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Abstract—Most of prior works optimize caching policies based
on the following assumptions: 1) every user initiates request
according to content popularity, 2) all users are with the same
activity level, and 3) users are uniformly located in the considered
region. In practice, these assumptions are often not true. In
this paper, we explore the benefit of optimizing caching policies
for base stations by exploiting user preference considering the
spatial locality and different activity level of users. We obtain
optimal caching policies, respectively minimizing the download
delay averaged over all file requests and user locations in
the network (namely network average delay), and minimizing
the maximal weighted download delay averaged over the file
requests and location of each user (namely maximal weighted
user average delay), as well as minimizing the weighted sum of
both. The analysis and simulation results show that exploiting
heterogeneous user preference and activity level can improve user
fairness, and can also improve network performance when users
are with spatial locality.

I. INTRODUCTION

By caching popular contents at base stations (BSs), user

experience, network throughput, and energy efficiency can be

improved remarkably [1–3].

To achieve high performance with limited cache size at

wireless edge, optimizing proactive caching is critical by

harnessing the knowledge of which and where the contents

will be requested. In an early work [4], caching policy was

optimized to minimize the average download delay assuming

that the exact location where each user sends the file request is

known a priori. Considering the uncertainty in where the users

will send requests, a probabilistic caching policy maximizing

the cache-hit probability was proposed in [5]. In the literature

of wireless caching, the knowledge of which contents will be

demanded is commonly interpreted as content popularity. As

a result, most of prior works optimize caching policies based

on content popularity [4–10].

However, as a demand statistic of multiple users, content

popularity cannot reflect the demand statistic of each individ-

ual user. In fact, global content popularity observed at a large

aggregation point (say a content server) cannot reflect local

content popularity observed in a small region (say a campus

[11] or a cell [12]), not to mention the preference of each user.

These existing works implicitly assume that the preferences are

identical among users in a region [4–9] or in a social group

This work was supported in part by National Natural Science Foundation
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[10] and are equal to the content popularity. This inevitably

degrades the caching gain, since the assumption is not true in

practice.

In real-world networks, user preferences are heterogeneous,

which can be learned from collaborative filtering (CF) based

on users’ rating or request history [13]. By assuming user

preferences as Zipf distributions with different ranks, caching

policy was optimized to minimize the average download delay

in [14]. Yet the user locations were assumed unchanged during

the period of content placement and content delivery and all

the users were assumed to have identical activity level. In prac-

tice, the location of mobile users is neither known in advance

as assumed in [1, 4, 7, 14], nor completely unknown (hence

randomly distributed throughout the network) as assumed in

[5, 6, 8, 9]. The data measured from mobile connections in [15,

16] showed that more than one third of the users visit only

one cell and over 90% of the users travel across less than

10 BSs in one day, which indicates strong spatial locality of

users. This suggests that the probability that a user is located

in a cell when sending file request can be learned from the

request history. Moreover, the activity level of users is highly

heterogeneous, e.g., about 80% of the daily network traffic is

generated by only 20% of the users [16].

In this paper, we analyze when optimizing caching policy

with individual user preference is beneficial. Taking the spatial

locality and different activity levels of users into account,

we first derive the average delay for each user. We then

minimize the network average delay, and show that exploiting

user preference can improve network performance when users

send requests with high probabilities in some cells. Noticing

that user fairness issue appears when different users prefer the

BSs to cache different files due to diverse user preference, we

minimize the maximal weighted average delay among all the

users, and show that caching policy can improve user fairness

when user preferences are exploited.

The rest of the paper is organized as follows. In section II,

we first introduce the system model, caching policy, and then

connect content popularity with user preference. In section

III, we optimize the caching policy with user preference,

show when using user preference is beneficial, and use a

toy example to help understand the impact of user preference

heterogeneity. In section IV, simulation results are provided.

Section V concludes the paper.
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II. SYSTEM MODEL AND USER DEMAND STATISTICS

We consider a cache-enabled wireless network with cell

radius D, where Nb BSs serve Nu users. Each BS is equipped

with Nt antennas and a cache with size Nc, and is connected to

the core network via backhaul. The content library consists of

Nf files each with size F that all the users in the considered

region may request. Each user is allowed to associate with

one of the three nearest BSs (called neighboring BS set) to

download the requested file in order to increase the cache-

hit probability. For example, when a user is located in the

shaded area of Fig. 1, it can associate with BS1, BS2 or BS3,

where BS1 is called the local BS of the user.1 To avoid strong

inter-cell interference inside the neighboring BS sets, the BSs

within the neighboring BSs set use different frequency bands

as shown in Fig. 1. To reflect the spatial locality of each user,

we denote A = [auj ]Nu×Nb
as the location probability matrix,

where auj is the probability that the uth user is located in the

jth cell when it sends file request. Since the exact location of

users in a cell is hard to predict, we assume that the user is

uniformly located within a cell when it is located in the cell.
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Fig. 1. Layout of the cache-enabled network. The considered region are
surrounded by solid line. In this example, Nb = 7.

A. Caching Policy and Download Delay

To achieve better performance, we employ coded caching

strategy [4, 9] where each file is encoded by rateless maximum

distance separable coding so that a file can be retrieved by a

user when F bits of the requested file is received by the user.

Denote cbf (0 ≤ cbf ≤ 1) as the fraction of the f th file cached

at the bth BS, and blu as the lth nearest BS of the uth user

when the user receives file at the location of xu = (xu1, xu2).

When
∑k−1

l=1 cbluf < 1 and
∑k
l=1 cbluf ≥ 1, the uth user

needs to receive the f th file from the 1st, · · · , kth nearest

BSs2 successively to retrieve the complete file. Then, the delay

of the uth user that locating at xu and downloading the f th

1The framework can be extended to neighboring BS sets with any number
of BSs. We choose three only for illustration.

2To unify the expression, we refer the backhaul to as the 4th nearest “BS”.

file averaged over small-scale fading can be expressed as a

piecewise function

tfu(xu) =















tf1u (xu), cb1uf ≥ 1

tf2u (xu),
∑1

l=1 cbluf < 1 and
∑2

l=1 cbluf ≥ 1

tf3u (xu),
∑2

l=1 cbluf < 1 and
∑3

l=1 cbluf ≥ 1

tf4u (xu),
∑3

l=1 cbluf < 1
(1)

where

tfku (xu) = F

k−1
∑

l=1

cblufτublu(xu) + F
(

1−
k−1
∑

l=1

cbluf

)

τubku(xu)

(2)

and τublu(xu) is the per-bit download delay of the uth user

when downloading from its lth nearest BS averaged over

small-scale fading.

We assume block Rayleigh fading channel, which is con-

stant in each block and independently and identically dis-

tributed among blocks. Then, the per-bit download delay can

be derived as [14]

τublu(xu) =
1

R̄ublu(xu)
(3)

where R̄ub(xu) is the achievable rate averaged over small-

scale fading for the uth user that downloading from the bth
BS. To unify the expression, we denote the download delay

when the uth user downloading from the backhaul as τub4u .

Since cache is intended for networks with stringent capacity

backhaul [1], we assume that the download delay is limited

by the backhaul bandwidth when the user downloads file from

the backhaul. Then, we have τub4u = 1
Cbh,u

, where Cbh,u is the

backhaul bandwidth for the uth user.

To emphasize how to optimize caching policy exploiting

user preference, we assume that each BS serves Nt users in the

same time-frequency resource by zero-forcing beamforming

with equal power allocation, then the average achievable rate

can be expressed as

R̄ub(xu)= Eh

[

Wu log2

(

1+
Pt
Nt
hubr

−α
ub

∑
b′∈Φ(b),b′ 6=b Pthub′r

−α

ub′+σ
2

)]

(4)

where Wu is the transmission bandwidth for the uth user,

Pt is the transmit power of each BS, hub is the equivalent

channel gain (including channel coefficient and beamforming)

from the bth BS to the uth user, rub = ||xu − xb|| is the

distance between the uth user and the bth BS, α is the

pathloss exponent, Φb denotes the set of BSs that share the

same frequency with the bth BS, σ2 is the noise power,
Pt

Nt
hubr

−α
ub and

∑

b′∈Φ(b),b′ 6=b Pthub′r
−α
ub′ are the signal power

and interference power, respectively.

B. Content Popularity and User Preference

We denote p = [p1, · · · , pNf
] as global content popularity,

where pf is the probability that the f th file is requested by

all users in the considered region. We denote pf |j as the local

content popularity of the f th file in the jth cell, which is the

probability that the f th file is requested by all users in the jth
cell and reflects the user demands observed within a cell.



We denote Q = [qT1 , · · · ,qTNu
]T as user preference matrix,

where qu = [q1|u, · · · , qNf |u] is the preference of the uth

user and qf |u ∈ [0, 1] is the conditional probability that the

uth user requests the f th file given that it requests a file. User

preference reflects the demands of each individual user.

Based on the law of total probability, the global content

popularity can be connected with user preference as

pf =

Nu
∑

u=1

suqf |u ,

Nu
∑

u=1

quf (5)

where su is the probability that the request is sent from the uth

user, which reflects the activity level of the user, and quf is the

joint probability that the requested file is the f th file and the

request is sent from the uth user. We denote s = [s1, · · · , sNu
]

as the user activity level vector.

Further considering the user location probability A, the

local content popularity of the f th file in the jth cell can

be connected with user preference as

pf |j =

∑Nu

u=1 aujsuqf |u
∑Nf

f=1

∑Nu

u=1 aujsuqf |u
=

∑Nu

u=1 aujquf
∑Nu

u=1 aujsu
(6)

Both Q and s can be learned by CF at a service gateway

[17, 18], which are assumed perfect in the following analysis.

III. CACHING POLICY OPTIMIZATION WITH USER

PREFERENCE

In practice, the exact location where each user sends the file

request is unknown in advance when optimizing the caching

policy. Therefore, we first derive the delay of each user

averaged over its possible locations and file requests.

To derive the user average delay, we divide each cell into 12

sectors as shown in Fig. 1. In this way, the lth nearest BS of

the uth user, i.e., blu, does not depend on xu any more given

that the user is located in the ith sector of the jth cell. Then,

based on the law of total expectation, the average delay of the

uth user can be obtained by the following proposition

Proposition 1: The download delay of the uth user averaged

over all its possible requests and locations is

t̄u=

Nb
∑

j=1

12
∑

i=1

Nf
∑

f=1

aujqf |u
12

max
k=1,··· ,4

{

F τ̄uk−F
k−1
∑

l=1

cbl
ij
f (τ̄uk − τ̄ul)

}

(7)

where τ̄ul ≈ 2
√
3

WuD2

∫D

0

∫

x2√
3

0
1

log2
kx
ky

+ 1
ln 2 (ψ(θx)−ψ(θy))

dx1dx2

is the per-bit download delay of the uth user when down-

loading from the lth nearest BS averaged over the uth user’s

location, kx, ky, θx and θy are given in the Appendix.

Proof: See Appendix.

A. Caching Policy Optimization

Network average delay is the delay averaged over the

requests of all the users in the considered region. This is

a performance metric from the network perspective and is

widely used in literature [4, 10, 14], which can be expressed

as T =
∑Nu

u=1 sut̄u.

To capture user fairness, we consider the weighted user

average delay max
u=1,··· ,Nu

{wut̄u}. Considering that the users

with more file requests will suffer more if they have longer

delay, we can set wu as an increasing function of the user

activity level su. As an illustration, we set wu = Nusu in

the sequel. Then, the weighted user average delay can be

expressed as wu t̄u = Nusu t̄u.

To improve both network performance and user fairness,

we formulate the following general optimization framework

minimizing the weighted sum of these two metrics as

min
cbf

(1− η)T + η max
u=1,··· ,Nu

{Nusu t̄u} (8a)

s.t.

Nf
∑

f=1

cbf ≤ Nc, ∀b (8b)

0 ≤ cbf ≤ 1, ∀f, b (8c)

By changing the value of η from 0 to 1, we can obtain

the caching policy from minimizing the network average

delay (refer to as Problem 1) to minimizing the maximal

weighted user average delay (refer to as Problem 2). By

introducing auxiliary variables µufij and ν, which are up-

per bounds of {τ̄ul −
∑k−1

l=1 cblijf (τ̄uk − τ̄ul)}k=1,··· ,4 and

{Nusu t̄u}u=1,··· ,Nu
, respectively, we can convert the problem

equivalently into

min
cbf ,µ

uf
ij
,ν

(1 − η)
F

12

Nb
∑

j=1

12
∑

i=1

Nf
∑

f=1

(

Nu
∑

u=1

aujquf

)

µufij + ην (9a)

s.t. τ̄uk −
k−1
∑

l=1

cbl
ij
f (τ̄uk − τ̄ul) ≤ µufij , ∀ i, j, u, f, k (9b)

Nu

Nb
∑

j=1

12
∑

i=1

Nf
∑

f=1

aujqufµ
uf
ij ≤ ν, ∀u (9c)

Nf
∑

f=1

cbf ≤ Nc, ∀b (9d)

0 ≤ cbf ≤ 1, ∀f, b (9e)

which is a linear programming problem and can be solved

by interior point method [19]. We refer the optimal caching

policies for Problem 1 and Problem 2 to as Policy 1 and Policy

2, respectively.

B. Analysis for Special Cases

Since transmission and caching resource allocation operated

in very different time-scales, to focus on the difference brought

by exploiting user preference, we consider the special cases

where transmission resources are identical for each user (i.e.,

τ̄1l = · · · = τ̄Nul , τ̄l) in the following. Depending on

whether the coverage areas of BSs are overlapped, we analyze

Policy 1 and Policy 2 in two scenarios.

No matter the coverage of adjacent BSs overlap or not, we

can obtain Corollaries 1 and 2 in the following.



Corollary 1: When each user sends request in uniform-

distributed locations throughout the network, exploiting user

preference cannot improve network average delay.

Proof: In this case, we have au1 = · · · = auNb
= 1

Nb
,

τ̄1l = · · · = τ̄Nul, and µ1f
ij = · · · = µNuf

ij , µfij . Then, the

first term in (9a) can be rewritten as

F

12Nb

Nb
∑

j=1

12
∑

i=1

Nf
∑

f=1

(

Nu
∑

u=1

quf

)

µfij =
F

12Nb

Nb
∑

j=1

12
∑

i=1

Nf
∑

f=1

pfµ
f
ij

where we use the relation in (5). We can see that the network

average delay only depends on global content popularity pf .

Corollary 2: When the location probabilities and prefer-

ences are identical for all users, Policies 1 and 2 are identical.

Proof: In this case, since τ̄1l = · · · = τ̄Nul, a1j = · · · =
aNuj for all j, and qf |1 = · · · = qf |Nu

for all f , we can see

from (7) that the average delay of each user is identical, i.e. ,

t̄1 = · · · = t̄Nu
, t̄. Then, both Problem 1 and Problem 2 are

equivalent to minimizing t̄.
From the corollaries we can conclude that if the transmis-

sion resources are identical for all users, the gain of exploiting

user preference in terms of network average delay will vanish

without user spatial locality. If location distributions and

preferences are further identical for all users, the maximal

weighted user average delay can be minimized by simply

minimizing the average network delay.

In sparse networks where the coverage of adjacent BSs do

not overlap, the average delay of the uth user degenerates into

t̄u = F

Nb
∑

j=1

Nf
∑

f=1

aujqf |u(cjf τ̄1 + (1 − cjf )τ̄4) (10)

Corollary 3: When the coverage areas of BSs are non-

overlapped, Policy 1 is to let each BS cache the most popular

files according to local content popularity.

Proof: In this case, considering (6) and (10), we can

obtain T = F
∑Nb

j=1(
∑Nu

u=1 aujsu)(
∑Nf

f=1 pf |j(cjf τ̄1 + (1 −
cjf )τ̄4)). Then, minimizing T is equivalent to minimizing
∑Nf

f=1 pf |j(cjf τ̄1 +(1− cjf )τ̄4) for each cell, j = 1, · · · , Nb,
which can be rewritten as

∑Nf

f=1 pf |j τ̄4 −
∑Nf

f=1 pf |jcjf (τ̄4 −
τ̄1). Since τ̄4 > τ̄1, it is easy to see that the optimal caching

policy is to let each cell cache the Nc complete files with the

highest values of pf |j .
Corollary 4: When the coverage areas of BSs are non-

overlapped and user preference is identical, Policy 1 and Policy

2 are the same.

Proof: In this case, t̄u = aujF
∑Nb

j=1

∑Nf

f=1 pf (cjf τ̄1 +
(1− cjf )τ̄4). Then, both minimizing maxu=1,··· ,Nu

{Nusut̄u}
and minimizing T =

∑Nu

u=1 su t̄u are equivalent to minimizing
∑Nb

j=1

∑Nf

f=1 pf (cjf τ̄1+(1− cjf )τ̄4). Therefore, Policy 1 and

Policy 2 are the same.

From Corollary 3 and Corollary 4, we can conclude that

if the transmission resources are identical for users and the

cells are not overlapped, using local content popularity will be

enough to obtain the minimal network average delay as used

in [12, 18]. Otherwise, user preference should be exploited

to minimize the network average delay. If user preference is

further identical, the maximal weighted user average delay

can be minimized by simply minimizing the average network

delay. Otherwise, caching policies should be designed more

sophisticatedly to address user fairness issue.

C. Numerical Examples

To understand the behavior of Policy 1 and Policy 2,

and analyze the impact of heterogeneous user preference, we

present a simple numerical example as shown in Fig. 2.

BS1 BS2
UE2UE1

Fig. 2. A toy example, Nb = Nu = 2. The total number of files is Nf =
3 with size F = 1 and each BS can cache Nc = 1 file. Global content
popularity is p = [0.46, 0.30, 0.24] and activity level is s = [0.6, 0.4].

Suppose each user can either associate with BS1 or BS2

to download files, and the average per-bit download delay

when downloading from the nearest BS, second nearest BS

and the backhaul is [τ̄u1, τ̄u2, τ̄u4] = [1, 2, 3] for both user

equipments (UEs). We compare two cases with homogeneous

and heterogeneous user preference, respectively, where both

Qhom and Qhet satisfy (5) with given p and s.

Qhom =

[

0.46 0.30 0.24
0.46 0.30 0.24

]

, Qhet =

[

0.75 0.25 0
0.02 0.38 0.60

]

For homogeneous user preference Qhom, we can obtain the

results of Policy 1 C1 and the minimized network average

delay T ∗, the results of Policy 2 C2 and the minimized

maximal weighted user average delay max{Nus1t̄†1, Nus2t̄†2}
as

C1 =

[

1 0 0
0 1 0

]

, T ∗ = s1t̄
∗
1 + s2t̄

∗
2 = 1.07 + 0.77 = 1.84

C2 =

[

1 0 0
0 1 0

]

, max{Nus1t̄†1, Nus2 t̄†2} = 2.13

In this case, the cache interests of both users are exactly the

opposite, i.e., UE1 prefers its local BS (i.e., BS1) to cache its

most preferable file (i.e., file 1) and its neighboring BS (i.e.,

BS2) to cache its second preferable file (i.e., file 2), while UE2

prefers BS2 to cache file 1 and BS1 to cache file 2 according

to its own preference. Since UE1 has higher activity level, both

Policies 1 and 2 let BSs cache file according to UE1’s cache

interest and C1 = C2, which agrees with Corollary 2.

For heterogeneous user preference Qhet, we can obtain

C1 =

[

1 0 0
0 0 1

]

, T ∗ = s1t̄
∗
1 + s2t̄

∗
2 = 0.90 + 0.71 = 1.61

C2 =

[

1 0 0
0 0.57 0.43

]

, max{Nus1t̄†1, Nus2t̄†2} = 1.63

In this case, UE1 prefers BS1 to cache file 1 and BS2 to

cache file 2, while UE2 prefers BS2 to cache file 3 and BS1



to cache file 2. As a result, Policy 1 lets each BS cache the

most preferable file of its local user, i.e. BS1 caches file 1 and

BS2 caches file 3. As the user with higher activity level, UE1

has the maximal weighted average delay (i.e., 0.90 > 0.71).

Hence, Policy 2 is more prone to let BSs cache the files pre-

ferred by UE1, i.e., let BS2 cache 0.57 part of file 2 and 0.43
part of file 3. We can see that both the average network delay

and the maximal weighted average delay decrease compared

to the case with homogeneous user preference, which can be

explained from the following different perspective.

When user preference become heterogeneous, the most

preferable files of users located in different cells differ. File

diversity (i.e., caching different files at different BSs) can

be naturally achieved by letting each BS cache the most

preferable file of its local user, which increases the cache-hit

probability. On the contrary, when user preference is identical,

there will be no file diversity if each BS caches the most

preferable file of its local user, and to achieve file diversity,

the cache interest of UE2 has to be sacrificed.

With given content popularity, the skewness of both users’

preferences increase (i.e., the shape of probability distribu-

tion [0.75, 0.25, 0] and [0.02, 0.38, 0.60] are more “peaky”

than [0.46, 0.30, 0.24]) when user preferences are less similar,

which means that the file requests of users become less

uncertain. Analogously to the widely recognized result that

the performance of content popularity based caching policies

improves with the skewness of popularity, the performance

of user preference based caching policies improves with the

skewness of user preference.

IV. SIMULATION RESULTS

In this section, we compare the performance of the proposed

caching policies with prior works that are based on content

popularity, and analyze the impact of various factors by

simulation.

We consider Nb = 7 cells each with radius D = 250 m as

shown in Fig. 1, and Nu = 100 users. Each BS is with four

antennas and with transmit power 46 dBm. The pathloss is

modeled as 35.5 + 37.6 log10(rub). The backhaul bandwidth

and the downlink transmission bandwidth for each user are

set as Cbh,u = 2 Mbps and Wu = 5 MHz, respectively. The

probability distribution for the users located in different cells

when sending requests is modeled as Zipf distribution with

skewness parameter δa = 1 based on the measured data in

[15]. To analyze the impacts of user preference and activity

level and fairly compare with prior works, we generate user

preferences satisfying the relation in (5) with different level

of cosine similarity as defined in [17]. To reduce simulation

time, we consider Nf = 100 files in total each with size of

F = 30 MB. We assume that each BS can cache 10% of the

total files, i.e., Nc = 10. The global content popularity and

the activity level are modeled as Zipf distribution with the

skewness parameter δp = 0.6 and δs = 0.4, respectively.

The following baselines are compared with Policy 1 and

Policy 2, where the activity levels and user preferences are

implicitly assumed identical when designing caching policies

for baselines 1) and 3):

1) “Global Pop”: Each BS caches the Nc most popular files

according to the global content popularity pf .

2) “Local Pop”: Each BS caches the Nc most popular files

according to the local content popularity within its cell

pf |j given by (6). This is the method used in [12, 18].

3) “Femtocaching (Pop)”: This is the caching policy pro-

posed in [4] minimizing the network average delay, which

is based on global content popularity assuming that user

location is fixed.

4) “Femtocaching (Pref)”: We modify the caching policy

in [4] to exploit user preference by simply replacing the

global content popularity pf by user preference qf |u.
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Fig. 3. Impact of user preference similarity.

In Fig. 3(a), we show the impact of user preference similar-

ity on the network average delay (in seconds). It is shown that

“Local Pop” can reduce network average delay compared with

“Global Pop” when user preferences are heterogeneous. The

network average delay of “Femtocaching (Pref)” is even higher

than that of “Femtocaching (Pop)” when user preference is

less similar. This is because “femtocaching” method does not

consider the uncertainty of user location, which has large

impact when user preference is less similar. The network

average delay of Policy 1 is the lowest as expected, which

increases with the preference similarity. This coincides with

the results of numerical example in Section III-B.

In Fig. 3(b), we show the impact of user preference similar-

ity on the maximal weighted user average delay (in seconds).

We can see that Policy 2 can reduce 60% of the maximal

weighted user average delay compared with “Global Pop”.

Similar to Fig. 3(a), the maximal weighed download delay of

“Femtocaching (Pref)” is higher than “Femtocaching (Pop)”.

The maximal weighted user average delay of Policy 2 is

the lowest, which increases with the preference similarity.

The explanations are similar to those for numerical results

in Section III-B.

In Fig. 4, we show the impact of spatial locality on the two

performance metrics. We can see that the benefit of exploiting

user preference increases with spatial locality of users. Without

spatial locality (i.e., δa = 0), the network performance does
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Fig. 4. Impact of spatial locality of users. The similarity of user preference
is 0.1.

not benefit from exploiting user preference while user fairness

can still be improved when comparing Policies 1 and 2 with

“Femtocaching (Pop)”, respectively.
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Fig. 5. Tradeoff between performance and user fairness. The similarity of
user preference is 0.1.

In Fig. 5, we show the tradeoff between network average

download and maximal weighted average download delay by

solving problem (8) with different values of η. It is shown

that when η is set between 0 and 0.25, the optimal solution

achieves lower network average delay and better user fairness

than the baseline policies at the same time.

V. CONCLUSION AND DISCUSSION

In this paper, we strived to investigate when and how

optimizing caching policy with user preference is beneficial.

We showed that the network average delay can be reduced

when users are with spatial locality, and user fairness can

be improved when user preferences are heterogeneous. Sim-

ulation results showed that network performance and user

fairness can even be improved at the same time compared

with prior works by exploiting heterogeneous user preference

and activity level with spatial locality. With given content

popularity, the performance gain comes from the facts that

cache-hit probability can be improved with less sacrifice of

users’ cache interests and user demands become less uncertain

with more heterogeneous user preference.

It is worthy to mention that learning individual preference

of a large number of users can be more computational complex

than learning content popularity, and informing the predicted

user preference to BSs may incur overhead. In practice, user

preference can be learned not very frequently (say each day) at

a service gateway or even at a content server that has abundant

computing resource. Nevertheless, to harness the benefit of

user preference based caching policy, it is worthwhile to

investigate how to reduce the complexity and overhead.

APPENDIX

Based on the law of total expectation, the average delay of

the uth user can be expressed as

t̄u = Ef,xu

[

tfu(xu)
]

=

Nf
∑

f=1

Nb
∑

j=1

12
∑

i=1

auj
12

Exu

[

tfu(xu)|ij
]

(11)

where Exu

[

tfu(xu)|ij
]

is the average delay of the user con-

ditioned on that it is located at the ith sector of the jth cell

and requesting the f th file, and
auj

12 is the probability that the

uth user is located at the ith sector of the jth cell. Further

considering (1), we can obtain

Exu

[

tfu(xu)|ij
]

= Exu

[

tfku (xu)|ij
]

(12)

when
∑k−1

l=1 cblijf < 1 and
∑k

l=1 cblijf ≥ 1, where blij is the

lth nearest BS when the user is located in the ith sector of the

jth cell. From (2), we can obtain

Exu

[

tfku (xu)|ij
]

= F τ̄uk − F

k−1
∑

l=1

cbl
ij
f (τ̄uk − τ̄ul) (13)

where τ̄ul , Exu
[τubl

ij
(xu)|ij] is the per-bit delay from the

lth nearest BS averaged over user location given that the user

is located in the ith sector of the jth cell.

Since the average delay increases with the distance between

user and BS, we have τ̄uk > τ̄u(k−1). Further considering the

expressions of (12) and (13), similar to the proof of [4, Lemma

6], we can rewrite (12) as

Exu

[

tfu(xu)|ij
]

= max
k=1,··· ,4

{Exu

[

tfku (xu)|ij
]

} (14)

Due to the symmetry of the network topology, τ̄ul does not

depend on i and j but only depend on l and u. Without loss

of generality, we derive the average download delay from the

three nearest BSs when the uth user located in the shadow

area in Fig. 1. From (3), by taking the expectation over xu
within the shadow area, we have

τ̄ul = 2
√
3W−1

u D−2

∫ D

0

∫

xu2√
3

0

R̄ul(xu)
−1dxu1dxu2 (15)

Since the interference term in (4) is a weighted sum of

Gamma distributed random variables hub′ ∼ G(Nt, 1/Nt),
with different values of weight r−αub′ , R̄ul(xu) has no closed-

form expression and the computation requires a |Φl|-fold

numerical integration that is of high complexity. To reduce

computational complexity, we obtain an approximate τ̄ul for

high signal-to-noise ratio (SNR) region.



When Pt

σ2 → ∞, we can neglect the impact of σ2 and (4)

can be derived as

R̄ub(xu) =WuEh[log2X ]−WuEh[log2 Y ]

≈WuEh[log2 X̂ ]−WuEh[log2 Ŷ ]

=Wu

(

log2
kx
ky

+ 1
ln 2 (ψ(θx)− ψ(θx))

)

(16)

where X = hubr
−α
ub + Nt

∑

b′∈Φ(b),b′ 6=b hub′r
−α
ub′ , Y =

Nt
∑

b′∈Φ(b),b′ 6=b hub′r
−α
ub′ , and we approximate X and Y as

Gamma distributed random variables X̂ ∼ G(kx, θx) and Ŷ ∼
G(ky, θy), respectively, which is accurate as shown in [20].

The last equation is from E[ln X̂ ] = ψ(kx)+ln(θx). By match-

ing the first two moments of X and X̂ , we can obtain kx =
(r−α

ub
+Nt

∑
b′∈Φ(b),b′ 6=b

r
−α

ub′ )
2

r
−2α
ub

+Nt

∑
b′∈Φ(b),b′ 6=b

r
−2α

ub′
, θx =

r
−2α
ub

+Nt

∑
b′∈Φ(b),b′ 6=b

r
−2α

ub′

r
−α
ub

+Nt

∑
b′∈Φ(b),b′ 6=b

r
−α

ub′
,

ky =
Nt(

∑
b′∈Φ(b),b′ 6=b

r
−α

ub′ )
2

∑
b′∈Φ(b),b′ 6=b

r
−2α

ub′
, and θy =

∑
b′∈Φ(b),b′ 6=b

r
−2α

ub′∑
b′∈Φ(b),b′ 6=b

r
−α

ub′
.

Then, by substituting (16) into (15) and then into (13) and

further considering (14) and (11), Proposition 1 can be proved.
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