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Abstract—In the present paper, we propose a novel sparse sig-
nal recovery algorithm called the Trainable Iterative Soft Thresh-
olding Algorithm (TISTA). The proposed algorithm consists of
two estimation units: a linear estimation unit and a minimum
mean squared error (MMSE) estimator-based shrinkage unit.
The estimated error variance required in the MMSE shrinkage
unit is precisely estimated from a tentative estimate of the original
signal. The remarkable feature of the proposed scheme is that
TISTA includes adjustable variables that control step size and
the error variance for the MMSE shrinkage. The variables are
adjusted by standard deep learning techniques. The number of
trainable variables of TISTA is nearly equal to the number
of iteration rounds and is much smaller than that of known
learnable sparse signal recovery algorithms. This feature leads
to highly stable and fast training processes of TISTA. Computer
experiments show that TISTA is applicable to various classes of
sensing matrices such as Gaussian matrices, binary matrices, and
matrices with large condition numbers. Numerical results also
demonstrate that, in many cases, TISTA provides significantly
faster convergence than AMP and the Learned ISTA and also
outperforms OAMP in the NMSE performance.

I. INTRODUCTION

The basic problem setup for compressed sensing [1], [2] is

as follows. A real vector x ∈ R
N represents a sparse source

signal. It is assumed that we cannot directly observe x, but

we observe y = Ax +w, where A ∈ R
M×N (N > M) is a

sensing matrix and w ∈ R
M is a Gaussian noise vector. The

goal is to estimate x from y as correctly as possible.

For a number of sparse reconstruction algorithms [3], the

Lasso formulation [4] is fairly common for solving sparse

signal recovery problems. In the Lasso formulation, the orig-

inal problem is recast as a convex optimization problem for

minimizing 1

2
||y − Ax||22 + λ||x||1. The regularization term

λ||x||1 promotes the sparseness of a reconstruction vector,

where λ is the regularization constant. A number of algorithms

have been developed in order to solve Lasso problems ef-

ficiently [6]. The Iterative Shrinkage Thresholding Algorithm

(ISTA) [8], [9] is one of the best-known algorithms for solving

the Lasso problem. ISTA is an iterative algorithm comprising

two processes: a linear estimation process and a shrinkage

process based on a soft thresholding function. ISTA can be

seen as a proximal gradient descent algorithm [10] and can be

directly derived from the Lasso formulation.

Approximate Message Passing (AMP) [11], [12], which is

a variant of approximate belief propagation, generally exhibits

much faster convergence than the ISTA. The remarkable

Part of this research was presented at the IEEE International Conference
of Communications 2018 (ICC2018) workshop.

feature of AMP is that its asymptotic behavior is completely

described by the state evolution equations [13]. AMP is

derived based on the assumption that the sensing matrices

consist of i.i.d. Gaussian distributed components. Recently,

Ma and Ping proposed Orthogonal AMP (OAMP) [17], which

can handle various classes of sensing matrices, including

unitary invariant matrices. Rangan et al. proposed VAMP [18]

for right-rotationally invariant matrices and provided a the-

oretical justification for its state evolution. Independently,

Takeuchi [19] also gave a rigorous analysis for a sparse

recovery algorithm for unitary invariant measurements based

on the expectation propagation framework.

The recent advent of powerful neural networks (NNs)

triggered the remarkable spread of research activities and

applications on deep neural networks (DNNs) [20]. DNN have

found a number of practical applications such as image recog-

nition [22], [23], speech recognition [24], and robotics because

of their outstanding performance compared with traditional

methods. The advancement of DNNs has also had an impact

on the design of algorithms for communications and signal

processing [27], [28]. By unfolding an iterative process of

a sparse signal recovery algorithm, we can obtain a signal-

flow graph. The signal-flow graph includes trainable variables

that can be tuned with a supervised learning method, i.e.,

standard deep learning techniques such as stochastic gradient

descent algorithms based on back propagation and mini-

batches can be used to adjust the trainable variables. Gregor

and LeCun presented the Learned ISTA (LISTA) [32], which

uses learnable threshold variables for a shrinkage function.

LISTA provides a recovery performance that is superior to that

of the original ISTA. Borgerding et al. also presented variants

of AMP and VAMP with learnable capability [33] [34].

The goal of the present study is to propose a simple

sparse recovery algorithm based on deep learning techniques.

The proposed algorithm, called the Trainable ISTA (TISTA),

borrows the basic structure of ISTA, and adopts the estimator

of the squared error between true signals and tentative esti-

mations, i.e., the error variance estimator, from OAMP [17].

Thus, TISTA consists of the three parts: a linear estimator,

a minimum mean squared error (MMSE) estimator-based

shrinkage function, and the above-mentioned error variance

estimator. The linear estimator of TISTA includes trainable

variables that can be adjusted via deep learning techniques.

Zhang and Ghanem [35] proposed ISTA-Net, which is also an

ISTA-based algorithm with learnable capability. The notable

difference between ISTA-Net and TISTA is that TISTA uses

an error variance estimator, which significantly improves the
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speed of convergence.

II. BRIEF REVIEW OF KNOWN RECOVERY ALGORITHMS

As preparation for describing the details of the proposed al-

gorithm, several known sparse recovery algorithms are briefly

reviewed in this section. In the following, the observation

vector is assumed to be y = Ax+w, where A ∈ R
M×N (N >

M) and x ∈ R
N . Each entry of the additive noise vector

w ∈ R
M follows a zero-mean Gaussian distribution with

variance σ2.

A. ISTA

The ISTA is a well-known sparse recovery algorithm [8]

defined by the following simple recursion:

rt = st + βAT (y −Ast) (1)

st+1 = η(rt; τ), (2)

where β ∈ R represents the step size, and η(·; ·) : Rn → R
n

is the soft thresholding function defined by

η(r; τ) = (η̃(r1; τ), . . . , η̃(rn; τ)),

where η̃(·; ·) : R → R is given by

η̃(r; τ) = sign(r)max{|r| − τ, 0}. (3)

The parameter τ ∈ R(τ > 0) indicates the threshold value.

After T -iterations, the estimate x̂ = sT of the original sparse

signal x is obtained. The initial value is assumed to be

s0 = 0. In order to have convergence, the step size β should

be carefully determined [8]. Several accelerated methods for

ISTA using a momentum term, such as the Fast ISTA (FISTA),

have been proposed [36], [37]. Since the proximal operator

of the ℓ1-regularization term ||x||1 is the soft thresholding

function, the ISTA can be seen as a proximal gradient descent

algorithm [3].

B. AMP

AMP [12] is defined by the following recursion:

rt = y −Ast + btrt−1, (4)

st+1 = η(st +ATrt; τt), (5)

bt =
1

M
||st||0, τt =

θ√
M

||rt||2 (6)

and provides the final estimate x̂ = sT . Each entry of the

sensing matrix A is assumed to be generated according to the

Gaussian distribution N (0, 1/M), i.e., a Gaussian distribution

with mean zero and variance 1/M . At a glance, the recursive

formula of AMP appears similar to that of ISTA, but there

are several critical differences. Due to the Onsager correction

term btrt−1 in (4), the output of the linear estimator becomes

statistically decoupled, and an error between each output signal

from the linear estimator and the true signal behaves as a

white Gaussian random variable in the large system limit. This

enables us to use a scalar recursion called the state evolution

to track the evolution of the error variances.

Another difference between ISTA and AMP is the estimator

of τt in (6), which is used as the threshold value for the

shrinkage function (5). In [12], it was reported that AMP

exhibits much faster convergence than ISTA if the sensing

matrix satisfies the above condition. On the other hand, AMP

cannot provide excellent recovery performance for sensing

matrices violating the above condition such as non-Gaussian

sensing matrices, Gaussian matrices with large variance, Gaus-

sian matrices with nonzero means, and matrices with large

condition numbers [15].

C. OAMP

OAMP [17] is defined by the following recursive formula:

rt = st +W (y −Ast), (7)

st+1 = ηdf(rt; τt), (8)

v2t = max

{ ||y −Ast||22 −Mσ2

trace(ATA)
, ǫ

}

, (9)

τ2t =
1

N
trace(BBT )v2t +

1

N
trace(WW T )σ2,(10)

for t = 0, 1, 2, . . . , T − 1. The matrix B is given by

B = I − WA. To be precise, the estimator equations on

v2t (9) and τ2t (10) (also presented in [38]) are not part

of OAMP (for example, we can use the state evolution to

provide v2t and τ2t ), but these estimators are used for numerical

evaluation in [17]. The matrix W in linear estimator (7) can

be chosen from the transpose of A, the pseudo inverse of

A, and the LMMSE matrix. The nonlinear estimation unit

(8) consists of a divergence-free function ηdf that replaces the

Onsager correction term. It is proved in [17] that the estimation

errors of linear estimator (7) and non-linear estimator (8) are

statistically orthogonal if a sensing matrix is i.i.d. Gaussian

or unitary invariant. This provides a justification for the state

evolution of OAMP.

III. DETAILS OF TISTA

This section describes the details of TISTA and its training

process.

A. MMSE estimator for an additive Gaussian noise channel

Let X be a real-valued random variable with probability

density function (PDF) PX(·). We assume an additive Gaus-

sian noise channel defined by Y = X+N, where Y represents

a real-valued random variable as well. The random variable N
is a Gaussian random variable with mean 0 and variance σ2.

Consider the situation in which a receiver can observe Y and

we wish to estimate the value of X .

The MMSE estimator ηMMSE(y) is defined by

ηMMSE(y) = E[X |y], (11)

where E[X |y] is the conditional expectation given by

E[X |y] =
∫ ∞

−∞

xP (x|y)dx. (12)

The posterior PDF P (x|y) is given by Bayes’ Theorem:

PX|Y (x|y) =
PX(x)PY |X(y|x)

PY (y)
, (13)
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Fig. 1. Plots of ηMMSE as a function of a received signal y (α2 = 1,
σ2 = 0.2, 0.8, p = 0.1).

where the conditional PDF is Gaussian:

PY |X(y|x) = 1√
2πσ2

exp

(−(y − x)2

2σ2

)

. (14)

In the case of the Bernoulli-Gaussian prior, PX(x) is given

by

PX(x) = (1 − p)δ(x) +
p√
2πα2

exp

(

− x2

2α2

)

, (15)

where p represents the probability such that a nonzero element

occurs. The function δ(·) is Dirac’s delta function. In this case,

a nonzero element follows the Gaussian PDF with mean 0 and

variance α2. The MMSE estimator for the Bernoulli-Gaussian

prior can be easily derived [45] using Stein’s formula:

ηMMSE(y;σ
2) = y + σ2 d

dy
lnPY (y) (16)

and we have

ηMMSE(y;σ
2) =

(

yα2

ξ

)

pF (y; ξ)

(1− p)F (y;σ2) + pF (y; ξ)
,

(17)

where ξ = α2 + σ2 and

F (z; v) =
1√
2πv

exp

(−z2

2v

)

. (18)

For example, Fig. 1 shows the shapes of ηMMSE(y;σ
2) as a

function of a received signal y for σ2 = 0.2, 0.8 . The shapes

can be observed to resemble those of the soft thresholding

function but the function is differentiable everywhere with

respect to y.

Let us consider another setting. If each sparse component

takes a value in a finite discrete set S = {s1, . . . , sM}(si ∈ R)
uniformly at random, then the corresponding prior becomes

PX(x) = (1 − p)δ(x) + p
∑

s∈S

1

M
δ(x− s), (19)

and we have the MMSE estimator

ηMMSE(y;σ
2) =

p
∑

s sF (s;σ2)

(1− p)MF (0;σ2) + p
∑

s F (s;σ2)
.

(20)

These MMSE estimators are going to be used as a building

block of the TISTA to be presented in the next subsection.

B. Recursive formula for TISTA

We assume that the sensing matrix A ∈ R
M×N is a full-

rank matrix. The recursive formula of TISTA is summarized

as follows:

rt = st + γtW (y −Ast), (21)

st+1 = ηMMSE(rt; τ
2
t ), (22)

v2t = max

{ ||y −Ast||22 −Mσ2

trace(ATA)
, ǫ

}

, (23)

τ2t =
v2t
N

(N + (γ2
t − 2γt)M)

+
γ2
t σ

2

N
trace(WW T ), (24)

where the matrix W = AT (AAT )−1 is the pseudo inverse

matrix of the sensing matrix A. The initial condition is s0 = 0,

and the final estimate is given by x̂ = sT . The scalar variables

γt ∈ R(t = 0, 1, . . . , T − 1) are learnable variables that are

tuned in a training process. The number of learnable variables

is thus T , which is much smaller than those of LISTA [32] and

LAMP [33]. In addition to the step size parameters {γt}T−1
t=0 ,

one can also optimize parameters p and α in the MMSE

estimator (17) especially for nonsynthetic signals or real data.

We assume that they are constant among iterations in TISTA

for simplicity. The number of the trainable parameters in this

case is thus T + 2.

An appropriate MMSE shrinkage (22) is chosen according

to the prior distribution of the original signal x. Note that

the MMSE shrinkage is also used in [33]. The real constant

ǫ is a sufficiently small value, e.g., ǫ = 10−9. The max

operator in (23) is used to prevent the estimate of the variance

from being non-positive. The learnable variables γt in (21)

provide appropriate step sizes and control for the variance of

the MMSE shrinkage.

The true error variances τ̄2t and v̄2t are defined by

τ̄2t =
E[||rt − x||22]

N
, v̄2t =

E[||st − x||22]
N

. (25)

These error variances should be estimated as correctly as

possible in a sparse recovery process because the MMSE

shrinkage unit (22) requires knowing τ̄2t . As in the case

of OAMP [17], we make the following assumptions on the

residual errors in order to derive an error variance estimator.

The first assumption is that rt − x consists of i.i.d. zero-

mean Gaussian entries. Based on this assumption, each entry

of the output from the linear estimator (21) can be seen as an

observation obtained from a virtual additive Gaussian noise

channel with the noise variance τ̄2. This justifies the use of the

shrinkage function based on the MMSE estimator (22) with τ̄2.

Another assumption is that st −x consists of zero-mean i.i.d.

entries and satisfies E[(st−x)TATw] = E[(st−x)TWw] =
0 for any t.

The error variance estimator for v̄2t (23) is the same as that

of OAMP [17], and its justification comes from the following

proposition.
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Proposition 1: If each entry of st − x is i.i.d. with mean

zero and E[(st − x)TATw] = 0 is satisfied, then

v̄2t =
E[||y −Ast||22]−Mσ2

trace(ATA)
(26)

holds.

(Proof) From the right-hand side of (26), we have

E[||y −Ast||22]−Mσ2

trace(ATA)

=
E[||Ax+w −Ast||22]−Mσ2

trace(ATA)

=
E[||A(x− st) +w||22]− E[wTw]

trace(ATA)

=
E[(A(x−st))

TA(x−st)+(A(x−st))
Tw]

trace(ATA)

=
E[(x− st)

TATA(x− st)]

trace(ATA)

=
1

N
trace(ATA)E[||st − x||22]

1

trace(ATA)

=
1

N
E[||st − x||22] = v2t .

�

The justification of the error variance estimator (24) for τ̄2t
is also provided by the following proposition.

Proposition 2: If each entry of st − x is i.i.d. with mean

zero and E[(st − x)TWw] = 0 is satisfied, then

τ̄2t =
v̄2t
N

(N − 2γttrace(Z) + γ2
t trace(ZZT ))

+
γ2
t σ

2

N
trace(WW T ) (27)

holds, where Z = WA.

(Proof) The residual error rt − x can be rewritten as

rt − x = st + γtW (y −Ast)− x

= st + γtW (Ax+w)− γtWAst − x

= (I − γtZ)(st − x) + γtWw.

From the definition τ̄2t , we have

τ̄2t =
1

N
E[||(I − γtZ)(st − x) + γtWw||22]

=
1

N
E[(st − x)T (I − γtZ)(I − γtZ)T (st − x)]

+
γ2
t

N
E[wTW TWw] +

2γt
N

E[(st − x)T (I−γtZ)TWw]

=
1

N
trace((I − γtZ)(I − γtZ)T )v̄2t

+
γ2
t

N
trace(WW T )σ2 +

2(γt − γ2
t )

N
E[(st − x)TWw].

TABLE I
NUMBERS OF TRAINABLE VARIABLES IN THE T -ROUND PROCESS

TISTA LISTA LAMP

# of params T + 2 T (N2 +MN + 1) T (NM + 2)

The last term vanishes due to the assumption E[(st −
x)TWw] = 0, and the first term can be rewritten as

trace((I − γtZ)(I − γtZ)T )

=
∑

i,j:i6=j

(γtZi,j)
2 +

∑

i

(1 − γtZi,i)
2

= γ2
t

∑

i,j:i6=j

Z2
i,j +

∑

i

(1− 2γtZi,i + γ2
tZ

2
i,i)

= N − 2γttrace(Z) + γ2
t trace(ZZT ). (28)

The proposition is thus proved. �

The identity trace(Z) = trace(ZZT ) = M holds because A

and Z have full rank. Combining this identity, we have the

estimation formula (24) for τ2t .

These error variance estimators (23) and (24) play a crucial

role in providing appropriate variance estimates required for

the MMSE shrinkage. Since the validity of these assumptions

on the residual errors cannot be proved, it will be experimen-

tally confirmed in the next section. Moreover, note that the

TISTA recursive formula does not include either an Onsager

correction term or a divergence-free function. Thus, we cannot

expect stochastic orthogonality guaranteed in OAMP in a

process of TISTA. This means that the state evolution cannot

be used to analyze the asymptotic performance of TISTA.

C. Time complexity and number of trainable variables

For treating a large-scale problem, a sparse recovery algo-

rithm should require low computational complexity for each

iteration. The time complexity required for evaluating the

recursive formula of TISTA per iteration is O(N2), which is

the same time complexity as those of ISTA and AMP, which

means that the TISTA has sufficient scalability for large prob-

lems. The evaluation of the matrix-vector products Ast and

W (y −Ast) requires O(N2) time, which is dominant in an

iteration. The evaluation of the scalar constants trace(ATA)
and trace(WW T ) requires O(N2) time. Although computa-

tion of the pseudo inverse of A requires O(N3) time, it can

be pre-computed only once in advance.

Since the t′-th round of TISTA contains only trainable

variables {γt}t
′−1
t=0 (or {γt}t

′−1
t=0 , α and p), the total number

of trainable variables is T (or T + 2) for TISTA with T
iteration rounds. On the other hand, LISTA and LAMP require

N2 + MN + 1 and NM + 2 trainable variables for each

round, respectively. Table I summarizes the required numbers

of trainable variables in T rounds. TISTA requires the least

trainable variables among them, and the number of trainable

variables of TISTA is independent of the system size, i.e.,

N and M . This is an advantageous feature for large-scale

problems. The number of trainable variables also affects the

stability and speed of convergence in training processes.



5

Fig. 2. Schematic diagram of the t-th iteration of TISTA with learnable
variable γt.

D. Incremental training for TISTA

In order to achieve reasonable recovery performance, the

trainable variables {γt}T−1
t=0 should be appropriately adjusted.

By unfolding the recursive formula of TISTA, we immediately

have a signal-flow graph which is similar to a multi-layer

feedforward neural network. Figure 2 depicts a unit of the

signal-flow graph corresponding to the t-th iteration of TISTA,

and we can stack the units to compose a whole signal-flow

graph. Here, we follow a standard recipe of deep learning

techniques; namely, we apply mini-batch training with a

stochastic gradient descent algorithm to the signal-flow graph

of TISTA. Based on several experiments, we found that the

following incremental training is considerably effective for

learning appropriate values that provide superior performance.

This is because the vanishing gradient problem makes one-

shot training for the whole network difficult. The incremental

training discussed below can reduce the effect of the vanishing

gradient.

The training data consists of a number of randomly gener-

ated pairs (x,y), where y = Ax+w. The sample x follows

the prior distribution PX(x) and the observation noise w is an

i.i.d. Gaussian random vector. The entire set of training data

is divided into mini-batches to be used in a stochastic gradient

descent algorithm such as SGD, RMSprop, or Adam.

In the t-th round of the incremental training (referred to

as a generation), an optimizer attempts to minimize E[||st −
x||22] by tuning {γt′}t−1

t′=0
(and possibly α and p). The number

of mini-batches used in the t-th generation is denoted by D.

After processing D mini-batches, the objective function of the

optimizer is changed to E[||st+1−x||22]. Namely, after training

the first to t-th layers, a new t + 1 layer is appended to the

network, and the entire network is trained again for D mini-

batches. Although the objective function is changed, the values

of the variables γ0, . . . , γt−1 of the previous generation are

taken as the initial values in the optimization process for the

new generation. In summary, the incremental training updates

the variables γt in a sequential manner from the first layer to

the last layer.

IV. PERFORMANCE EVALUATION

In this section, the sparse recovery performance of TISTA

is evaluated by computer experiments.

A. Details of experiments

The basic conditions for the computer experiments shown

in this section are summarized as follows. Each component of

the sparse signal x is assumed to be a realization of an i.i.d.

random variable following the Bernoulli-Gaussian PDF (15)

with p = 0.1, α2 = 1. The Bernoulli-Gaussian PDF is often

assumed as a benchmark setting in related researches [33],

[34]. We thus use the MMSE estimator (22) for the Bernoulli-

Gaussian prior. Each component of the noise vector w follows

the zero-mean Gaussian PDF with variance σ2. The signal-to-

noise ratio (SNR) of the system is defined as

SNR =
E[||Ax||22]
E[||w||22]

. (29)

The size of the mini-batch is set to 1000, and D = 200
mini-batches are allocated for each generation. We used the

Adam optimizer [39]. The learning rate of the optimizer is

set to 4.0 × 10−2 in the first 10 iterations and 8.0 × 10−4

in the remaining iterations. The experimental system was

implemented in TensorFlow [41] and PyTorch [42]. For com-

parison purposes, we will include the NMSE performances of

AMP and other algorithms in the following subsections. The

hyperparameter θ used in AMP is set to θ = 1.14. We used

an implementation of LISTA [43] by the authors of [33].

B. IID Gaussian matrix with small variance

Here, we consider the conventional setting for compressed

sensing in which AMP successfully indicates convergence.

The trainable parameters of TISTA in this subsection are

{γt}T−1

t=0 , α, and p.

1) Comparison with AMP and other algorithms: This sub-

section describes the case in which Ai,j ∼ N (0, 1/M), i.e.,

each component of the sensing matrix A obeys a zero-mean

Gaussian distribution with variance 1/M . Note that AMP is

designed for this matrix ensemble. The dimensions of the

sensing matrices are set to be N = 500,M = 250.

Figure 3 shows the estimate τ2 by (24) and the empirically

estimated values of the true error variance τ̄2. The estimator

τ2 provides accurate estimations and justifies the use of (23)

and (24) and our assumptions on the residual errors. We

find that the error variance does not monotonically decrease.

Because the residual error depends on the trainable parameters

{γt}T−1

t=0 , the zigzag shape of γt’s (see Fig. 5) may affect the

shapes of τ2 and τ̄2. In spite of this nontrivial tendency, the

residual error decreases rapidly indicating a successful signal

recovery.

Figure 4 presents the average normalized MSE (NMSE)

of TISTA, ISTA, LISTA, AMP, and OAMP as functions of

iteration when SNR = 40 dB. The NMSE is defined by

NMSE = 10 log10 E

[ ||st+1 − x||22
||x||22

]

. (30)

In the experiment, The pseudo inverse matrix is chosen as the

matrix W in OAMP to make the time complexity O(N2) in

each iteration. The divergence-free function of OAMP in (8)

is based on the MMSE estimator (17).

From Fig. 4, we can observe that TISTA provides the

steepest NMSE curve among those algorithms in the first 12
rounds. For example, OAMP and LISTA require 6 and 10
rounds, respectively, in order to achieve NMSE = −30 dB,

whereas TISTA requires only 5 rounds. The NMSE curve

of TISTA saturates at around −42 dB, at which TISTA and
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Fig. 4. NMSE of TISTA and other algorithms; Ai,j ∼ N (0, 1/M), N =
500, M = 250, SNR = 40 dB. Condition Ai,j ∼ N (0, 1/M) is required
for AMP to converge.

OAMP converge. This means that TISTA shows significantly

faster convergence than AMP and LISTA in this setting.

TISTA also overwhelms OAMP in the NMSE performance.

TISTA has about 5.8 dB and 4.0 dB gains at T = 5 and 7
compared with OAMP, respectively.

In order to study the behavior of the learned trainable

variables γt, we conducted the following experiments. For a

fixed sensing matrix (Ai,j ∼ N (0, 1/M)), we trained TISTA

three times with distinct random number seeds. The learned

variables γt (denoted by matrix 1–3) are shown in Fig. 5. The

three sequences of learned parameters approximately coincide

with each other. Furthermore, the sequences have a zigzag

shape, and the values of γt lies in the range from 1 to 10. As

for other trainable parameters, α2 is tuned to 3.68-3.71 and p is

tuned to 0.08-0.09. Interestingly, the trained α becomes larger

than the true value 1.0 though p does not change largely from

the true value 0.1. Note that training these values improves the

NMSE performance of TISTA, which suggests that the true

2 4 6 8 10 12
iteration
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4.5

γ t

matrix 1
matrix 2
matrix 3

Fig. 5. Three sequences of learned variables γt; Ai,j ∼ N (0, 1/M), N =
500,M = 250, p = 0.1, SNR = 40 dB.
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Fig. 6. NMSE of TISTA and and other algorithms; N = 5000, M = 2500,
p = 0.1,Ai,j ∼ N (0, 1/M), SNR = 40 dB.

values of parameters in the MMSE estimator are not always

best for TISTA.

2) Large-scale problem: As discussed in the previous sec-

tion, the number of trainable variables of TISTA is con-

siderably small. This feature enables us to handle large-

scale problems. Figure 6 shows the NMSEs for the cases of

(N,M) = (5000, 2500). LISTA is omitted from the com-

parison because it is computationally intractable to execute

in our environment. We find that the NMSE performance of

each algorithm are slightly better than that in the small system

(N = 500). The gain of TISTA, however, is still large in this

case. In addition, TISTA saturates about −43 dB, which is 0.6
dB lower than OAMP. From these observations, we find that

TISTA exhibits a good NMSE performance even in a large

system.

3) Running time: In order to demonstrate the scalability of

TISTA explicitly, we show the CPU time required for training

processes in Fig. 7. The CPU time is measured by a PC

with Intel Xeon(R) CPU (3.6 GHz, 6 cores) and no GPUs.
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Fig. 7. CPU time for learning and executing TISTA (solid lines) and LISTA
(dashed line) as a function of N with various T ; M/N = 0.5, SNR= 40
dB.

It consists of the whole incremental training process up to

T layers and execution process of TISTA implemented by

PyTorch 0.4.1. In the experiment, we fix the rate M/N to

0.5 and SNR to 40 dB as the same setting with the previous

experiments. The results show that, in the case of N = 500,

TISTA is about 37 times faster than LISTA in addition to

better NMSE performance as shown in Fig. 4. We also find

that TISTA has a notable scalability. The CPU time of TISTA

(T = 7) for N = 104 signals is nearly equal to that of LISTA

(T = 7) for N = 500. Simple linear regressions estimate

that the CPU time roughly depends on N1.2 and T 2.0. These

facts suggest that the small number of trainable parameters in

TISTA enables its fast learning process for large problems.

C. Gaussian sensing matrices with large variance

In the next experiment, we changed the variance of the sens-

ing matrices to a larger value, i.e., each element in A follows

N (0, 1) instead of N (0, 1/M). The trainable parameters of

TISTA are {γt}T−1
t=0 , α, and p. Figure 8 shows the NMSE

curves of TISTA, OAMP, and LISTA. Note that, under this

condition, AMP does not perform well, i.e., AMP actually

cannot converge at all, because the setting does not fit the

required condition (Ai,j ∼ N (0, 1/M)) for achieving the

guaranteed performance and the convergence of AMP. As

shown in Fig. 8, TISTA behaves soundly and shows faster

convergence than that of OAMP and LISTA. This result

suggests that TISTA is appreciably robust against the change

of the variance.

D. Binary matrix

In this subsection, we will discuss the case in which the

sensing matrices are binary, i.e., A ∈ {±1}M×N . Each entry

of A is selected uniformly at random on {±1}. This situation

is closely related to multiuser detection in Coded Division

Multiple Access (CDMA) [11]. Figure 9 shows the NMSE

curves of TISTA, OAMP, and LISTA as a function of iteration.
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Fig. 8. NMSE of TISTA, OAMP, and LISTA; Ai,j ∼ N (0, 1), N =
500,M = 250, SNR = 40 dB. In this case, AMP cannot converge because
the variance of the matrix components is too large.
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Fig. 9. NMSE of TISTA, OAMP, and LISTA; Ai,j takes a value in {±1}
uniformly at random. N = 500, M = 250, SNR = 40 dB. AMP is not
applicable in this case.

As the previous subsections, TISTA trains {γt}T−1

t=0 , α, and

p. The NMSE curves of TISTA approximately coincide with

those of the Gaussian sensing matrices. This result can be

regarded as an evidence for the robustness of TISTA for non-

Gaussian sensing matrices.

E. Sensing matrices with a large condition number

Regression problems regarding a matrix with a large con-

dition number are difficult to solve in an accurate manner.

The condition number κ of a matrix is defined as the ratio

of the largest and smallest singular values, i.e., κ = s1/sM ,

where s1 ≥ s2 ≥ · · · ≥ sM are the singular values of

the matrix. In this subsection, we assess the performance of

TISTA for sensing matrices with a large condition number. In

this subsection, the trainable parameters of TISTA are only

{γt}T−1
t=0 because it shows enough performance improvement.
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Fig. 10. NMSE of TISTA and AMP; κ represents the condition number. No
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Fig. 11. NMSE of TISTA and LISTA; κ represents the condition number.
SNR = 60 dB.

The setting for the experiments is as follows. For a given

condition number κ, we assume that the ratio si/si−1 is

constant for each i in order to fulfill s1/sM = κ and

trace(AAT ) = N . We first sample a matrix G ∈ R
M×N ,

where each entry of G follows an i.i.d. zero-mean Gaussian

distribution with variance 1. The matrix G is then decomposed

by singular value decomposition and we obtain G = UΣV T ,
where U ∈ R

M×M , V ∈ R
N×N , and Σ ∈ R

M×N . From

the set of singular values s1, . . . , sM satisfying the above

conditions, Σ
∗ is defined by Σ

∗ = (∆ O), where the

matrix ∆ = diag(s1, . . . , sM ), and O is the zero matrix. A

sensing matrix A with the condition number κ is obtained by

calculating A = UΣ
∗V T .

Figure 10 shows the NMSE of TISTA and AMP without

observation noise, i.e., σ2 = 0. As shown in Fig. 10, there is

almost no performance degradation in the NMSE even for a

large condition number such as κ = 5000. On the other hand,

AMP converges up to κ = 4, but the output diverges when

κ ≥ 5. These results indicate the robustness of TISTA with

respect to sensing matrices with a large condition number in

the noiseless case.

Figure 11 shows the NMSE of TISTA and LISTA when

there are observation noises (SNR = 60 dB). Compared with

the NMSE curve of LISTA, TISTA provides a much smaller

NMSE in the cases of κ = 1, 15, 100. However, in contrast to

the noiseless case (Fig. 10), the NMSE performance of TISTA

severely degrades as κ increases. This phenomenon can be

considered as a consequence of the use of the pseudo inverse

linear estimator W , which tends to cause noise enhancement

if the condition number is large.

V. HYPOTHESIS ON ZIGZAG SHAPES

In the previous section, we observed that the trained values

of {γt}T−1
t=0 show zigzag shapes that is not easy to interpret.

The zigzag pattern yields the fast convergence property of

TISTA and it should be a reasonable choice for accelerating its

search processes. In this section, we try to provide a plausible

hypothesis on the zigzag shapes.

We first consider a toy example for minimizing a quadratic

function f(x1, x2) = x2
1 +10x2

2 by using the gradient descent

(GD) method. The function is simple but the condition number

regarding the problem is relatively large. This means that a

naive GD method is not suitable for attaining fast convergence

to the minimum point. The main step of the GD method is

the update of the search point as

st+1 = st − γ∇f(st) (31)

for t = 1, 2, . . . , T . The parameter γ is the step size parameter

that significantly affects the behavior of the search process. In

this section, we assume that each element of the initial point

s1 = (s1,1, s1,2) is chosen in the closed domain [−10, 10]2

uniformly at random.

Figure 12 (center, bottom) shows typical minimization

processes of the GD method. A small step size (center)

leads to considerably slow convergence but a large step size

(bottom) induces oscillation behaviors that also slow down the

convergence or lead to divergence.

According to the idea of TISTA, i.e., embedding of trainable

parameters, we can embed trainable parameters in the GD step

as

st+1 = st − γt∇f(st), (32)

where {γt}Tt=1 is a set of trainable parameters. The incremen-

tal training can be applied to train these parameters in order to

accelerate the convergence. We call this method the trainable

GD (TGD) hereafter.

Figure 13 shows the averaged error of TGD and GD as a

function of the number of iterations. TGD significantly out-

performs GD methods and provides much faster convergence.

From the training process, TGD learns an appropriate strategy

to yield fast convergence. The trained values of {γt}Tt=1

are plotted in Fig. 14. We can observe a zigzag shape that

represents the learned acceleration strategy for this problem.

It is interesting to see that the behavior of the search point

shown in Fig. 12 (top) is not similar to those of γ = 0.01
(center) nor γ = 0.09 (bottom).

Our hypothesis of the zigzag shapes is that a similar

situation happens in signal recovery processes of TISTA as

well. The linear estimation step (21) of TISTA is closely
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related to the gradient descent step for the quadratic problem to

minimize ||Ax−y||22, i.e., we have the exact gradient descent

step by replacing W with AT . If the quadratic problem is ill-

conditioned or nearly ill-conditioned, the preferable strategy

would be the zigzag strategy observed in Fig. 14 as well.

We still lack enough evidences to confirm the validity of the

hypothesis and it should be confirmed in a future work.

Fig. 12. Trajectories of search points (5 trials) in GD processes for
f(x1, x2) = x2

1
+ 10x2

2
: TGD (top), GD with γ = 0.01 (center), GD with

γ = 0.09 (bottom). The optimal point is (0, 0). The ovals are contour of the
objective function.

VI. SPARSE SIGNAL RECOVERY FOR MNIST IMAGES

In Sec. IV, we have seen results of the numerical exper-

iments based on artificial sparse signals generated according
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Fig. 13. Averaged error curves of TGD and GD: The horizontal axis represents
the number of iterations and the vertical axis represents the averaged error
log10 ||st − s

∗||2
2

where st is the search point after t iterations, and s
∗

is the optimal solution. In the evaluation process, the outcomes of 10000
minimization trials with random starting points are averaged.
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Fig. 14. Trained values of γi: the details of the training is as follows. The
incremental training with the mini-batch size 50 is used. In a generation, 500
mini-batches are processed. The optimizer is Adam with learning rate 0.001.

to the i.i.d. Bernoulli-Gaussian prior model. The feasibility of

TISTA for sparse signals in the real world has not yet been

clear because a real sparse signal may not follow the i.i.d.

assumption. In order to evaluate the performance of TISTA

for non-i.i.d. signals, we made experiments of sparse signal

recovery based on the MNIST dataset. The MNIST dataset

is a dataset including monochrome images of hand-written

numerals and the corresponding labels. Since most of pixels of

an MNIST image is zero, the MNIST dataset can be regarded

as a dataset of sparse signals. The goal of this section is to

discuss the sparse signal recovery performance of TISTA for

the MNIST dataset.

The details of the experiment is as follows. An MNIST

image consists 28 × 28 = 784 pixels where a pixel takes

an integer value from 0 to 255. We first normalize the pixel

values to [0, 1] and then rasterize the pixels as 784-dimensional

vectors. In the following, we let N = 784 and M = 392. As
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a sensing matrix, we prepare a random matrix A ∈ R
M×N

where each element in A follows Gaussian distribution with

zero mean and variance 1/M . We assume a noisy observation

by the matrix A with the additive white Gaussian noise w

with zero mean and variance 4 × 10−4, i.e., the received

signal y is generated by y = Ax + w. As a sparse signal

recovery algorithms, we compare TISTA with OAMP. We

choose the MMSE estimator (17) for Bernoulli-Gaussian prior

as their MMSE functions because we assume that we have

no knowledge on the prior PDF of the images. We set the

parameters of the prior to α = 1, p = 0.5 for OAMP while

these parameters are trained from the dataset in TISTA.

The detail of the training processes is as follows. In the

training process of TISTA, as well as {γt}T−1

t=0 , the parameters

α and p are treated as trainable parameters. The size of mini-

batch is set to 200. For a generation of incremental training,

we used all the images in the MNIST training set (60000

images). Adam optimizer with learning rate 0.005 was used

for training.

Figure 15 shows the recovered images by TISTA (left

column) and OAMP (right column) with t = 1, 4, 8 iterations.

These images are recovered from the same noisy observation

of the original image displayed on the left bottom. It can be

observed that TISTA with t = 8 provides a reconstructed

image considerably close to the original (MSE = 0.0091).

The number “0” is not perfectly recovered because the original

image is not so sparse and it affects the reconstruction quality.

The quality of the reconstructed images of TISTA evidently

outperforms that of OAMP. For example, even with t = 100,

the image reconstruction by OAMP (MSE = 0.0148) is worse

than that by TISTA in terms of MSE. In fact, we find that the

reconstructed “2” by OAMP is not so crisp and clear compared

with those of TISTA (right bottom of Fig. 15). It implies that

the training parameters α (trained value 1.59) and p (trained

value 0.4) positively affects the image reconstruction quality.

Moreover, comparing the images of t = 1, 4, 8, it can

be confirmed that TISTA shows much faster convergence

than OAMP. This tendency exactly coincides with the results

reported in Section IV.

The result of this section strongly suggests that TISTA can

be applied to sparse signal recovery problems based on the

real data with non-i.i.d. sparse signals if we have enough data

to train the trainable parameters.

VII. EXTENSIONS

In this section, we propose a few extensions of TISTA to

treat a sensing matrix with nonzero-mean components or with

a large condition number. The numerical results show that the

proposed extensions outperform the original TISTA in each

situation without additional computational costs in the learning

process. In this section, the trainable parameters of TISTA are

only {γt}T−1

t=0 .

A. Sensing matrices with nonzero-mean components

In this subsection, we propose an extension of TISTA

for a sensing matrix with nonzero-mean components. It is

known that, e.g., generalized AMP [47] (GAMP), which is

Fig. 15. Reconstructed images by TISTA (left column) and OAMP (right
column). Parameters: N = 784, M = 392, Ai,j ∼ N (0, 1/M), noise

variance 4×10−4. The “2” images reconstructed by TISTA and OAMP with
t = 8 are shown in the right bottom for comparison.

constructed for zero-mean Gaussian random matrices, fails to

converge to a fixed point when a sensing matrix consists of

nonzero-mean components [15]. To overcome this difficulty,

Vila et al. proposed a variant of GAMP with damping of

messages and mean removal from a sensing matrix and

signals [16]. Following these advances in AMP, we apply a

mean removal technique to TISTA to improve its performance

for large nonzero-mean sensing matrices.

Let us consider TISTA-MR, TISTA with the mean removal

technique. We assume that the sensing matrix A is generated

according to the Gaussian distribution N (µA, σ2) with a

nonzero mean µA. In fact, without any modifications, TISTA

shows poor performance as µA increases. The simplest ex-

tension involves the use of a modified sensing matrix A′ =
(A′

i,j), where A′
i,j = Ai,j−µA instead of an original sensing

matrix A = (Ai,j). The modified recursion formula of TISTA



11

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 2  4  6  8  10  12  14  16

N
M

S
E

 [
d
B

]

iteration

TISTA (noiseless)
TISTA-MR (noiseless)

TISTA (60 dB)
TISTA-MR (60 dB)

Fig. 16. NMSE of the original TISTA (cross marks) and TISTA-MR (circles)
with mean removal; Ai,j ∼ N (1, 1/M), N = 500, M = 250. No

observation noise (σ2 = 0) and SNR = 60 dB cases.

is then written as follows:

ut = y −A′st, (33)

rt = st + γtW
′

(

ut −
1

M
1
T
Mut1M

)

(34)

st+1 = ηMMSE(rt; τ
2
t ) (35)

v2t = max

{ ||ut − 1

M
1
T
Mut1M ||22 −Mσ2

trace(A′TA′)
, ǫ

}

(36)

τ2t =
v2t
N

(N + (γ2
t − 2γ2

t )M)

+
γ2
t σ

2

N
trace(W ′W ′T ), (37)

where 1M = (1, 1, . . . , 1)T is an M -dimensional vector, the

elements of which are 1s, and matrix W ′ is the pseudo

inverse matrix of A′. In the formula, rt is calculated via

ut−M−1
1
T
Mut1M to remove the mean of ut. These modifi-

cations enable the performance of TISTA-MR to be improved

because it attempts to recover a sparse signal with a modified

sensing matrix, the components of which have sufficiently

small means. Note that further performance improvement may

be achieved when we use a modified sensing matrix for which

the means of rows and columns are expected to be zero, as

in [16].

Figure 16 shows the NMSE of the original TISTA and

TISTA-MR for noiseless case in the case of noiseless obser-

vation and SNR = 60 dB. Each element of a sensing matrix

A is generated from N (1, 1/M), where the original AMP has

difficulty in convergence. TISTA-MR outperforms the original

TISTA for which the NMSE saturates around −10 dB in

both cases. In the case of SNR = 60 dB, TISTA-MR scores

−38 dB in the NMSE with about 28 dB gain against TISTA

when T = 10. These numerical results indicate that TISTA-

MR based on mean removal gives drastically improved signal

recovery performance without increasing the time complexity.

B. Sensing matrices with a large condition number

As discussed in the previous section, TISTA exhibits a non-

negligible performance degradation (except for the noiseless
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Fig. 17. NMSE of LISTA, the original TISTA, and TISTA-LMMSE with
(39) (β = 5.0× 10−4); condition number κ = 1000, SNR = 60 dB.

case) when the condition number of the sensing matrix is large.

In this subsection, we present a method for improving the

sparse recovery performance of TISTA in such a case by using

an LMMSE matrix as a linear estimator. A naive approach to

suppress the noise enhancement in linear estimation is to use

the LMMSE matrix

Wt = v2tA
T (v2tAAT + σ2I)−1 (38)

as a linear estimator in TISTA recursions. Note that the error

variance v2t is calculated in a recursive calculation process

of TISTA. Ma and Ping [17] took this approach in their

OAMP experiments. A drawback of this approach is that it

is necessary to calculate an M ×M matrix inversion in (38)

for each iteration, which requires O(M3) time for an iteration.

In order to avoid the matrix inversion for each iteration, we

use a simple ad-hoc solution, and define the matrix W as

W = AT (AAT + βI)−1, (39)

where β is a real constant. We call TISTA with (39) TISTA-

LMMSE. This is the only difference from the original TISTA

using the pseudo inverse matrix of A as W . The term βI
can decrease the condition number of W and prevents noise

enhancement. Matrix inversion is necessary only once at the

beginning of a recovery process. Thus, the required time

complexity of TISTA-LMMSE is the same as that of the

original TISTA. The parameter β is determined to minimize

the value of the NMSE after training.

Figure 17 shows the NMSE curves for the case of κ = 1000,

which includes the NMSE curve of TISTA-LMMSE with (39).

In TISTA-LMMSE, we used the parameter β = 5.0 × 10−4.

From Fig. 17, we can confirm that TISTA-LMMSE exhibits

much better NMSE performance as compared with the original

TISTA using the pseudo inverse matrix in the linear estimator.

This example shows that this simple ad-hoc approach is fairly

effective without additional cost.

VIII. CONCLUSION

The crucial feature of TISTA is that it includes adjustable

variables which can be tuned by standard deep learning tech-

niques. The number of trainable variables of TISTA is equal
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to the number of iterative rounds and is much smaller than

those of the known learnable sparse signal recovery algorithms

[32]–[34]. This feature leads to the highly stable and fast

training processes of TISTA. Computer experiments indicate

that TISTA is applicable to various classes of sensing matrices

such as Gaussian matrices, binary matrices, and matrices

with large condition numbers. Furthermore, numerical results

demonstrate that TISTA shows significantly faster convergence

than AMP or LISTA in many cases and remarkably large

gains compared to OAMP. The experimental results on the

MNIST image set imply that TISTA is also applicable for non-

i.i.d. sparse signals in the real world. In summary, TISTA

achieves remarkable performance improvement for artificial

data and promising flexibility to real data with fast learning

process, high stability, and high scalability using a quite simple

architecture.

For a future plan, by replacing the MMSE shrinkage, we

can expect that TISTA is also applicable to non-sparse signal

recovery problems such as detection of BPSK signals in over-

loaded MIMO systems [48]. Another possibility is to replace

the MMSE shrinkage function with a small neural network

that can learn an appropriate shrinkage function matched to

the prior of the sparse signals. This change could significantly

broaden the target of TISTA.
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