOMA systems. Emphasizing on this, studying the error

rate performance of different users while considering imperfect

SIC is crucial, to have some insightful results about the QoS

of each individual user. Accurate bit error rate (BER) analysis

of NOMA systems is intractable due to the SIC process,

however, pairwise error probability (PEP) can be analyzed.

It is worth noting that PEP gives a valuable indicator for the

BER performance, since it is considered as an upper bound

for the BER.

Based on the aforementioned discussion, the main contri-

butions of this paper are summarized as follows:

• In this work, the PEP performance analysis of conven-

tional NOMA systems with imperfect SIC is considered,
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where an exact closed form PEP expression is derived for

each user individually. The derived PEP expressions are

verified by Monte Carlo simulations.

• Building on the obtained PEP formulae, asymptotic PEP

is derived to analyze the achieved effective diversity gain,

which represents the performance of the system at high

SNR regime.

• Using the derived asymptotic expression of the PEP, an

optimization problem is formulated and solved to obtain

the optimum power allocation coefficients that minimize

the BER, under power and users’ individual error rate

constrains.

The rest of the paper is organized as follows. Adopted system

and channel models are presented in Sec. II followed by exact

and asymptotic PEP analysis for each individual user in Sec.

III. Power allocation coefficients optimization is addressed in

Sec. IV. Numerical and simulation results are presented in

Sec. V and the paper is concluded in Sec. VI.

Notation: (·)∗ and |.| denote the complex conjugate opera-

tion and the absolute value, respectively. Re {.} represents the

real part of a complex number. x̂ represents a detected symbol

and ∆ denotes (x− x̂).

II. SYSTEM AND CHANNEL MODELS

Recalling that the basic idea behind NOMA systems is to

utilize the broadcast nature of the wireless channels to allow

multiple users to share the same time, frequency and code

domains while assigning different power levels for different

users, to permit a specific level of interference from the other

users. In this work, downlink transmission NOMA system with

L users is considered, where each user is equipped with single

antenna, as depicted in Fig. 1. Users are classified based on

their distance from the base station (BS), where the first user is

the farthest user from the BS, consequently, it has the weakest

channel. On the other hand, the Lth user is the nearest with

the strongest channel. The channels between the BS and the L
users are modeled as independent and identically distributed

(i.i.d) Rayleigh flat fading channels. It is worth mentioning that

near users are assigned lower power coefficients than far users.

Given the total transmitted signal power is P , the transmitted

signal from the BS is given by,

Fig. 1: Typical NOMA system with L users.

s =

L
∑

l=1

√

αlP xl (1)

where xl is the transmitted signal of the lth user and αl is the

power allocation coefficient, where
∑L

l=1 αl = 1. The received

signal at the lth user is,

rl = hl s+ nl (2)

where hl ∼ CN (0, 2σ2
h) is the channel frequency response

and nl is the additive white Gaussian noise (AWGN) with

zero mean and variance σ2
n. Power allocation coefficients are

sorted in descending order, α1 > α2 > ... > αL, given that

|h1|2 < |h2|2 < ... < |hL|2. The first user decodes only

its signal x1, while treating the signals of all other users as

interference. The rest of the users should employ SIC to be

able to detect their signals. For the lth user, it should perform

SIC for the higher power users, i.e., U1, · · ·Ul−1, and treat the

rest of users signals as interference, i.e., Ul+1, · · ·UL.

III. PAIRWISE ERROR PROBABILITY ANALYSIS FOR

NOMA SYSTEMS

A. PEP Analysis for First User

Without loss of generality, we consider the first user as the

farthest user, therefore, |h1|2 < |h2|2 < · · · < |hL|2. The

received signal at the first user can be represented as follows,

r1 = h1

(

√

α1P x1 +

L
∑

l=2

√

αlP xl

)

+ n1 (3)

where
∑L

l=2

√
αlP xl represents the interference term from

the other users. PEP is defined as the probability of detecting

the symbol x̂ while symbol x was transmitted [13], which can

be evaluated for the first user as follows,

PEP (x1, x̂1) =

Pr

(

∣

∣

∣r1 −
√

α1P h1x̂1

∣

∣

∣

2

≤
∣

∣

∣r1 −
√

α1P h1x1

∣

∣

∣

2
)

, x̂1 6= x1.

(4)

Using the cumulative distribution function (CDF) of a normal

distribution, the conditional PEP for the first user can be

represented as given in (5). In (5),

Q(x) =
1√
2π

∫ ∞

x

exp

(

−u2

2

)

du (6)

is the Gaussian Q-function [14] and ∆1 = (x1−x̂1). It is worth

noting that the derived PEP expressions are conditioned on

particular interference values, which depend on the transmitted

and detected symbols for each user.

To get the unconditional PEP, we average over the prob-

ability density function (PDF) of |h|. By noting that user

1 has always the weakest channel, and channel gains for

the rest of users are ordered in ascending order, i.e. |h1| =
min(|h1|, · · · , |hL|) and |hL| = max(|h1|, · · · , |hL|), ordered

statistics should be considered when evaluating the PDF of

|h1|. Therefore, the PDF of the lth user is given by [15],

f(l)(x) =
L!

(l − 1)!(L− l)!
fX(x)FX (x)l−1 (1− FX(x))

L−l
.

(7)



PEP (x1, x̂1 | |h1|) = Q





√
α1P |h1| |∆1|2 + 2 |h1|Re

{

∆1

∑L

l=2

√
αlP x∗

l

}

√
2 |∆1|σn



 . (5)

Considering that |h| is Rayleigh distributed, its PDF and CDF

are fX(x) = x
σ2 exp

(

− x2

2σ2

)

and FX(x) = 1 − exp
(

− x2

2σ2

)

,

respectively [16]. Therefore, using (7), the PDF of |h1| , ω1

is given by,

fΩ(ω1) =
2ω1

σ2
h

exp

(

− ω2
1

2σ2
h

)

(8)

where σ2
h = E

[

|hl|2
]

, l = 1, 2, · · · , L.

Hence, the PEP averaged over the PDF of ω1 is

PEP (x1, x̂1) =

∫ ∞

0

ω1

σ2
h

exp

(

− ω2
1

2σ2
h

)

erfc

(

Γ ω1√
2 ζ

)

dω1

(9)

where

Γ =
√

α1P |∆1|2 + 2Re

{

∆1

L
∑

l=2

√

αlP x∗
l

}

(10)

and

ζ =
√
2 |∆1|σn. (11)

In (9), we use the identity, Q(x) = 1
2erfc( x√

2
), where erfc(x)

is the complementary error function. Solving the integral in

(9) gives [17],

PEP (x1, x̂1) =
1

2

(

1− Γσh
√

2ζ2 + Γ2σ2
h

)

. (12)

which can be averaged over all the possible values of xl, l =
2, · · · , L, to consider all interference scenarios.

B. PEP Analysis for the lth User

For the lth user, it first decodes the signals with higher

power, i.e., U1, · · · , Ul−1, to perform SIC before detecting

its own signal. The output of the lth SIC receiver can be

represented as,

r̃l =
√

αlP hlxl+
L
∑

n=l+1

√

αnPhlxn+
l−1
∑

k=1

√

αkP hl∆k+nl

(13)

where ∆k = (xk − x̂k). The PEP of the lth user can be

evaluated as shown in (4), which after simplification can be

represented as shown in (14). We would like to highlight

that for the Lth user, the term Re
{

∆l

∑L

n=l+1

√
αnP x∗

n

}

equals to zero. Hence, the PEP of the Lth user is given in

(15). Therefore, using the CDF of a normal Gaussian random

variable, the conditional PEP of the lth user can be evaluated

as the following,

PEP (xl, x̂l| |hl|) = Q

( |hl|βl

υ

)

(16)

where

βl =
√

αlP |∆l|2 + 2

[

Re

{

∆l

L
∑

n=l+1

√

αnP x∗
n

}

+ Re

{

∆l

l−1
∑

q=1

√

αqP ∆∗
q

}] (17)

and

υ =
√
2σn |∆l| . (18)

To evaluate the unconditional PEP, we average over the PDF

of |hl| , ωl. Using the PDF of the ordered statistics provided

in (7) and considering that |h| is Rayleigh distributed, the PDF

of |hl| is,

fΩ(ωl) =
L!

(l − 1)!(L− l)!

ωl

σ2
h

exp

(

− ω2
l

2σ2
h

)

(

1− exp

(

− ω2
l

2σ2
h

))l−1(

exp

(

− ω2
l

2σ2
h

))L−l

.

(19)

To calculate the unconditional PEP, we use binomial expansion

(a+ x)
n

=
∑n

k=0

(

n

k

)

xkan−k [18, Eq. 1.111] to represent

the term
(

1− exp
(

− ω2

l

2σ2

h

))l−1

. Accordingly, the PEP can be

evaluated using the following integral,

PEP (xl, x̂l) =
L!

σ2
h(l − 1)!(L− l)!

l−1
∑

j=0

(

l − 1

j

)

(−1)2(l−1)−j

×
∫ ∞

0

ωl exp

(

− [L− l + j − 1]ω2
l

2σ2
h

)

Q

(

βlωl

υ

)

dωl.

(20)

Solving the integral in (20) gives the closed form expression

for the PEP for the lth user, as shown in (21).

C. Asymptotic Analysis

PEP represents an upper bound for the BER, and it gives a

useful insight on the error rate performance when the closed

form expression of the BER can not be found. PEP is used

also to study the achieved diversity, where the diversity gain

is defined as the magnitude of the slope of the PEP when the

signal-to-noise ratio (SNR) value goes to infinity [13],

ds = lim
γ̄→∞

− log PEP (xl, x̂l)

log γ̄
(22)

where γ̄ = E {γ} is the average transmit SNR. Capitalizing

on the PEP presented in (21), in this section we derive the

asymptotic expression for the PEP of the lth user, which will

be used to evaluate the asymptotic diversity order. In this work



PEP (xl, x̂l| |hl|) = Pr

(

2
√
αlP Re {hl∆ln

∗
l } ≤ −h

2
l

(

αlP |∆l|2 + 2
√
αlP

[

Re

{

∆l

L
∑

n=l+1

√
αnP x

∗
n

}

+ Re

{

∆l

l−1
∑

k=1

√
αkP ∆∗

k

}]))

.

(14)

PEP (xL, x̂L| |hL|) = Pr

(

2
√
αLP Re {hL∆Ln

∗
L} ≤ −h

2
L

(

αLP |∆L|2 + 2
√
αLP Re

{

∆L

L−1
∑

k=1

√
αkP ∆∗

k

}))

. (15)

PEP (xl, x̂l) =
L!

σ2
h(l − 1)!(L− l)!

l−1
∑

j=0

(

l− 1

j

)

(−1)2(l−1)−j

[L− l + j + 1]

(

1− βlσh
√

β2
l σ

2
h + [L− l + j + 1] υ2

)

. (21)

we will concentrate on the effective diversity gain,

de = − log PEP (xl, x̂l)

log γ̄
. (23)

As it is noticed, when γ̄ → ∞, the effective diversity order

converges to the asymptotic diversity gain. The conditional

PEP presented in Eqn. (16) can be bounded by the following,

PEP (xl, x̂l| |hl|) ≤ exp

(

− γβ2
l

4 |∆l|2

)

(24)

where βl is given in (17) and γ = |hl|2 /σ2
n is the instanta-

neous SNR, which is modeled as exponential random variable

with PDF,

f(γ) =
1

γ̄
exp

(

−γ

γ̄

)

. (25)

Using (25) and the ordered statistics PDF provided in (7) and

after some manipulations, the ordered PDF of the instanta-

neous SNR at the lth user is given by,

fl(γ) = Al

l−1
∑

j=0

(

l − 1

j

)

(−1)
j 1

γ̄

[

exp

(

−γ

γ̄

)]j+L−l+1

(26)

where Al =
L!

(l−1)!(L−l)! .

Therefore, the asymptotic unconditional PEP can be evalu-

ated as,

PEP (xl, x̂l) ≤ Al

l−1
∑

j=0

(

l− 1

j

)

(−1)j
1

γ̄
×

∫ ∞

0

[

exp

(

−γ

γ̄

)]j+L−l+1

exp

(

− γβ2
l

4 |∆l|2

)

dγ.

(27)

Given that the diversity order is evaluated at high SNR

values, the first exponential in (27) can be approximated as

exp
(

− γ

γ̄

)

≈ (1 − γ

γ̄
).

Hence,

PEP (xl, x̂l) ≤ Al

l−1
∑

j=0

(

l − 1

j

)

(−1)
j 1

γ̄
×

∫ ∞

0

(

1− γ

γ̄

)j+L−l+1

exp

(

− γβ2
l

4 |∆l|2

)

dγ.

(28)

Solving the integral in (28) and after some simplifications, the

bounded PEP can be expressed as follows,

PEP (xl, x̂l) ≤
Al

γ̄

l−1
∑

j=0

z
∑

k=0

(

l − 1

j

)(

z

k

)

(−1)j+z+k(γ̄)−z+k

Γ(z − k + 1)

(

4 |∆l|2
β2
l

)

(29)

where z = j+L− l+1. At high SNR values and considering

the dominant components from the summations in (29), it is

observed that the bounded PEP is proportional to the effective

diversity order,

PEP (xl, x̂l) ∝ γ̄−z+k−1. (30)

The effective diversity order is evaluated from (29) using

numerical methods and results are provided in Sec. V.

IV. POWER ALLOCATION COEFFICIENTS OPTIMIZATION

It has been demonstrated in literature and using numerical

and analytical results, that power allocation coefficients play

an essential rule in determining the overall performance of

the NOMA systems. Proper power allocation among different

users can enhance the overall performance remarkably. In this

section, we will form an optimization problem that aims to

find the optimum power allocation coefficients that minimizes

the average BER. It is worth mentioning that PEP is used to

calculate a union bound on the BER, as follows [14],

Pe ≤
M
∑

m=1

Pm

M
∑

m̃=1
x 6=x̂

q(x(m) → x̂(m̂))PEP(x(m), x̂(m̂)) (31)



where Pm is the probability that x(m) is transmitted and

q(x(m) → x̂(m̂)) is the number of bit errors between x(m)

and x̂(m̂). Therefore, our aim is to find the optimum power

allocation coefficients that minimize the following objective

function,

Ψ =

M
∑

m=1

Pm

M
∑

m̃=1
x 6=x̂

q(x(m) → x̂(m̂))PEP(x(m), x̂(m̂)) (32)

while satisfying a specific error rate performance threshold for

all users to maintain user fairness. Additionally, for normalized

average power, the some of the power allocation coefficients

should equals to 1. Hence, the optimization problem can be

represented as,

Minimize Ψ

s.t.

{
∑L

j=1 αj = 1,

PEP(xl, x̂l) ≤ Pth.

(33)

The above optimization problem is solved using numerical

methods since closed form expressions for the optimum coef-

ficients are hard to derive.

V. NUMERICAL AND SIMULATION RESULTS

In this section, numerical and simulation results are con-

ducted to evaluate the performance of the proposed scheme

and to validate the derived analytical results. A conventional

NOMA system is adopted where a single BS and three users

are considered with power allocation coefficients α1, α2 and

α3, for the first, second and third user, respectively. Without

loss of generality, we consider the first user as the farthest user,

α1 > α2 > α3. All users are equipped with single antenna

and the link between each user and the BS is considered as

Rayleigh flat fading channel. Transmitted signals are chosen

randomly from quadrature phase shift keying (QPSK) constel-

lation with average power P = 1. It is worth mentioning that

in the presented results, the transmitted signals of different

users are fixed and imperfect SIC is considered.

Fig. 2 presents the PEP for the three users while considering

imperfect SIC scenarios. Power allocation coefficients are

α1 = 0.7, α2 = 0.2 and α3 = 0.1. This power alloca-

tions coefficients values are chosen based on the evaluated

performance of the system, where it is noted that these

values give good performance in comparison with other values.

The derived analysis are corroborated with simulation results,

where it is shown that the derived analysis and simulation

results match perfectly for the three users over the entire SNR

range. As expected, the PEP gives an indication about the

performance of the three users in NOMA systems in low and

high SNR values, where at high SNR value, the near users

show strong performance while the far user has relatively weak

performance.

The effective diversity order of different users is shown in

Fig. 3. From the figure, it is observed that at high SNR values,

the diversity order of the lth user converges to l. Which is

expected since the asymptotic diversity gain is achieved when

the PEP of NOMA systems behaves as PEP(x, x̂) ∝ γ̄−de

[13]. It is noted here that diversity gain in NOMA systems

is realized due to the ordered channel gains, which in reality

represents how far each user from the BS.

Fig. 4 shows the average and individual error rate perfor-

mance of NOMA system with two users scenario over different

combinations of power allocation coefficients, where SNR =

30 dB. From the figure, it is noticed that the second user can

achieve the threshold error rate at very low and very high

values of α1. However, at very low values of α1, the first

user has a very poor performance, and this is justified by

the increased interference from the second user. Although the

second user achieves the best performance when α1 = 0.7781,

at this value of α1 the first user exceeds the threshold value,

where Pth = 10−3, hence, user fairness is violated in this

scenario. To achieve users’ fairness, where both users have

error rate performance less than the threshold value while the

average BER is kept to the minimum, α1 should take values

from 0.852 to 0.99. Choosing the optimum power allocation

coefficients is a tradeoff problem that is determined based on

the targeted average BER and the individual BER of each user.
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PE
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Simulation

Fig. 2: Analytical and simulated PEP for the 3 users with

imperfect SIC.

VI. CONCLUSION

In this paper, we investigated the performance of NOMA

systems from error rate standpoint. An exact closed form ex-

pression for the PEP is derived, which represents a tight upper

bound for the BER, therefore, it can give useful indication

about the BER performance of each user in NOMA systems.

Using the obtained PEP, asymptotic expression is derived,

which is then used to evaluate the achieved effective diversity

order. Capitalizing on the importance of the allocated power
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Fig. 3: Effective diversity order for the three users, α1 = 0.7,

α2 = 0.2 and α3 = 0.1.

coefficients, constrained optimization problem is introduced to

evaluate the optimum coefficients that reduce the overall error

rate. Derived expressions, verified by Monte Carlo simulation

results, gave an insightful results about the users’ reliability

and error rate performance.
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