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Abstract—In this paper, an edge caching resource allocation
problem in fog radio access networks (F-RANs) is investigated. To
motivate content providers (CPs) to participate in this resource
allocation procedure, we introduce an incentive mechanism. By
treating fog access points (F-APs) as a specific type of edge
caching resource, the cloud server sets non-uniform prices of
F-APs and leases them to the CPs, while the CPs cache the most
popular contents in the storage of F-APs and get rewarded by the
raised content hit rate. We formulate the interaction between the
cloud server and the CPs as a Stackelberg game and solve the cor-
responding optimization problems to achieve Nash equilibrium
(NE). In particular, by exploiting the multiplier penalty function
method, we transform the constrained optimization problem for
the cloud server into an equivalent non-constrained optimization
problem. Then, we propose an edge caching resource pricing
algorithm to solve the non-constrained optimization problem
by applying the simplex search method. We also theoretically
prove the existence and uniqueness of the NE. Simulation results
show the rapid convergence of the proposed algorithm and the
superiority performance in improving content hit rate.

Index Terms—F-RANs, edge caching, resource allocation, in-
centive mechanism, Stackelberg game.

I. INTRODUCTION

Driven by the dramatic growth of intelligent devices and
mobile applications, wireless networks have been suffering an
unprecedented data traffic pressure in recent years. Meanwhile,
numerous repetitive downloads and redundant transmissions
occur when users request the same contents. Nowadays, fog
radio access networks (F-RANs), which can effectively accom-
modate the data traffic pressure by placing popular contents
close to the users, have attracted more and more attention from
researchers and engineers [1]-[3].

In F-RAN:S, fog access points (F-APs) managed by the cloud
server are able to store contents in their storage during off-peak
time. When user equipments (UEs) request these contents, the
F-APs having cached the corresponding contents can provide
service directly. Accordingly, the data traffic pressure can be
reduced while the quality of service can also be improved.
However, the resource, especially the edge caching resource, is
limited. Therefore, how to optimally allocate resource becomes
a big challenge.

Recently, large amounts of researchers have paid attention
to resource allocation problem from different aspects. The

authors in [4] studied a joint resource allocation and content
caching problem which targeted at minimizing the maximum
content request rejection rate. In [5], a problem of joint
caching, channel assignment, and interference management
was formulated in coordinated small-cell cellular networks to
maximize the system throughput. In addition, it becomes an
interesting topic to solve the resource allocation problem from
economic perspective. Game theory has been widely utilized
to solve this problem [6]. In [7], a caching system consisting
of one privately-owned small-cell base station (SBS) and
multiple content providers (CPs) was studied, where the CPs
leveraged the storage capacity of the SBS to efficiently provide
content delivery service to UEs. A Stackelberg game was
formulated for the interaction between the SBS and the CPs.
Nevertheless, the authors do not take the spatial distribution
of SBSs into consideration. Moreover, the proposed uniform
pricing scheme ignores the diversity of the CPs. In [8], a price-
based resource allocation policy was proposed to reduce the
transmission latency and mitigate the redundant transmission
in a commercialized caching system. The authors considered
the spatial distribution of SBSs and proposed a non-uniform
resource pricing scheme. However, if the average back-haul
cost was not equal to the local downloading surcharge, the
objective function then could not be simplified and the scheme
would be ineffective.

Motivated by the aforementioned discussions, we propose
an edge caching resource allocation strategy in F-RANs. By
regarding F-APs as a type of edge caching resource, the
cloud server is willing to profit by leasing F-APs to the
CPs. However, renting F-APs will cause cost while the CPs
have no incentive to rent. Therefore, we propose an incentive
mechanism to motivate the CPs to participate in this resource
allocation procedure. In our proposed strategy, the CPs can
benefit from the content hit rate by caching their most popular
contents in the leasing F-APs, while the cloud server can also
make profit by charging the CPs with non-uniform prices
for F-APs. The interaction between the cloud server and
the CPs is modeled as a Stackelberg game. Meanwhile, the
CPs will compete with each other due to the limited edge
caching resource. Therefore, we formulate the competition
among the CPs as a non-cooperative sub-game. To achieve



the NE of the proposed game, we eliminate the constrains by
exploiting the multiplier penalty function method, and propose
an edge caching resource pricing algorithm with the simplex
search method. In addition, we also prove the existence and
uniqueness of the NE.

The rest of this paper is organized as follows. In Section
II, the system model is presented. In Section III, the profit
functions are established and the Stackelberg game is also
formulated. We propose the optimal edge caching resource
allocation strategy by solving the optimization problems in
Section IV. Simulation results are shown in Section V. Con-
clusions are drawn in Section VI.

II. SYSTEM MODEL

We consider an edge caching resource allocation problem
in the F-RAN including one cloud server and multiple F-APs.
As illustrated in Fig. 1, there are N CPs, which are denoted
by N ={1,2,...,n,..., N}, willing to cache their contents
in the storage of F-APs.

The contents owned by the CPs have different popularity
distributions. There are totally C,, contents stored in CP n.
The UEs make independent requests of the fth content owned
by CP n with the probability of p,, ;. Generally, the popularity
can be modeled by the Zipf distribution [9] and p,, ; can be
expressed as follows:
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where (,, denotes the steepness of the popularity distribution
in CP n with a positive value.

In the F-RAN, F-APs are spatially distributed as a ho-
mogeneous Poisson point process (HPPP) with intensity A
[10], where A denotes the number of F-APs per unit area.
Furthermore, each F-AP with the same storage capacity can
cache at most @),, contents for CP n. Let 7,, represent the
fraction of the total F-APs in this scenario leased by CP n.
Meanwhile, the rented F-APs of CP n are selected with equal
probability. Therefore, the distribution of these rented F-APs
can be modeled as thinned HPPP with intensity 7,, A. Assume
that each F-AP can provide service for UEs within range r.
Let H,, denote the probability for UEs covered by any F-AP

Fig. 1. An illustration of the system model.

leased by CP n. Then, H,, can be expressed as follows [11]:
H, =1—exp (—mr,Ar?). )

If CP n has cached the fth content into its renting F-APs, the
hit rate of the fth content could be expressed as follows:

H, r=pnr [1 — exp (—ﬂTnArQ)] ) (3)
III. PROBLEM FORMULATION

In this section, we first model the profits of the cloud
server and the CPs, respectively. Then, we formulate the
edge caching resource allocation problem as a Stackelberg
game. To motivate the CPs to participate in this resource
allocation procedure, we introduce an incentive mechanism.
The incentive mechanism is controlled by the charge price
determined by the cloud server. In other word, the cloud server
can attract the CPs to lease F-APs by setting proper prices.
Moreover, the NE of the proposed Stackelberg game is also
investigated.

A. The Profits of the Cloud Server and the CPs

For the cloud server, the profit comes from leasing F-APs to
the CPs. Let s,, denote the price charged to CP n for renting
all F-APs in the scenario, and s 2 [s1, 82, .. .,sN]T.
Define 7, the fraction of the F-APs rented by CP n, and T 2
[T1, 72, - TN]T. Then, the profit function of the cloud
server can be expressed as follows:
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For each CP, the profit consists of two parts: (1) the gain
brought by the content hit rate; (2) the cost of renting F-APs
from the cloud server. To achieve the maximal content hit rate,
CP n will cache the most popular contents in the leasing F-
APs. Therefore, we can define the profit function for CP n as
follows:

Qn
Pn (snaTn) = ZHn,f — SnTn- (5)
f=1

B. Stackelberg Game Formulation

Generally, Stackelberg game is a strategic game that consists
of a leader and several followers competing with each other for
certain resources [12]. The leader moves first and the followers
move subsequently. In our Stackelberg game, the cloud server
that manages the F-APs is the leader and the CPs willing to
lease F-APs are the followers. Besides, due to the limited edge
caching resource, it is easy to see that the CPs strictly compete
with each other in a non-cooperative fashion. Therefore, the
sub-game of the proposed Stackelberg game is modeled as
a non-cooperative game. The cloud server first determines
the leasing prices s of F-APs for the CPs. According to the
proposed prices, the CPs determine the proper fractions 7 that
they tend to rent.

1) Optimization Problem of the Cloud Server: The objec-
tive of the cloud sever is to maximize its profit formulated in



(4). Note that for CP n, the leasing fraction 7, is a function
of the price s,, in the Stackelberg game formulation. In other
words, the fraction of F-APs that each CP wants to rent de-
pends on the price charged by the cloud server. Consequently,
the cloud server needs to find the optimal pricing strategy to
maximize its profit. The optimization problem of the cloud
server can be formulated as follows:

max P, (s, T), (6)
S
s.t. s, >0,Yn €N.

2) Optimization Problem of the CPs: For CP n, once the
price of F-APs is determined, its profit all depends on the
leasing fraction 7,,. If CP n rents more F-APs from the cloud
server, it can cache contents at more F-APs which will increase
the content hit rate and hence bring it more gain. However,
the cost increases as the leasing fraction 7,. Therefore, 7,
has to be optimized for maximizing the profit of CP n. The
optimization problem can be expressed as follows:

max Py, (Sp, Tn) , @)

Tn

st. 0< 1, <1,VneN,

N
Z Tn < 1.
n=1

The optimization problems in (6) and (7) lead to a Stackel-
berg game. The objective of this game is to find the NE point
where neither the cloud server nor the CPs have incentives to
deviate [8], [13].

C. Nash Equilibrium

For the proposed game, the NE is defined as follows.

Definition 1: Let s* and 7* denote the two solutions of the
optimization problems in (6) and (7), respectively. Define s* =
T A T
[87,85,...,88,....sn]" ™ = 15,75, T, TR
Then, (s*,7*) is an NE point for the proposed Stackelberg
game if the following conditions are satisfied:

Po(s*,77) =2 Pe(s,77), ®
Pﬂ(na n)>P( Tn),VTLEN.

Note that the proposed game is a two-layer game. We intend
to exploit the backward induction method to achieve the NE
[12]. Accordingly, the optimal solution of the sub-game should
be obtained at first. The sub-game formulating the competition
among the followers is a non-cooperative game, and its NE is
defined as the operating point at which no players can improve
utility by changing its strategy unilaterally [8]. It means that
we have to solve the optimization problem in (7) to obtain
the best responses of the CPs firstly. Since there is only one
leader in the proposed Stackelberg game, the best response of
the cloud server can be obtained sequentially by solving the
optimization problem in (6).

IV. OPTIMAL RESOURCE ALLOCATION STRATEGY

In this section, we will solve the optimization problem in
(7) to obtain the optimal leasing strategies of the CPs at first.

Then, the optimal pricing strategy of the cloud server will be
obtained by solving the optimization problem in (6).

A. Optimal Leasing Strategy

It is obvious that the profit function in (7) is concave
over T,. Then, the optimal solution can be obtained by
solving the Karush-Kuhn-Tucker (KKT) conditions [14], [15].
Correspondingly, we have the following theorem.

Theorem 1: Given a fixed price vector s, the optimal solu-
tion of the optimization problem in (7) can be expressed as

follows:
F +
= {ln (")/71’)\7“2} , 9)
Sn

where F,, = 2?21 (pn,ymAr?), (z)* 2 max (0, z).
Proof: The second derivative of P, with respect to 7,
can be expressed as follows:
2
g P"2 = —F,n\r%exp (—7T7'n)\7“2) < 0.
(07,)
The profit function P, of CP n can be readily proved to be
= 0 under the constraint
T, > 0, the optlmal leasing strategy 74 of CP n can be
obtained. [ ]
We can see from Theorem I that if the price s, is set too
high, i.e., s, > F,, CP n will opt out for renting any F-APs
from the cloud server. In other words, CP n will not participate
in the game due to the high pr1ce On the other hand, if the
price s, is lower than F,,e”"™ Ar? , the competition among the
CPs would be more intense since each CP is willing to rent
F-APs as much as possible.

(10)

B. Optimal Pricing Strategy

Substituting the optimal solution (9) into (4) and after some
mathematical manipulations, we can express the profit function
for the cloud server as follows:

N

P.(s) = Z #fn (spIn Fy, — s, Insy,), (11)
where &, is the indicator function with &, = 1 if s, < F}, and
&, = 0 otherwise. We can observe that the function in (11) is
non-convex due to &,. However, with a given indicator vector
I3 2 (&1, &, ... ,EN]T, it is not difficult to verify that the above
function is convex. In the following, we commence with the
assumption that £ = 1, i.e., &, = 1,Vn € N. Accordingly, we
define P, (s) as follows:

N
P (s)= Z (=spIn F, + s, Insy,). (12)
n=1

By considering the constraint Z *(sn) < 1, the optimiza-
=1
tion problem in (6) can be expressed as follows:

min P’ (s), (13)
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where K = e~ ™ [] F,.

n=1

1) Elimination of the Constraints: The constrained opti-
mization problem in (13) involves a logarithmic function,
and it requires great computational burden to be solved by
using traditional sub-gradient method [16]. Therefore, we
transform the above constrained optimization problem into
a non-constrained optimization problem at first. In general,
the exterior penalty function method can be applied to e-
liminate constraints in convex optimization problems [17].
However, the solution obtained by solving the transformed
non-constrained optimization problem may not satisfy the
constraints given before. Meanwhile, as the penalty factor
approaches to infinity, the corresponding Hessian matrix be-
comes infinite which means that the computational complexity
grows rapidly. Therefore, we intend to apply the multiplier
penalty function method to transform the constrained opti-
mization problem in (13) into an unconstrained one, which can
eliminate the constraints without calculating infinite penalty
factor.

We first introduce the variable y to transform the inequality
constraint into the equality constraint. The optimization prob-
lem in (13) can be rewritten as follows:

min P,/ (s),

N
s.t. (H Sn —K) —4%=0.
n=1

Then, we can obtain the corresponding augmented Lagrangian
function as follows:

o (s,w,0,y)
N
=> (=spInF, +s,lnsy,)
n=1
N N 2
w(H 5,,/Ky2> +3(H SnKy2> )
n=1 n=1
where w is the Lagrange multiplier, o is the penalty factor. Ac-

cordingly, the optimization problem in (13) can be converted
to the following equivalent problem:

(14)

5)

(16)

min Q’g (8’ w7 0—7 y)'

Regarding y as the only variable in above problem (16), we can
achieve the minimum by applying the method of completing
the square. Then, y can be calculated as follows:

y:

N N
(Hsn—K)—u}/U7 a(Hsn—K>—w>0,
n=1 n=1

N

0, U(Hsn—K>—w<0.
n=1

a7
Substitute (17) into the augmented Lagrangian function in

(15). Then, we have:

N
o (s,w,0)= Z (—spInF), + s, lns,)

n=1
2

1 N !
2
—|—% (w—a I | Sn +0K> —w* ». (18)

n=1

Therefore, the equivalent non-constrained optimization prob-
lem can be expressed as follows:

min ¢ (s, w, o), (19)
where
N
g1 (s,w,0), [[ $n — K >w/o,
¢ (s,w,0) = e (20)
g2 (s,w,0), [[ sn — K <w/o,
n=1
N
g1 (s,w,0) = Z (=spnInF,, + s, 1ns,) — w2/2a, 21
n=1
N
92 (s,w,0) = Z (=spnInF,, + s, Insy,) (22)
n=1
1 N ’
2
+ % [w—agsn—FaK —w

Correspondingly, we have the following theorem.

Theorem 2: The non-constrained optimization problem in
(19) is equivalent to the optimization problem in (13).

Proof: In light of [18], the optimal solution of the non-
constrained problem in (19) is equivalent to the local optimal
solution of the constrained problem in (13). According to the
definition of P./, we can readily establish that:

2P,/ 1

L‘Q: — >0, (23)
(8sn) Sn
o*p,’

Therefore, the Hessian matrix of P, is positive definite and
P.' is strictly convex. Consequently, the local optimal solution
of the constrained optimization problem in (13) is the global
optimal solution. Therefore, the non-constrained optimization
problem in (19) is equivalent to the constrained optimization
problem in (13). |

2) The Proposed Edge Caching Resource Pricing Algo-
rithm: To achieve the optimal solution of the optimization
problem in (19), we need to update the Lagrange multiplier
w iteratively to revise the augmented Lagrangian function.
Let w® denote the Lagrange multiplier for the tth iteration.
Then, the iterative relationship between w1 and w® can



Algorithm 1 The Edge Caching Resource Pricing Algorithm
1: procedure PRICING(S)
2: Initialization: ¢, A =¢, o, t =0, sgf), Vn e N, w®.
3: while A > ¢ do

N
& if [] s& — K >w® /o then
n=1

5: SSH):Fn/e,VnGN;

6: else

7 Update sgf +1) via the simplex search method;

8: end if
N +

9; wttD) = [®) — 4 ( I1 st _ K)} ;
=1

10: A = Wt — @],

11: t+—t+1.

12: end while

13: end procedure

be established as follows:

N +
w(t+1) — [w(t) — 0 <H Sn — K)] . (25)
n=1

After the Lagrange multiplier w converges to its optimal
point, the price vector s becomes the only variable in both
g1 (s,w,0) and g5 (8, w, o) since the penalty factor ¢ is fixed.

g1 (s,w,0) is a convex function over the variable s,,.
Accordingly, the optimal solution can be achieved by taking
the first derivative with respect to s,,. Let the first derivative
equal to zero, s, can be obtained as follows:

s, = F,/e,VneN, (26)

where e is the base of a natural logarithm.

For go (s, w,0), we propose to achieve the optimal solu-
tion by applying the simplex search method, which solves
the non-constrained optimization problem without derivation.
Therefore, this method has low computational complexity. The
detailed description of the algorithm to achieve the optimal
pricing strategy is shown in Algorithm 1.

C. The Existence and Uniqueness of the NE

NE offers a predictable and stable outcome. For the pro-
posed Stackelberg game, we have the following theorem.

Theorem 3: There exists one and only one NE point in the
Stackelberg game.

Proof: For the proposed Stackelberg game, we use the
backward induction method to achieve the NE. Therefore, we
should obtain the NE of the sub-game among followers at
first. The sub-game is a non-cooperative game, formulating
the competition among the CPs. To prove this theorem, we
need to prove that there exists only one NE point for the non-
cooperative sub-game.

According to [19], we know that the NE exists if the players’
strategy spaces are non-empty and closed-bounded sets in the
Euclidean space. Note that the profit function P, for CP n is
continuous with respect to 7,,. In addition, the profit function

P, is a convex function. Therefore, it can be verified that each
CP’s strategy space is a non-empty and closed-bounded convex
set in the Euclidean space. Correspondingly, the existence of
the NE in the sub-game can be proved. It is obvious that
the Hessian matrix of P, is negative definite. Accordingly,
the profit function for each CP is strictly convex, and the
optimization problem in (7) has a unique optimal solution.
The uniqueness of the NE in the sub-game has been proven.

Since there is only one leader in the proposed Stackelberg
game, and the leader’s profit function is strictly convex as
proven. It means that the optimal solution of the optimization
problem in (6) is unique. Consequently, the existence and
uniqueness of the NE in the proposed Stackelberg game has
been proven. [ ]

V. SIMULATION RESULTS

In this section, the performance of the proposed edge
caching resource allocation strategy is evaluated via simula-
tions. We consider a scenario including one cloud sever and
four CPs, i.e., N = 4. The average service radius r of each
F-AP is set to 0.5 km. We set the preference parameter of
contents for four CPs as 51 = 0.4, 5o = 0.8, B3 = 1.2, and
B4 = 1.6. Each CP has the same number of contents, i.e.,
C; =Cy=---=Cpyn = 5000, and these contents have same
size. Accordingly, the number of content that each F-AP can
cache for N CPscanbesetto Q =0Q1 =Q2=---=Qn.

Fig. 2 shows the leasing strategies for four CPs versus
number of iterations. As shown, the proposed edge caching
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Fig. 2. Leasing fractions of F-APs for the CPs versus number
of iterations.
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resource allocation strategy can converge to a stable state
quickly. It can be observed that the CP which has larger
preference parameter of contents tends to rent more F-APs.
Larger preference parameter of contents means the content
popularity distribution is more concentrated. Therefore, for this
kind of CPs, leasing F-APs to cache contents can bring higher
content hit rate and then increase its profit.

Fig. 3 shows the profit of the cloud server versus F-AP’s
storage capacity () with different N. It can be observed that
the cloud server’s profit gradually increases as () ranges from
500 to 2500. The number of CPs can also influence the cloud
server’s profit. More participants bring the cloud server higher
profit. The reason is that larger () and N can make the
competition among the CPs more intense and hence bring the
cloud server more benefit.

In Fig. 4, we show the comparisons of the content hit
rate between our proposed strategy (PRO) and the price-base
resource allocation strategy (PRA) in [8] under the same
scenario. It can be observed that the content hit rate of
PRO is apparently superior to that of PRA. The reason is
that the CPs in the latter strategy cache the contents with
equal probability. However, in our proposed strategy, the CPs
select the contents to cache with consideration of the content
popularity distribution.

VI. CONCLUSIONS

In this paper, we have proposed an edge caching resource
allocation strategy in the F-RAN. Considering the content hit
rate and leasing cost of the edge caching resource, we have
formulated a Stackelberg game via the incentive mechanism.
By exploiting the multiplier penalty function method and the
simplex search method, we have obtained the optimal edge
caching resource allocation strategy. Meanwhile, the existence
and uniqueness of the NE in the proposed Stackelberg game
have been proven. Simulation results have shown that signifi-
cant improvement in terms of content hit rate is achieved by
using our proposed strategy.
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