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Abstract—In this paper, the performance of multi-user
Multiple-Input Multiple-Output (MIMO) systems is evaluated in
terms of SINR and capacity. We focus on the case of a downlink
single-cell scenario where different precoders have been studied.
Among the considered precoders, we range from different Grid
of Beams (GoB) optimization approaches to linear precoders
(e.g., matched filtering and zero forcing). This performance
evaluation includes imperfect channel estimation, and is carried
out over two realistic mmWave 5G propagation channels, which
are simulated following either the measurement campaign done
by New York University (NYU) or the 3GPP channel model.
Our evaluation allows grasping knowledge on the precoding
performance in mmWave realistic scenarios. The results highlight
the good performance of GoB optimization approaches when a
realistic channel model with directionality is adopted.

Index Terms—Millimeter-wave, multi-user MIMO, 5G, inter-
ference optimization, linear precoder, grid of beams.

I. INTRODUCTION

The volume of mobile data is continuously increasing,
especially with high capacity applications that are emerging
together with the next generation (i.e., 5G) of cellular commu-
nications [1]. As an enabler for these capacity-intensive appli-
cations, the millimeter wave (mmWave) band (approximately
between 10 and 300 GHz) has been identified as a promising
candidate for future mobile communications [2]. In addition
to the use of mmWave frequencies, another major aspect of
the new mobile generation is the densification of the network
applying small cells in large numbers. Furthermore, Multi-
User (MU) massive Multiple-Input Multiple-Output (MIMO)
systems became of high interest as they contribute to reaching
the 5G high demands (e.g., in terms of rates and densities), due
to their ability to greatly increase network capacity [3]. For
this reason, it is important to study and evaluate MU massive
MIMO systems over 5G mmWave propagation channels. By
exploiting such technologies, data transmission rates are ex-
pected to increase in the Radio Access Network (RAN), and
a more efficient use of the radio spectrum can be achieved.

The purpose of MU MIMO systems is to account for
channel scattering and reflections, thus exploiting the spatial
dimension and creating multiple beams of the signal in the
direction of the User Equipments (UEs), so that each user
can benefit from the whole allowed bandwidth at any time
instant. This can be achieved by precoding the information at
the Next Generation Node Base (gNB) side. Using a precoder,
data is distributed on the different antenna elements of the

gNB in order to perform beamforming of information toward
the served UEs.

Many works in the literature focused on the evaluation of
precoding techniques for MU mmWave systems with massive
MIMO. The closest works to ours are [4]–[7]. In [4], massive
MIMO was proposed and studied under the ideal condition
of almost infinite antennas. In [5], precoding techniques such
as Minimum Mean Square Error (MMSE), Matched Filtering
(MF) and Zero Forcing (ZF) were studied under the assump-
tion of a Rayleigh channel model and under the condition of
perfect Channel State Information (CSI) acquisition. In [6],
channel estimation errors were introduced to estimate the
implementation loss in terms of precoding gain, whereas in
[7] the authors link the precoding performance with channel
correlation. Finally, a recent piece of work [8] uses a realistic
channel model to perform an evaluation of a MU system
in terms of bit error rate as a function of the number of
antenna elements used at the transmitter side, while however
overlooking the effect of different precoding strategies and
channel estimation errors.

From the literature, it emerges that linear precoding schemes
can be used to reach high performance under ideal assump-
tions. Less known is however their performance when re-
alistic channel models are considered. To be precise, under
a Rayleigh fading model, it is known that MMSE performs
appreciably better in terms of balancing the resources among
the UEs acting as a trade-off between MF and ZF approaches.
However, the Rayleigh fading model oversimplifies the chan-
nel characterization, resulting in a channel model that does not
reflect the real mmWave propagation specifics.

In 3GPP NR systems, the exploitation of mmWave fre-
quency bands (both at 28 GHz and at 60 GHz) for the next
generation of mobile communications is currently defined [9].
Within the standard, different types of CSI feedback mecha-
nisms have been included to support MIMO transmissions. In
particular, release 15 includes Type-I and Type-II codebook
CSI feedback, enabling different trade-offs between CSI res-
olutions and feedback overhead [10]. More precisely, when a
Type-I CSI feedback scheme is adopted, the UE feeds back the
index of a vector taken from a suitable oversampled DFT code-
book that best approximates the dominant eigenvector of the
channel matrix; conversely, when Type-II CSI is adopted, the
feedback is composed of a linear combination of two or more
(up to 4 per polarization) vectors taken from the oversampled
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Figure 1: Illustration of the mmWave system model considered (bottom) and
representation of the channel model used for each link in the framework (top).

DFT codebook. In this latter case, both the indices of the
chosen vectors and the linear combination coefficients are fed
back to gNB. Finally, it is worth observing that the accuracy of
a Type-II CSI feedback scheme is larger, and so is the resulting
overhead [11]. The reason behind such mechanisms is to be
found in the attempt to reduce the amount of CSI acquisition
overhead while exploiting MIMO advantages, such as spatial
multiplexing and beamforming. Although at the moment full
CSI1 is not included in the standard, ongoing discussions are
attempting to assess the trade-off between precoding gain and
overhead cost.

Differently from the prior art, the objective of this study
is twofold. First, we aim at evaluating the performance of
diverse precoders when a realistic channel is considered,
where “realistic” denotes both the adoption of a channel
model supported by experimental evidence and the inclusion
of CSI imperfections. Second, we compare the aforementioned
linear precoders against Grid of Beams (GoB) optimization
approaches, with the goal of assessing the gain of linear
precoders overs simpler (and less demanding in term of CSI)
GoB approaches.

As reported in Figure 1, we consider a scenario with both a
realistic sectorization and an antenna array radiation pattern, as
suggested by the 3GPP specifications in [12]. Moreover, two
measurement-based realistic channel models are considered,
one from New York University (NYU) [13] and one from
3GPP as suggested in [14], both used to evaluate and compare
the performance of different precoders.

Notation: In this paper, column vectors and matrices
are respectively denoted by boldface lowercase and uppercase
letters. We identify with XH the conjugate transpose of X, and
the Frobenius norm is denoted ‖·‖F while the Euclidean norm
is denoted as ‖ · ‖. The set of all complex numbers is denoted

1According to the 3GPP terminology, the term full CSI is known as explicit
CSI.

by C, with CN×1 and CN×M being the generalizations to
vectors and matrices, respectively. The M×M identity matrix
is written as IM and the zero matrix of size NT×M is denoted
as 0NT×M . Finally, we generally indicate with X̂ the Frobenius
normalized matrix of X.

II. SYSTEM MODEL

We consider a narrowband single-cell downlink multi-user
MIMO mmWave system where a single gNB sector with
NT transmit antennas is serving M single-antenna UEs.2

The channel to the m-th user is assumed narrowband and is
described by the vector of coefficients hm ∈ CNT×1, and its
j-th element describes the channel response between the j-
th transmitting antenna element and the receive antenna. This
input-output relationship can be described as

ym = hHmx + nm, m ∈ {1, 2, . . . ,M} (1)

where x is the NT×1 transmitted vector signal, ym ∈ C is the
received signal, and nm is the noise term. Assuming to use
a precoder, the transmitted vector signal is x =

∑M
i=1 wisi,

where si is the data symbol and wi is the NT × 1 linear
precoding vector.

Aggregating together the precoding vectors of all the
M UEs we can define the precoding matrix W =
[w1, . . . ,wM ] ∈ CNT×M . We note that, in order to respect the
power constraint E

[
‖Ws‖2

]
= 1, we normalize the precoding

matrix with the Frobenius norm as follows Ŵ = W
‖W‖F

. Using
this notation, it is possible to write the system input-output
equation as

y = HHŴs + n (2)

where y, s and n are vectors with dimension M × 1, while
channel matrix H is defined in CNT×M .

Finally, we define H̄(p) as the M ×M equivalent matrix
obtained with the product

H̄(p) = HHŴ(p) (3)

where superscript p is used to identify the different precoding
approaches evaluated as described in the following.

A. Channel Models

In our evaluation, MIMO channel vectors h are generated
according to three distinct statistical channel models. The first
model under analysis is a standard Rayleigh fading channel
model; the second is derived from a set of extensive measure-
ment campaigns in New York City by NYU–Wireless [13]; the
last model considered is the one provided by the 3GPP [14],
which was obtained from multiple measurement campaigns
from different research groups all around the world. For this
study, we adopt the channel model with the settings of the
Urban Macro (UMa) scenario.

Both the realistic models (i.e., NYU and 3GPP) are based
on the WINNER II channel characterization [15], and consider

2We note that the number of UEs that can be simultaneously supported by
the gNB sector is less than or equal to the number of antenna elements, i.e.,
M ≤ NT.



macro-level scattering paths and sub-paths. Some minor differ-
ences are present in the settings of the models, nevertheless,
a major difference is identified in the number of paths and
sub-paths considered. The NYU characterization has higher
directionality obtained by assuming a smaller number of paths.
To be precise, the NYU model considered a maximum of
4 main paths (defined as clusters), while the 3GPP channel
model can reach a maximum of 20 clusters in Non Line of
Sight (NLoS) conditions. Here, by directionality, we mean
the ability of the channel and beamforming, to focus the
power in a specific direction. Together with the channel,
also a measurement-based distance-dependent path loss model
is considered with Line of Sight (LoS), NLoS and outage
conditions.

At the transmitter side, we model the antenna of the consid-
ered sector as a Uniform Planar Array (UPA). In this manner,
the beamforming can be performed in both the azimuth and
elevation dimensions. Furthermore, we precisely model each
element radiation pattern following the 3GPP specifications
in [12] and [14], as done in our previous work [16]. We
consider the superposition of element radiation pattern and
array factor in order to gather a precise knowledge of the
array radiation effects due to beamforming. This permits a
careful characterization of the steering beams, and therefore
a precise knowledge of the amount of power irradiated by
the antenna array in all directions. Thus, we are realistically
computing both the desired and the interfering signals. A
complete explanation of the relationship between array and
element patterns can be found in [12] and [16].

The channel of each link is computed with a set of K
clusters and Lk sub-paths per cluster (as shown in the top
part of Figure 1), and is represented as

h =

K∑
k=1

Lk∑
l=1

gklFT (Ωkl) uT (Ωkl) (4)

where gkl is the small-scale fading gain of sub-path l in
cluster k, and uTX is the 3D spatial signature vector of
the transmitter. Furthermore, for brevity, we use subscript or
superscript T, referring to a transmitter related term. Moreover,
Ωkl = (θkl, φkl) is the angular spread of vertical and horizon-
tal Angles of Departure (AoD) for sub-path l in cluster k [13].
Finally, FT is the field factor term of the transmitting array.
Detailed explanation on how to precisely compute all these
channel terms can be found in [13] and [16].

B. Precoders Considered

With the intent to perform a study of the different precoding
techniques while realistically modeling the channel, we discuss
in the following paragraphs all the approaches evaluated and
provide details on how they are computed.

a) Grid of beams (power optimization): This approach
consists in the use of a codebook Z of precomputed precoders
that will be tested with the aim to choose the one that
maximizes a specific metric. Each precoder vector in the
codebook represents a Discrete Fourier Transform (DFT) beam

pointing towards a direction. According to this principle, the
entire codebook spans the whole effective area.3

Two different GoB metrics and thus optimization criteria
are considered in this study. First, for each active UE, we
identify the precoder w

(GoBP)
m which maximizes the received

power among all possible precoder vectors z in the codebook
Z , thus

w(GoBP)
m = arg max

z∈Z
|hHmwz|2. (5)

We identify it with the acronym GoBP, and the respective
precoding matrix is derived as

W(GoBP) =
[
w

(GoBP)
1 , . . . ,w

(GoBP)
M

]
. (6)

b) Grid of beams (SLNR optimization): Similarly, we
study an alternative in which the precoder is chosen by
maximizing the Signal to Leakage plus Noise Ratio (SLNR)
for each single UE m. We define it as GoBSLNR and the
optimization expression becomes

w(GoBSLNR)
m = arg max

z∈Z

(
|hHm,mwz|2

σ2 +
∑
i 6=m |hHm,iwz|2

)
(7)

then, the precoder matrix W(GoBSLNR) is derived as in (6).
The rationale behind this choice is that the sum of SLNRs

is a close approximation of the sum of Signal to Interference
plus Noise Ratios (SINRs), with the advantage of being
computationally much easier to perform. This stems mainly
from the fact that whereas the sum SINR maximization would
require an exhaustive search for all possible beams and all
users in the cell, the sum SLNR can be maximized by simply
maximizing the SLNR of each UE.

c) Matched filter precoder [17]: The MF, also known as
conjugate beamforming, maximizes the power of the received
signal, without any interference consideration. It is optimum
when the noise power received by the UE is much stronger
than the interference that would result from the transmitted
signals intended to be received by the co-scheduled UEs. For
this reason, it is optimum for noise-limited scenarios.4 Its
precoding matrix is expressed as

W(MF) = Ĥ. (8)

The gNB computes the precoding matrix after estimating the
channel so as to direct the useful energy in the direction of
each UE. In our evaluation, we assume complete knowledge
of the channel and we use this assumption for the calculation
of this and the next precoders.

d) Zero-forcing precoder: An evolution of MF linear
processing can be used to limit the detrimental effects of
multi-user interference. The ZF precoder tries to cancel the
power of the interference, and therefore is an optimal solution
for interference-limited scenarios. This interference canceling

3This principle is an assumption adopted for this evaluation. Different
codebook designs can also be applied in our optimization.

4Noise-limited and interference-limited scenario refer, respectively, to the
case in which the noise power is greater than the interference power and
vice-versa.
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(a) Rayleigh fading channel.
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(b) NYU channel model.
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(c) 3GPP channel model.
Figure 2: Empirical CDF of the SINR for the different precoders evaluated. In these figures, we used a fixed number of UEs M = 4 and PT = 30 dBm.

property is obtained at the price of a slightly complex precoder
computation and of a reduced received power. The precoding
matrix is designed according to the ZF criterion [18] and is
given by

W(ZF) = Ĥ(ĤHĤ)−1 (9)

which simply denotes the right pseudo-inverse of the matrix
ĤH .

e) MMSE precoder: Differently from the last two pre-
coders considered, the MMSE precoding strategy (also known
as Kalman filter precoder) maximizes the sum of the SINR.
Therefore, it optimizes the received power while minimizing
the interference signal. It can be considered as a solution in
between the MF and the ZF precoders. The precoding matrix
is expressed as

W(MMSE) = Ĥ

(
ĤHĤ +

1

SNR
IM

)−1
(10)

and it is possible to prove that it can be expressed as a linear
combination of MF and ZF precoders [19].

C. Imperfect channel estimate

Focusing on a realistic system, achieving a complete and
correct knowledge of the CSI is not feasible in a practical
framework. To be precise, typical mmWave implementation
does not have direct access to the signals received on each
gNB antenna, so learning the channel on each antenna element
is currently extremely difficult and almost infeasible. For this
reason, we consider the performance in case the transmitter has
an imperfect channel estimate. The channel estimation error
is modeled following a Gauss-Markov formulation, where the
imperfect channel He is obtained using the true channel H as
follows

He = τH +
√

1− τ2E (11)

where each term of the matrix E follows a circularly sym-
metric Normal distribution CN (0, 1). Moreover, the scalar
parameter τ ∈ [0, 1] is used to indicate the quality of the
channel estimation, where τ = 1 corresponds to perfect
estimation of the channel whereas τ = 0 corresponds to having
only the random channel E [20]. This parameter depends on
factors such as the time/power spent on pilot-based channel
estimation. As done in (3), and with the imperfect channel

Table I: List of parameters used in our evaluation. Unless specified otherwise,
these settings are considered as default in all the studies carried out during
our evaluation.

Value Meaning and (Notation)
28 GHz carrier frequency (f )

7 dB noise figure (NF)
100 m transmitter receiver distance

4 # of served UEs (M )
64 total # of antennas per gNB (NT)

[8× 8] vertical and horizontal UPA configuration
λ[0.7, 0.5] vertical and horizontal UPA element spacing
30 dBm transmitted power (PT)

6 # bits phase shifters
0.99 imperfect channel metric (τ )5

consideration, the equivalent matrix becomes H̄e = ĤHŴ
(p)
e ,

where the precoder Ŵ(p)
e has been calculated considering the

imperfect channel He.

III. COMPARISON RESULTS

In this section we provide some simulation results to com-
pare the performance of the different precoders considered,
which will be assessed in terms of SINR and achievable
system capacity. Before examining in detail all the results, we
briefly report here the SINR expression used in our evaluation.
Furthermore, Table I details all the parameters and respective
values adopted.

The first metric considered in our evaluation is the SINR,
we calculate it for each UE m as follows

SINR(p)
m =

|h̄(p)
m,m|2

1
SNR +

∑
i 6=m |h̄

(p)
m,i|2

(12)

where SNR is computed using the transmitted power, the path
loss `, and the thermal noise σ2 as PT`

−1

σ2 . We note that
each UE’s SINR is affected by the accurate antenna array
radiation pattern that is computed considering the field factor
term into the channel gains, as previously described in (4).
Finally, superscript (p) is used to identify the M × 1 vector
of the equivalent matrix H̄(p) obtained with the corresponding
precoder Ŵ(p). We recall that the precoding matrix is included
into the equivalent matrix as done in (3).

5The value τ = 0.99 identifies an optimistic channel imperfection. As
discussed later in the results, even with a small error in the CSI the degradation
is notable.
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Figure 3: System capacity for the different precoders, varying the transmitted
power PT. In this figure, M = 4, NF = 7 dB, and the channel is modeled
as NYU in the left plot and following the 3GPP characterization in the right
plot.

The first result is a comparison of the SINR values for
all the precoders studied under different channel model as-
sumptions. In order to have a comprehensive view of the
overall performance, Figure 2 reports the empirical Cumulative
Distribution Function (CDF) of the SINR for all the config-
urations considered. The results have been collected over a
sufficient number of repetitions in order to obtain the desired
accuracy, thus precisely evaluating the different precoders. We
compare both the NYU and 3GPP channel characterizations
with a random Rayleigh channel model computed as HR ∼
1√
M
CN (0NT×M ,1NT×M ). The figures are obtained with a

Monte Carlo approach which generates random samples of
channel and environment for all the UEs in each iteration.
As expected, the MMSE precoder outperforms all the other
configurations for most of the UEs. Furthermore, due to the
high directivity of the NYU channel, both GoB precoders are
able to reach higher SINR values, with respect to the MF,
for more than forty percent of the UEs. We note that for this
plot we have used a 7 dB noise figure6, which corresponds
to a mostly interference-limited system [21]. Due to lack of
space, we are not reporting here any results with higher noise
power. However, larger noise values push the system into a
noise-limited regime, hence reducing the performance of the
ZF precoder.

Figure 2 also highlights the lack of fairness among UEs
when the MF precoder is used. Even if the average value of
MF’s SINR is the highest, really high values of SINR are
obtained only for a small percentage of UEs. As we can see
in Figure 2a, the precoders which do not require knowledge of
the channel (e.g., GoBP and GoBSLNR) are unable to operate
efficiently when the channel is Rayleigh. Conversely, they
show SINR values close to those of MF when the channel is
modeled following the NYU characterization. This stems from
the fact that, while a Rayleigh channel is isotropic and scatters

6The noise figure term quantifies the degradation of the Signal to Noise
Ratio (SNR) due to the noise present in the system.
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Figure 4: Empirical CDF of the SINR for the different precoders evaluated
when an imperfect channel is considered. In this figure, M = 4, NF = 7 dB
and τ = 0.99, and the channel is modeled as NYU in the left plot and
following the 3GPP characterization in the right plot.

the power without a preferred direction, realistic mmWave
channels present limited multi-paths and rays with a large
portion of the power concentrated in few directions. To further
support such interpretation, Figure 2b reports the SINR values
under NYU and 3GPP UMa channel characterizations. We
note that, since the NYU model has fewer clusters than its
UMa counterpart, the power is concentrated in fewer directions
and thus the GoB approaches have even higher performance.

With the use of the SINR expression in (12), we can
compute the channel capacity as follows

C(p)
m = log2

(
1 + SINR(p)

m

)
. (13)

This metric can be used to evaluate the spectral efficiency of
each configuration, and we indicate its average value by C̄.
Figure 3 plots the average system capacity in the different
configurations as a function of the transmit power PT used
at the gNB side. The growing transmit power increases at the
same rate the received power and the interference levels for the
interference-blind precoders (i.e., MF, GoB) hence resulting
in a saturation of the performance. Conversely, interference-
aware precoders such as ZF and MMSE can have indefinitely
growing performance. The figures display the good perfor-
mance of the GoB precoder when the SLNR is optimized.
We remark that, even if the average MF SINR is higher with
respect to the other configurations, it presents poor fairness as
previously discussed.

Comparing the two realistic models, we can notice also in
these figures how the directivity of the NYU model results in
good outcomes for the capacity in the two GoB approaches
in the range of values around 20 dBm of transmitted power.
Contrary to expectation, in this particular range, GoB proce-
dures can perform appreciably better than ZF if high spectral
efficiency is desired, while, if a more energy-efficient operating
point is chosen, the performance gap narrows, and eventually
MF outperforms all the other configurations.

As the last result, Figure 4 reports the empirical CDF of the



Table II: Evaluation of the gaps in the 50th percentile of the SINR expressed
in dB for the different precoders considered in this evaluation. Table obtained
with a fixed number of UEs M = 4, and PT = 30 dBm.

perfect CSI
(τ = 1)

imperfect CSI
(τ = 0.99)

NYU 3GPP NYU 3GPP

MF – GoBSLNR +0.87 −0.80 −0.46 −1.03
ZF – GoBSLNR +1.40 +6.33 +0.89 +5.67

MMSE – GoBSLNR +4.05 +6.45 +1.36 +5.67

SINR when an imperfect channel He is considered. Compar-
ing it with Figure 2, is it possible to notice how the imperfec-
tion in the CSI results in a degradation of the performance,
especially for the linear precoders. More importantly, when an
error in the channel estimation is considered, the gap between
GoB optimization approaches and linear precoders is strongly
reduced and, in most cases, GoB is even able to outperform the
linear precoders. We recall that gathering the CSI necessary
to use MF, ZF and the MMSE precoders has a cost for the
system that should be properly considered. Furthermore, given
the small implementation loss of GoB precoding with respect
to more refined systems, and considering the high level of
complexity that gathering the necessary CSI would require, it
seems that the additional complexity may not be justified by
the modest (or even vanishing) performance improvement.

Remarks: We report in this subsection the main remarks
raised in our evaluation study. Due to the directionality of
mmWave channels, our results support GoB approaches as a
good trade-off between CSI acquisition complexity and perfor-
mance. Given the limited advantage (about +4 dB with MMSE
and the NYU channel model), there is no strong motivation
to use linear precoders in multi-user systems at mmWave
frequencies. Table II summarizes our findings, reporting the
SINR gaps for the 50th percentile in the different approaches
considered. Although linear precoders can exploit a larger
amount of information on the channel matrix, requiring full
CSI at the transmitter, the gain under imperfect CSI can be
assessed as less than +1.36 dB with MMSE and the NYU
channel model. If the inaccuracy of the channel estimation
grows, it is possible to conjecture that the gap would close
even more, eventually eliding any advantage. A similar trend,
though with slightly higher gains, can be observed when the
3GPP channel model is considered.

IV. CONCLUSION AND FUTURE WORKS

In this study, we have highlighted the impact of realistic
mmWave channel behaviors on the downlink mmWave MU
MIMO system when different precoders are considered at
the gNB side. Our study led to the following observations.
Under ideal condition (i.e., Rayleigh channel model, perfect
CSI), linear precoders largely outperform GoB due to their
ability to perfectly adapt to the channel realization. However,
the directionality present in realistic channel models reduces
the gap, sometimes even letting the GoB approaches surpass
more complex solutions and in most cases not justifying the
additional complexity.

Finally, we have studied how the performance behaves when
considering an error in the CSI acquisition. Results show
that, even with a small CSI imprecision, the performance gap
between linear precoding and GoB vanishes.

The study of more refined MMSE approaches which include
per-user power balancing, as well as a theoretical evaluation
of the performance of the various techniques, also for different
frequency bands, are left for future study.
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