
This paper is a preprint; it has been accepted for publication in 2019 IEEE International Conference on
Communications (IEEE ICC), 20–24 May 2019, Shanghai, China.

IEEE copyright notice
c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

ar
X

iv
:1

90
4.

00
85

9v
1 

 [
cs

.C
R

] 
 1

 A
pr

 2
01

9



A Novel Malware Detection System Based On
Machine Learning and Binary Visualization

Irina Baptista∗, Stavros Shiaeles∗ and Nicholas Kolokotronis†

∗Centre for Security, Communications and Networks Research (CSCAN), Plymouth University, Plymouth PL4 8AA, UK
Email: irina.baptista@plymouth.ac.uk, stavros.shiaeles@plymouth.ac.uk

†Department of Informatics and Telecommunications, University of Peloponnese, 22131 Tripolis, Greece
Email: nkolok@uop.gr

Abstract—The continued evolution and diversity of malware
constitutes a major threat in modern systems. It is well proven
that security defenses currently available are ineffective to mit-
igate the skills and imagination of cyber-criminals necessitating
the development of novel solutions. Deep learning algorithms and
artificial intelligence (AI) are rapidly evolving with remarkable
results in many application areas. Following the advances of AI
and recognizing the need for efficient malware detection methods,
this paper presents a new approach for malware detection based
on binary visualization and self-organizing incremental neural
networks. The proposed method’s performance in detecting
malicious payloads in various file types was investigated and the
experimental results showed that a detection accuracy of 91.7%
and 94.1% was achieved for ransomware in .pdf and .doc files
respectively. With respect to other formats of malicious code and
other file types, including binaries, the proposed method behaved
well with an incremental detection rate that allows efficiently
detecting unknown malware at real-time.

Index Terms—Security; malicious software; machine learning;
self-organizing neural networks; binary visualisation.

I. INTRODUCTION

THE increasing sophistication and diversity of malware
has long ago surpassed the capabilities of malware an-

alysts. Vast amounts of data need to be analyzed every day
in search of potential threats, but the current techniques are
simply not enough to comply with the high demand [9].
Malware writers use different methods, such as polymorphism
and obfuscation, to outperform detection systems. Typical
approaches often depend on signature-based detection, where a
file’s signature is compared to a list of known malicious ones.
Though such approaches are computationally less demanding,
they are susceptible to simple evasive techniques and zero-
day exploits. Common detection techniques rely on static and
dynamic analysis. Static analysis is computationally efficient
and safer than other methods as it does not require the code’s
execution to allow being analyzed; however, it is also easily
affected by evasive techniques. On the other hand, dynamic
analysis has higher chances of detecting unseen samples

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 786698. The work reflects only the authors’ view

and the Agency is not responsible for any use that may be made of the
information it contains.

but heavily affects the system performance since the file is
analyzed in a virtual environment.

To overcome the above-mentioned problems, in this paper
we investigate and evaluate an efficient detection mechanism
relying on visual representations of malware. The proposed
approach utilises binary visualisation, converting a file’s binary
data into an image, and self-organizing incremental neural
networks (SOINN) for the analysis and detection of malicious
payloads. By doing so, the likelihood of detecting obfuscated
code in the file is increased [24]. The algorithm chosen for
the binary representation uses Hilbert space-filling curves to
cluster the data, ensuring that the data is grouped in an optimal
way. Moreover, the use of SOINN in the detection mechanism,
which is an unsupervised machine learning algorithm known
for its incremental abilities, provides the ability of learning
fast by exploiting only the information needed for building the
neural network (NN) and removing redundant nodes. These
properties of SOINN are inherited from self-organizing maps
(SOM) and growing neural gas (GNG) [32]. Our contribution
is the novel combination of binary visualization with SOINN
whose robustness to noise makes it lightweight and faster
than other approaches, and hence ideal for very large datasets
allowing the provisioning of efficient detection mechanisms as
a service. A prototype was developed for analyzing detection
performance, where malware samples from various categories
and file types were included to test the model in different
scenarios. The experimental results showed a high overall
detection accuracy, which attained its maximum value 94.1%
for particular malware types.

The paper is organized as follows: in Section II we discuss
related work in the area of binary visualization and machine
learning, as well as other approaches combining both methods.
Sections III, IV describe the proposed methodology and ex-
perimental results. Finally, a discussion of the results obtained
is presented in Section V before concluding in the last section.

II. RELATED WORK

Analysis and detection of malware have been a persistent
challenge for security professionals. Traditional attempts are
focused on static and dynamic analysis, but the rapid growth
and evolution of malicious code have compelled researchers in
order to derive novel analysis and detection solutions. Machine



learning (ML) is among the innovative technologies that
have been employed towards that direction. Many works have
focused on building frameworks for analysis [7], [20], [26],
acquiring static features [15], [38] and classifying malware
families [21], [28], [30]. A system relying on ML to detect an
unknown malicious payload, without the need for removing
obfuscation, was presented in [20]; text classification methods
were shown to improve the detection accuracy of obfuscated
samples. A comparison of various ML algorithms, e.g. naive
Bayes, random forest and support vector machine (SVM), on
detecting malicious application programming interface (API)
call sequences was perfomed in [38], where the superiority
of the SVM classifier was demonstrated. The main weakness
of ML-based detection systems is that they rely on a virtual
environment to analyze samples; this not only affects their run-
time performance, but also endangers the whole system since
the samples need to be executed. In addition, the ability of
malware to adapt its behavior to the execution environment,
the excessive number of features that need to be extracted
per sample, and the high volume of malware instances being
reported, reduce the chances of accurate detection [33], [34].

Alternative approaches exploring the use of samples’ visual
representation have been proposed; most efforts consider the
clustering of malware by families or similarity [8], [11], [23],
[31], whereas other works focus on evaluating the sample-
to-image transformation with the majority utilizing grayscale
images [12], [13]. Examples of solutions proposed include the
visualization of executables for reversing & analysis (VERA)
framework [29], which represents on a 3-dimensional space a
program’s flow to identify obfuscating parts of its code, and
the similarity evidence explorer for malware (SEEM) tool [8],
which provides the ability to visually compare a given binary
with classified samples to identify the similar ones. Although
this line of research is quite promising, certain challenges
need to be tackled. More precisely, most approaches are based
on malware classification and not on its detection that is
still performed by existing tools. In addition, the proposed
approaches are often not robust to commonly used techniques
that attackers could use, like data relocation and data redun-
dancy, to circumvent the detection mechanism [13].

Techniques investigating the combination of both aforemen-
tioned categories for malware analysis have not received much
attention. Computer vision techniques and SVMs were used in
[18] for malware detection achieving an accuracy of 95% on a
dataset with 37K samples. A combination of ML, visualization
and steganalysis was proposed in [1] to detect packed malware;
both SVMs and a variation of the k-nearest neighbour (KNN)
were used, with the later achieving a classification accuracy of
99.5%. A similarity detection framework with 1.2M samples
was used in [19] for malware classification; an accuracy of
99% was achieved (for about half of the samples), but the use
of similarity considerably lowers the probability of detecting
unknown malware with dissimilar structure. Unfortunately, the
above approaches are also susceptible to common attackers’
techniques [25]. Thus, it seems that binary representation and
ML still pose challenges, and resemble more than a modern

Database
Selected
Features

SOINNPreprocessing SOINN

File

OutputBenign
Samples
Benign
Samples

Malware
Samples
Malware
Samples

Benign
Samples

Malware
Samples Clusters

Training Phase Test Phase

Fig. 1: The system architecture is separated in two stages.
The first stage is the training phase, where the samples are
processed and the topological structure of the NN is built. In
the second stage the files are tested against the samples in the
database to perform classification.

addition to current systems rather than a replacement.

III. THE PROPOSED METHOD

This section presents the methodology used for developing
the proposed malware detection system illustrated in Fig. 1;
it relies on visualizing a file’s binary onto a two-dimensional
space and then using SOINN, after having performed feature
extraction, to distinguish between benign and malicious files.
A dataset of binary images was first generated from the sample
files (Section III-A). The images are next pre-processed, where
prominent features containing valuable information about the
image are automatically extracted to form a vector of length
1024 (Section III-B). The vectors are then provided to SOINN
(Section III-C), which performs clustering and classification;
the training data are stored in a database for subsequent use
during analysis and detection. A similar process is followed
during the testing phase where, after having pre-processed the
input file and generated the feature vector, the outcome is
evaluated against the training data. The selection of the nearest
vector (to the input given) and the class type is based on the
Euclidean distance.

A. Binary visualisation

Binary visualization transforms the binary contents of a file
to another domain that can be visually represented (normally
a 2-dimensional space). Our visual representation algorithm
is based on binvis.io [2], an online tool that uses colour
schemes to represent different binary or ASCII values. The
clustering algorithm that is employed in Fig. 1 is based on the
Hilbert space-filling curve, which outperforms other curves in
preserving the locality between objects in multi-dimensional
spaces [5], [17], thus creating a much more appropriate imprint
of the image. The above combination is useful for detecting
obfuscated code in malicious files, which could go unnoticed
otherwise, since they tend to be grouped together. To convert
a file into an image, its data are seen as a byte string, where
each byte’s value is compared against the ASCII table and is
attributed to a color according to the division it belongs:



(a) Backdoor.Win32.Shoda
bot.b

(b) Trojan-Dropper.Win32
.HeliosBinder.p

(c) Vmware player (d) Google

Fig. 2: Visual representations of malicious (a), (b) and benign
(c), (d) executable samples.

• blue color, if the character is printable;
• green color, if the character is control; and
• red color, if the character is extended.

Besides the above divisions in the ASCII table, two more
classes were added, namely 0x00 (colored black) and 0xFF
(colored white), to represent null and (non-breaking) spaces
respectively —an example visualization is given in Fig. 2.

B. Feature extraction

During the pre-processing stage important features, capable
of indicating the presence of malicious payload, are extracted
from the image so as to be used in the classification process.
The images’ size is an important factor for the algorithm’s
performance. Indeed, by having images as small as 28 × 28
pixels, a vector of length 784 is obtained that might just not
be large enough to include meaningful information for the
distinction of malicious and benign files. On the other hand,
this might still be the case even when the size is increased to
128× 128 pixels. It is thus reasonable to assume that not all
the values are relevant to distinguish the classes, since specific
locations and patterns carry more information than other image
areas. To have a valid analysis and increase the probability of
detecting peculiarities, it is necessary to first detect the regions
of interest (RoI) on the image where specific malware patterns
may appear.

Similar to our methodology, [37] is clustering images using
SOINN, but the work concerned the identification of persons
over non-overlapping cameras. In order to obtain a reduced
number of features, while minimizing the impact on system’s
performance, images were divided into 6 stripes to account
for regions having different characteristics, since this was
found to provide improved results during identification [27];
different colour spaces and texture features were utilized on
each stripe prior to conversion into histograms [10], [40], thus
significantly reducing the feature vector’s length.

The same approach is adopted in our case for obtaining the
feature vector from the images, with the difference of having
the images divided into 4 parts —top, bottom, upper and lower
middle— and using only the RGB color space to compose the
histogram. These regions were chosen due to the differences
occurring in the majority of patterns obtained from each. The

overall histogram, which serves as the feature vector of length
k = 1024, is the result of concatenating the individual regions’
histograms, each having length 256 (the RGB color space).
It was shown during the experimentation that the number of
features did not have a noticeable impact on the classification
accuracy or the system performance.

C. Self-organizing incremental neural network

The feature vectors extracted from the images are given to
SOINN, which has two layers; the first layer aims at learning
the topological structure of the NN, whereas the second layer
determines the number of clusters based on the input received
from the first layer. Among other things, SOINN maintains a
set N of nodes, the set C of connections between the nodes,
and the set W of weights (i.e. feature vectors) associated with
each node. The algorithm used for training the NN is employed
at both layers, with the difference that the similarity threshold
T determining if a new node should be added in N is adaptive
(resp. constant) at the first (resp. second) layer. The algorithm
is briefly described below; the details can be found in [32].

The algorithm is initialized by setting N = {n1, n2}, with
weightsW = {w1,w2} chosen uniformly at random from the
feature vectors, and C = ∅ to be the empty set. For each input
vector u ∈ Rk, the algorithm computes the closest nodes

`′ = argmin
i∈N

‖u−wi‖ (1)

`′ = argmin
i∈N\{`}

‖u−wi‖ (2)

referred to as the winner and second winner respectively, based
on the Euclidean distance metric δ(x,y) = ‖x − y‖. If no
similarity exists between the input vector u and either w` or
w`′ , the new node is inserted into the network N ; otherwise,
a connection (`, `′) between the winners is added to C, if not
present, and its age is set to zero, i.e. α(`, `′) = 0. Next, the
age of all connections with ` as a starting point is increased by
1. Since this process would create regions of highly connected
nodes (corresponding to the formed classes), the algorithm is
using an age threshold A in order to determine if a connection
(i, j) ∈ C must be dropped. More precisely, if we have that a
connection (i, j) is such that α(i, j) > A, then its importance
is low compared to others and can be omitted. The similarity
threshold used (at the first layer) above is node-specific, and
is determined by the following function

Ti = max
j∈Li

‖wi −wj‖ , ∀ i ∈ N (3)

where Li is either the set of neighbors of node i, if this set is
nonempty, or it is equal to N \ {i} otherwise.

Noise removal is one of the important aspects of SOINN
that separates it from other algorithms and essentially allows
the NN to maintain only the valuable pieces of information.
To eliminate noisy nodes the algorithm is first provided with a
λ value that determines the number of iterations the algorithm
has to go through before searching for nodes that do not give
important data. If a node has no neighbors, this means there is
a possibility of distorting the pattern; nodes with two or less



neighbors are removed only if considered insignificant. After
the NN has been completely trained, the Euclidean distance
is applied again to classify a file; the argument corresponding
to the shortest distance is recognized as the winning node and
its class is used to classify the input vector.

IV. EXPERIMENTAL RESULTS

In this section, we present the performance analysis results
of the prototype that was implemented based on the above
methodology. The dataset that was used contained a total of
2K benign files, obtained from trusted, common and portable
applications, and a total of 2K malicious files collected from
the VirusShare website and included classes like viruses,
worms, backdoors, rootkits, and trojans. Both the benign and
malicious samples admitted the same distribution into various
file types (with a predominance of executable files), which is
illustrated in Table I.

TABLE I: Malware distribution according to file types; “other”
refers to DoS, packed, e-mail and exploit.

.exe .doc .pdf .txt .htm Total
Virus 01.37% 14.57% 3.28% 1.03% 120.25%
Worm 01.22% 0.43% 101.65%
Backdoor 25.02% 0.63% 125.65%
Trojan 39.44% 00.42% 0.96% 2.39% 143.21%
Rootkit 02.65% 102.65%
Other 02.63% 2.43% 0.66% 0.87% 106.59%
Total 72.33% 14.99% 2.43% 5.96% 4.29% 100.00%

The performance of SOINN was assessed for various values
of the parameters λ and A in terms of accuracy rate. For each
setup, 100 Monte Carlo simulations were performed, with the
same dataset, in order to get the average accuracy rate and the
number of false positives (FP) and false negatives (FN); the
results obtained are shown in Fig. 3. The algorithm behaves
well in distinguishing malicious from benign files in all cases
with the exception of text files (.txt and .htm). The fact
that benign .doc and .pdf files have less number of clusters
in the images than the malicious ones (this was marked by
the algorithm as a feature for malware), along with the fact
that they do not just contain printable ASCII characters, has
improved detection performance. A general remark is that the
strong differences in the format of files do not allow obtaining
a single solution fitting all cases, therefore having an impact
on system’s performance. A solution to this problem is to take
a file’s type into account, allowing the algorithm to properly
adjust its behavior in each case. The impact that λ and A have
on accuracy performance is shown in Fig. 4. It is seen that
increasing A excessively has an adverse effect in removing
noise from the NN, and the time that the system needs for
processing information increases with λ,A. The best accuracy
rate during testing was achieved for λ = 290 and A = 170.
The training of the system was extremely fast, taking about
15 seconds to compute a dataset with 4K feature vectors.

Moving to binary visualization, the images acquired reveal
that it is possible to identify malware files through images. By
representing a file’s binary contents as an image, the potential

73.7%

91.7% 94.1%

65.8%
60.9%

51.7%

14.2%
22.4%

2.4%

18.1% 20.4% 23.8%

0%

20%

40%

60%

80%

100%

.exe .doc .pdf .txt .htm all

Accuracy
False pos.
False neg.

Fig. 3: Accuracy rate and the number of false posi-
tives/negatives observed during testing for various file types.

50 50

120 120

220

290

50
80

20

80
50

80
100

170

230

30

0

80

160

240

320

400

Iterations λ Max. age A Accuracy

66.4%
68.0% 66.6%

70.3%
72.0% 73.7%

69.2%
66.0%

Fig. 4: The influence of parameters λ,A on the accuracy rate.
The line shows the variation of the accuracy rate according to
the parameters’ values.

patterns and discrepancies in data start to emerge. In Fig. 2,
the binary information composing examples of malicious and
benign files is shown. Malicious files have a tendency for often
including ASCII characters of various categories, presenting a
colorful image, while benign files have a cleaner picture and
distribution of values. Another technique to identify malicious
files is to search for green and black areas since malware has a
high predominance of control and null characters. In contrast,
benign files are mostly made of printable and ASCII extended
characters. A further aspect to note is that most benign files
have a few clusters at the top and bottom of the image whereas
malicious files have a higher variety of clusters. An insight on
the color distribution of each class (i.e. benign vs. malware) is
given in Fig. 5. Although the green color is observed in about
the same percentage of pixels, their spreading in the images
differs with malware admitting regions of high concentration.
The difference in black pixels is evident, since the use of null
characters to transport and hide data or to exploit a system is
quite common [3], [39].

An experiment was first performed, based on the dataset
of 4K samples, to evaluate SOINN’s detection accuracy and
to obtain a quick estimate of its performance. To have more
accurate information about its behavior when presented with
high data volumes, another dataset of 200K samples was also
created. The algorithm was found to be highly efficient and the
time needed to complete the training phase of the last dataset
was under 15 minutes in a personal workstation equipped with
an Intel Core i5 processor.



2.0% 3.5%

44.2%

36.5%37.0%
34.6%

10.7% 11.1%
6.1%

14.3%

0%

10%

20%

30%

40%

50%

Benign Malware

Fig. 5: Average color frequency and influence on the classifi-
cation between malware and software

V. DISCUSSION

Using visual representation techniques allows to obtain an
insight into the structural differences between malicious and
benign files. Such differences are harder to identify in some
file types; to be more precise, although .txt files are mostly
composed of printable characters (blue), this is not the case
in a (large) number of samples due to the existence of control
characters, something that also holds for infected .txt files
thus resulting in increased difficulty during analysis. To solve
this problem, more representative (of a malware’s features)
samples could be used having a mixture of colors and clusters
in the image. Executable files exhibit a more diverse color
distribution as they include different categories from the ASCII
table. Hence, in contrast to text files, it is unlikely that a high
percentage of blue pixels will appear in a benign executable
file’s image representation, something that in turn increases the
chances of being malware. Due to the above, it is evident why
training the same NN for all file types drastically decreases
the detection accuracy rate by 22%. This however could be
overcome if the files’ extension is also taken as input during
the analysis and training of the neural network. By analyzing
Fig. 3, it is readily seen that the proposed algorithm is better
in identifying text-based files than other file types. This means
that our approach can accurately detect ransomware that has
recently become one of the preferred and most consequential
forms of attack. To the best of our knowledge, no other work
has tested the proposed methodology for different file types;
instead, solely executables are being used for measuring the
performance of a detection mechanism.

Based on our experiments and the colour distribution, it was
observed that malicious samples had a larger number of black
colored regions than benign files. These regions represent null
characters and various motives exist behind their use when the
malware is written. Such characters, apart from representing
the end of a string or being used for padding [14], [35], are
also used by cyber-criminals to hide data or instructions in
the registry [22], [36], a practice sought after by malware
writers; however, it equally likely that these characters indicate
(possibly malicious) unknown files that are being created at
a host [4]. Several attacks are possible just by using null
characters, e.g. to circumvent security mechanisms and load
an infected file in order to allow remotely controling a system
[6]. More details about the use of null characters for launching

00:00

02:53

05:46

08:38

11:31

14:24

4K 40K 80K 120K 160K 200K

Fig. 6: Training phase of the algorithm with different volumes
of data (x-axis) and the time (minutes:seconds) needed to
process the data (y-axis).

0%

20%

40%

60%

80%

500 1000 1500 2000 2500 3000

Accuracy False pos. False neg.

Fig. 7: Accuracy increase as a result of the increase in the
amount of samples.

cyber-attacks can be found at the website of common attack
pattern enumeration and classification (CAPEC) community.
Regarding the patterns created, malware images tend to have
more compact clusters and a variety of colors, whereas benign
files are generally represented by almost static images with
only a few and small-scale clusters. It was also noticed that
the top and bottom half of the images carry information that is
more crucial to the analysis and detection of malware than the
rest of the areas, since this is where different clusters, from
picture to picture, are often perceived.

Regarding the algorithm’s performance, SOINN achieved an
accuracy of 73.7% for just over 4K samples. As Fig. 7 shows,
the accuracy rate (resp. false positives and false negatives)
increases (resp. decrease) with the number of samples, and
thus it would be possible to get much better results provided
that more samples are added during the training phase. SOINN
is capable of reducing its internal structure without having
to abdicate from new or old knowledge (stability-plasticity
dilemma). Its noise removal properties ensure that the network
is not limited in capacity, a problem that is found in nearest
neighbours algorithm [19]. SVMs have similar drawbacks; the
major problem are the highly complex and extensive memory
requirements, as well as, the slow response during the testing.
Ont the other hand, SOINN is lightweight and extremely fast,
the whole network was trained in under 15 seconds for about
10K iterations.



VI. CONCLUSIONS

In this paper, an image-based malware detection technique
was proposed that uses unsupervised learning. The study tested
if malicious files could be differentiated from benign files by
focusing on features extracted from their visual representation.
The proposed approach utilizes feature vectors of length 1024
and does not employ any computationally intensive technique
or algorithm, which allowed fast processing and training times.
The experimental tests were conducted for different file types
and malware categories and revealed that the algorithm, whose
accuracy is improved with the available number of samples,
can be successfully used for malware detection. In particular,
the algorithm achieved an overall average detection rate of
about 74% with 12% false positives and 14% false negatives.
Ongoing work, aims at extending the approach presented to
mobile platforms as a lightweight cloud-based antivirus. Since
there is great potential in improving the results obtained by
enhancing feature extraction, a number of options is currently
being considered, including Gabor texture filters and multi-
resolution analysis techniques among others.

REFERENCES

[1] C. Burgess, F. Kurugollu, S. Sezer, and K. McLaughlin, “Detecting
packed executables using steganalysis,” in proc. 5th European Workshop
on Visual Information Processing (EUVIP), pp. 1–5, 2014.

[2] A. Cortesi, “binvis.io: Visual Analysis of Binary Files,” 2016.
Available at: http://binvis.io/#/

[3] M. Dadkhah, A. Dadkhah, and J. Deng, “Malware Contaminated Website
Detection by Scanning Page Links,” Int’l J. Inform. Technology &
Electrical Engineering (ITEE), vol. 3, no. 6, pp. 1–7, 2014.

[4] G. Dahl and J. D. L. Stokes, “Large-scale malware classification using
random projections and neural networks,” in proc. 2013 IEEE Int’l Conf.
Acoustics, Speech and Signal Process. (ICASSP), pp. 3422–3426, 2013.

[5] C. Faloutsos and Y. Rong, “DOT: A Spatial Access Method Using
Fractals,” in proc. 7th Int’l Conf. Data Engineering (ICDE), pp. 152–
159, 1991.

[6] J. Fonseca, M. Vieira, and H. Madeira, “The Web Attacker Perspective:
A Field Study,” in proc. 21st IEEE Int’l Symp. Software Reliability
Engineering, pp. 299–308, 2010.

[7] D. Gavrilut, M. Cimpoesu, D. Anton, and L. Ciortuz, “Malware De-
tection Using Perceptrons and Support Vector Machines,” in proc.
2009 Computation World: Future Computing, Service Computation,
Cognitive, Adaptive, Content, Patterns, pp. 283–288, 2009.

[8] R. Gove, et al., “SEEM: a scalable visualization for comparing multiple
large sets of attributes for malware analysis,” in proc. 11th Workshop on
Visualization for Cyber Security (VizSec), pp. 72–79, 2014.

[9] K.-P. Grammatikakis, A. Ioannou, S. Shiaeles, and N. Kolokotronis,
“Are cracked applications really free? An empirical analysis on Android
devices,” in proc. 16th IEEE Int’l Conf. Dependable, Autonomic and
Secure Computing (DASC), pp. 730–735, 2018.

[10] D. Gray and H. Tao, “Viewpoint Invariant Pedestrian Recognition with
an Ensemble of Localized Features,” in proc. European Conference on
Computer Vision (ECCV), LNCS vol. 5302, pp. 262–275, 2008.

[11] K. S. Han, B. J. Kang, and E. G. Im, “Malware Analysis Using
Visualized Image Matrices,” The Scientific World Journal, vol. 2014,
Art. ID 132713, pp. 1–15, 2014.

[12] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis using
visualized images and entropy graphs,” Int’l J. Inform. Security, vol. 14,
no. 1, pp. 1–14, 2015.

[13] X. Han, J. Sun, W. Qu, and X. Yao, “Distributed malware detection based
on binary file features in cloud computing environment,” in proc. 26th
Chinese Control and Decision Conf. (CCDC), pp. 4083–4088, 2014.

[14] S. H. Huseby, “Common Security Problems in the Code of Dynamic
Web Applications,” Web Appl. Security Consortium, pp. 1–5, 2005.

[15] R. Islam, R. Tian, L. Batten, and S. Versteeg, “Classification of Malware
Based on String and Function Feature Selection,” in proc. 2nd Cyber-
crime and Trustworthy Computing Workshop (CTC), pp. 9–17, 2010.

[16] H. V. Jagadish, “Linear clustering of objects with multiple attributes,” in
proc. 1990 ACM SIGMOD Int’l Conf. Management of Data, pp. 332–
342, 1990.

[17] H. V. Jagadish, “Analysis of the Hilbert curve for representing two-
dimensional space,” Inform. Processing Letters, vol. 62, no. 1, pp. 17–
22, 1997.

[18] K. Kancherla and S. Mukkamala, “Image visualization based malware
detection,” in proc. 2013 IEEE Symp. Computational Intelligence in
Cyber Security (CICS), pp. 40–44, 2013.

[19] D. Kirat, L. Nataraj, G. Vigna, and B. S. Manjunath, “SigMal: a static
signal processing based malware triage,” in proc. 29th Annual Computer
Security Applications Conf. (ACSAC), pp. 89–98, 2013.

[20] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables
in the wild,” in proc. 10th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD), pp. 470–478, 2004.

[21] A. Lakhotia, A. Walenstein, C. Miles, and A. Singh, “VILO: a rapid
learning nearest-neighbor classifier for malware triage,” J. Computer
Virology and Hacking Techniques, vol. 9, no. 3, pp. 109–123, 2013.

[22] M. Ligh, S. Adair, B. Hartstein, and M. Richard, Malware Analyst’s
Cookbook and DVD, Wiley Publishing, Inc., 2011.

[23] A. Long, J. Saxe, and R. Gove, “Detecting malware samples with similar
image sets,” in proc. 11th Workshop on Visualization for Cyber Security
(VizSec), pp. 88–95, 2014.

[24] C. Malin, E. Casey, and J. Aquilina, Malware Forensics Field Guide For
Windows Systems: Digital Forensics Guides, Elsevier, 2012.

[25] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: visualization and automatic classification,” in proc. 8th Int’l
Symp. Visualization for Cyber Security (VizSec), Art. no. 4, pp. 1–7,
2011.

[26] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, “Novel active
learning methods for enhanced PC malware detection in windows OS,”
Expert Systems with Applications, vol. 41, no. 13, pp. 5843–5857, 2014.

[27] U. Park, et al., “ViSE: Visual Search Engine Using Multiple Networked
Cameras,” in proc. 18th Int’l Conf. Pattern Recognition (ICPR), pp.
1204–1207, 2006.

[28] R. S. Pirscoveanu, et al., “Analysis of Malware behavior: Type classifica-
tion using machine learning,” in proc. 2015 Int’l Conf. Cyber Situational
Awareness, Data Analytics and Assessment (CyberSA), pp. 1–7, 2015.

[29] D. A. Quist and L. M. Liebrock, “Visualizing compiled executables for
malware analysis,” in proc. 6th Int’l Workshop on Visualization for Cyber
Security, pp. 27–32, 2009.

[30] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic Analysis of
Malware Behavior using Machine Learning,” J. Computer Security, vol.
19, no. 4, pp. 639–668, 2011.

[31] J. Saxe, D. Mentis, and C. Greamo, “Visualization of shared system
call sequence relationships in large malware corpora,” in proc. 9th Int’l
Symp. Visualization for Cyber Security (VizSec), pp. 33–40, 2012.

[32] F. Shen and O. Hasegawa, “An Incremental Network for On-line
Unsupervised Classification and Topology Learning,” Neural Networks,
vol. 19, no. 1, pp. 90–106, 2006.

[33] S. Shiaeles, V. Katos, A. Karakos, and B. Papadopoulos, “Real time
DDoS detection using fuzzy estimators,” Computers & Security, vol.
31, no. 6, pp. 782–790, 2012.

[34] S. Shiaeles, and M. Papadaki, “FHSD: An Improved IP Spoof Detection
Method for Web DDoS Attacks,” The Computer Journal, vol. 58, no. 4,
pp. 892–903, 2014.

[35] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software, No starch press, 2012.

[36] A. Sovarel, D. Evans, and N. Paul, “Where’s the FEEB? The Effective-
ness of Instruction Set Randomization,” in proc. 14th USENIX Security
Symposium, pp. 145–160, 2005.

[37] Y. Sun, H. Liu, and Q. Sun, “Online learning on incremental distance
metric for person re-identification,” in proc. 2014 IEEE Int’l Conf.
Robotics and Biomimetics (ROBIO), pp. 1421–1426, 2014.

[38] D. Uppal, R. Sinha, V. Mehra, and V. Jain, “Malware Detection and
Classification Based on Extraction of API Sequences,” in proc. 2014
Int’l Conf. Advances in Computing, Communications and Informatics
(ICACCI), pp. 2337–2342, 2014.

[39] C. Wressnegger, K. Freeman, F. Yamaguchi, and K. Rieck, “From
Malware Signatures to Anti-Virus Assisted Attacks,” Computer Science
Report, Report No. 2016-03, Technische Univ. Braunschweig, 2016.

[40] W. Zheng, S. Gong, and T. Xiang, “Reidentification by Relative Distance
Comparison,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 35, no. 3, pp. 653–668, 2013.

http://binvis.io/#/

	I Introduction
	II Related work
	III The proposed method
	III-A Binary visualisation
	III-B Feature extraction
	III-C Self-organizing incremental neural network

	IV Experimental results
	V Discussion
	VI Conclusions
	References

