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Abstract—The increasing cases of wireless communication net-
works being partly (or even fully) destroyed after the occurrence
of natural disasters has made researchers focus on the use of
Unmanned Aerial Vehicles (UAVs) to provide quick and efficient
backup communication in post-disaster scenarios. However, the
performance of UAVs in the provisioning of wireless coverage
is known to be constrained by their battery life, which limits
their flight times. In this paper, we explore the use of a single
UAV to provide backhaul connectivity to truck-mounted Base
Stations (BSs) that have been deployed within a disaster zone
to provide network coverage to users based on the principle of
delay-tolerant communications. We propose a trajectory design
that uses genetic algorithm to find the trajectory with the least
energy requirement for the UAV to visit all the BSs and return
to a central node that acts as a gateway to the core network.
Our trajectory design takes into account both the straight-and-
level flight and banked-level turns of the UAV in computing the
energy requirement. Simulation results show that our proposed
design outperforms two approaches in the literature by up to
14% and 40%.

Index Terms—UAV; trajectory; genetic algorithm; emergency
communication networks; energy minimization; SON.

I. INTRODUCTION

There has been tremendous improvement of the key per-
formance indicators (KPIs) of wireless communication sys-
tems over the past 4 generations. However, despite all the
progress made in the past years, the next generation of mobile
networks, 5G, promises to stretch and improve these KPIs
beyond the targets of current mobile networks [1]. One area
that 5G is expected to improve over current cellular systems
is in the realm of the quality of resilience, which deals
with autonomous reconfiguration of wireless networks. For
example, whenever a natural disaster occurs, leading to the
destruction of wireless communication infrastructure, it is
essential that 5G and beyond systems are able to rapidly adapt
and autonomously reconfigure themselves in order to restore
coverage as soon as possible [2].

In the aftermath of the 2011 Great Japan earthquake, over
29,000 BSs in the affected areas were shut down and up to
90% of voice calls were blocked in the few BSs that remained
active [3]. When Hurricane Maria struck Puerto Rico in 2016,
over 95% of the BSs in the island were destroyed, leaving mil-
lions of people unconnected [4]. As such, it is paramount to
devise quick and efficient post-disaster deployment schemes
to restore communication services.

UAV-aided communication is presently receiving a fair
share of attention from researchers due to its low-cost, quick
and flexible deployment [5]. The use of UAVs as flying
BSs for coverage expansion and capacity improvement in
terrestrial networks has been explored in [5–7]. The authors
in [8] and [9] investigated the use of UAVs as mobile relays
between two nodes by operating as data ferries. In [10],
reinforcement learning was used to design a trajectory based
on the shortest-tour technique for data gathering from ground
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sensor nodes. Moreover, the authors in [11] used Genetic
Algorithm (GA) to design an energy conscious trajectory
for UAV based mobile crowd sensing. In [12], the authors
proposed an energy-efficient trajectory design whereby a UAV
tries to maintain communication with a ground terminal.
In terms of post-disaster communication, we used machine
learning to determine the optimal positioning of distributed
drone BSs, with the objective of maximizing the number of
users served within a disaster zone in [13]. Furthermore, the
works in [14] and [15] have shown that UAV-BSs can provide
relief to users by improving coverage and the throughput of
the network when some BSs have been cut-off. The authors
in [16] proposed a UAV trajectory design for post-disaster
scenarios based on latency and data volume constraints using
GA for data delivery to user groups.

Despite the benefits of UAV-aided communication, espe-
cially in post-disaster settings [13–16], UAVs have a major
drawback in terms of flight time, which is constrained by
battery capacity [17]. This limits the flight time of battery-
powered UAVs to under a couple of hours, which affects the
performance of UAVs in post-disaster scenarios where access
to electricity could be challenging. Hence, UAV trajectory
design is a key performance criterion in post-disaster UAV-
aided communications [17].

In this paper, we propose a quick, efficient and low-cost
post-disaster wireless communication deployment whereby a
truck-mounted BS is deployed to clusters of users within a
disaster zone. In order to ensure quick and easy deployment
of the network, it is assumed that the BSs do not have any
form of backhaul capability to the core network and, as such,
rely on a UAV to periodically come for a fly-by to receive the
data from each BS and ferry it to the core network, or vice
versa. The UAV starts from a gateway node (which denotes
the physical location where data is extracted from the UAVs
and transferred to the core network), flies to each BS to
receive/transmit data and back to the gateway node to offload
the data to the core network. This approach is most suitable
for delay-tolerant communication whereby users send and
receive text and multimedia messages, emails, update social
media status, receive RSS feeds and emergency messages.

Although being simple by design, GA has been proven
to find solutions to both complex and non-deterministic
problems [18]. Hence, we propose a GA solution with the
objective of finding a trajectory that minimizes the energy
requirement of a UAV to get data from all the truck-mounted
BSs. Note that this approach is a generalization of the well-
known Traveling Salesperson Problem (TSP), which finds the
route with the shortest distance for a salesperson to visit all
the cities within a given set of cities once and return to the
origin [19]. By modeling the total energy consumption of
the UAV for any given trajectory, which takes into account
both the energy requirements of straight line flight, as well
as the energy required to change the heading of the UAV by
making banked-level turns towards the next BS, we show that



excluding the turn energy requirements significantly underes-
timates the UAV energy requirements. Hence, the scenario
we consider differs from the traditional TSP given that the
previous and future nodes visited, turn angle, influence the
energy cost of a branch. Simulation results show that our
proposed algorithm outperforms a trajectory algorithm based
on [11] and [16] by up to 40% and 14%, respectively.

The remainder of this paper is organized as follows.
Section II describes the system model. In Section III, we
propose our GA-based energy minimization trajectory design
algorithm. Section IV presents the performance analysis of
the algorithm, while Section V concludes the paper.

II. SYSTEM MODEL

Consider a post-disaster scenario in which the network is
fully down and all communication links have been cutoff.
We assume that N truck-mounted BSs are deployed to serve
distinct areas where users might be clustered. Furthermore,
the BSs rely on a UAV to periodically come for a fly-by
to receive the data from each BS and transport it to the
core network. One of the BSs is assumed to have a reliable
connection to the Internet and, thus, serves as the gateway to
the core network.

A. Flight Altitude
Assuming that all the BSs are on ground level, the maxi-

mum altitude that maximizes the communication link between
the UAV and a truck-mounted BS, subject to a path-loss
threshold constraint is given as [20]

h = r tan(ϑ), (1)

where ϑ denotes the optimal elevation angle1, and r represents
the maximum coverage radius, which can be found from
solving [20]

l =
ηLoS − ηNLoS

1 + ε exp
(
−ς( 180

π ϑ− ε)
) + 20 log

( r

cosϑ

)
+ β. (2)

In (2), l denotes the path-loss threshold, ε and ς are envi-
ronment dependent constants, while ηLoS and ηNLoS represent
the line-of-sight and non-line-of-sight losses that are added
to the free space propagation loss, which also depend on the
environment; finally, β = 20 log(4π/λ) + ηNLoS, where λ
represents the carrier wavelength.

In this paper, we consider the N BSs to be randomly placed
over an area, with a minimum separation of 2r between any
two BSs and a UAV altitude of h.

B. UAV Energy Consumption Model
The energy consumption model of a UAV considers the

energy requirements of straight-and-level flight and also that
of changing the heading of the UAV through banked turns.

1) Straight-and-level flight: this refers to a flight that has
a fixed heading and altitude. The following conditions hold
for straight-and-level flights with constant speed [12]:
• Lift (L) is equal to its weight (W ), i.e.,

L = W. (3)

• Thrust (Γ) is equal to the drag (D), and is given as

Γ = D =
1

2
v2CD0Sρ(h) +

2L2

πe0ARSv2ρ(h)
, (4)

where v, CD0
, S, ρ(h), e0 and AR represent the UAV

speed, zero lift drag coefficient, wing area, air density

1The optimal elevation angle has been shown to be 42.44◦ for urban areas
[20]

at altitude h, Oswald efficiency and aspect ratio of the
wing, respectively2.

Knowing that power is equal to the product of force and
speed, the power for straight-and-level flight, Ps, is given as

Ps = Γv =
1

2
v3CD0

Sρ(h) +
2W 2

πe0ARSvρ(h)
,

= c1v
3 + c2/v,

(5)

where

c1 ,
1

2
CD0

Sρ(h), and c2 ,
2W 2

πe0ARSρ(h)
.

In (5), c1 is known as the parasitic drag, which determines
the power required to overcome friction drag and pressure on
the UAV, while c2 is known as the induced drag, which gives
the power required to overcome lift-induced drag [12]. Given
the relationships between c1, c2 and v, we can conclude that
c1 predominates at high speed, while c2 predominates at low
speed. Lastly, the energy required for straight-and-level flight
is given as

Es = tsPs =
(
c1v

3 + c2/v
)
ts, (6)

where ts is straight-and-level flight time.
2) Banked level turn: In order to change the heading of the

UAV, the aircraft must bank at an angle so that the lift creates
an acceleration component that is normal to the velocity of
the UAV. The relationship between L and W for banked level
turns is given as [21]

L = nW. (7)

In (7), n denotes the load factor of the UAV and it can be
expressed as

n =

√
1 +

(
vω

g

)2

, (8)

where ω and g denote the turn rate of the UAV and gravi-
tational acceleration, respectively. For banked level turn, the
relationship between Γ and D is given as

Γ = D + m̂a, (9)

where m̂ and a denote the mass of the UAV and acceleration,
respectively. By inserting (7) and (9) into (5), the power
required for banked level turns can be expressed as

Pt = c1v
3 + c2n

2/v + m̂av. (10)

Hence, the energy required for a banked-level turn is given
as

Et = ttPt =

(
c1v

3 +
c2
v
n2 + m̂av

)
tt, (11)

where tt = φ/ω is the time it takes for the UAV to complete
the turn from point A to point B in Fig. 1, such that φ and ω
denote the turn angle and turn rate, respectively. The radius
of turn rt, as shown in Fig. 1, can be found from [21]

rt =
v2

g
√
n2 + 1

, (12)

where g denotes gravitational acceleration.

III. PROPOSED ALGORITHM

In this Section, we formulate our problem and propose our
trajectory design that minimizes the flight energy requirement
of the UAV to visit all the BSs and fly back to the origin. Note

2Note that in this paper, we assume a zero wind speed.



Figure 1. Turning performance of UAV.

that this problem is proven to be combinatorial and NP-hard,
hence, intractable to solve for a large number of BSs [16].
Accordingly, we adopt GA, an evolutionary type of algorithm
that uses a small sample of possible combinations of the
solution (termed population) and iteratively adapts them over
∆ generations to find a good solution [22].

A. Fitness Function

We define the fitness value of any chromosome k to be
the inverse of the total energy required for the UAV to
travel from the gateway node to all the BSs and back to the
gateway node, i.e., Tk,1 through Tk,2, . . . ,Tk,N and back
to Tk,1, for any trajectory Tk, ∀k = 1, 2, . . . ,K, where K
denotes the number of chromosomes. The fitness value, Fk,
of chromosome k can be expressed as

Fk =
1∑N

i=1

(
Esi + Eti

)
=

1∑N
i=1

(
dk,i

v Ps +
φk,i

ω Pt

) . (13)

The parameter dk,i in (13) denotes the straight-and-level flight
distance that the UAV travels between BS i and BS i + 1,
which is given as

dk,i =
√

(xk,i+1 − x̂k,i)2 + (yk,i+1 − ŷk,i)2, (14)

where xk,i+1 and yk,i+1 represent the x and y coordinates
of the (i + 1)th BS in Tk, respectively; while x̂k,i and ŷk,i
denote the coordinates of the UAV’s position after the turn at
BS i, represented as point B in Fig. 1.

The turn angle, φk,i, can be found from

φk,i = 2 sin−1

(√
(xk,i − x̂k,i)2 + (yk,i − ŷk,i)2

2rt

)
, (15)

where x̂k,i = xck,i − strt sin(ψ) and ŷk,i =
yck,i − strt cos(ψ), such that ψ = αk,i + stθk,i.

Moreover, αk,i = tan−1
(
yck,i−yk,i+1

xc
k,i−xk,i+1

)
and θk,i =

sin−1
(
rt/

(√
(xk,i+1 − xck,i)2 + (yk,i+1 − yck,i)2

))
,

where, xck,i and yck,i denote the x and y coordinates of the
center of turn the UAV makes, respectively, as shown in
Fig. 1. Furthermore, the parameter st determines the turn

swap swap

1 2 3 8 7 5 6 4 T1

swap swap

1 3 7 2 4 8 5 6 T2

1 2 3 8 7 4 5 6 Offspring 1

1 3 7 2 4 5 6 8 Offspring 2

Figure 2. Partially-Matched crossover operation.

direction such that st ∈ {−1,+1}, where st = −1 if the
UAV is making a right turn or +1, otherwise.

B. Selection
Roulette wheel selection is used to choose the chromo-

somes that will undergo crossover, whereby the parents
are chosen based on their fitness values [22] for mating
to produce offsprings that would replace them in the next
generation. Consider a roulette wheel containing all the
chromosomes of the population and the pocket size of each
chromosome is relative to its fitness value. This implies that
if a ball is thrown in, the chromosomes with higher fitness
values will have a better chance of being selected. We assume
a fraction of the population, U = γc × K, is selected in
each generation to undergo crossover, where γc denotes the
percentage of the chromosomes that will be selected.

We also perform elitism, which involves copying the best
chromosome found in previous generations to the next gen-
eration so as to make the best solution survive to the end of
the run [22].

C. Crossover
Given that the UAV can visit each BS only once in each

trajectory and, as such, gene repetition in the chromosomes
is not permitted, we use the Partially-Matched Crossover
(PMX) approach [22] to create new offsprings from the
selected parents. Assuming T1 and T2 are the selected parent
chromosomes, two different crossing points that enclose 2 or
more genes are randomly selected. This section is transferred
from T1 to the same position in T2. In the event that there is
a repetition on genes in the new chromosome, the duplicate
genes of T2 that are not part of the transferred section are
swapped with the genes of T2 that have been transferred
to T1 to form the first offspring. The same approach is
repeated to create the second offspring. Fig. 2 depicts how
the offsprings are created using PMX.

After performing crossover, the fitness of the new off-
springs is calculated and they only replace their parents in
the next generation if they have a better fitness.

D. Mutation
In order to avoid falling into local optima, a portion of the

chromosomes in a population undergo mutation [22]. In our
algorithm, two entries of Tk with the highest gross energy
requirements are swapped. Here, we define gross energy of
BS i as the sum of the straight-and-level flight energy between



Algorithm 1 Energy Minimization Trajectory Algorithm

1: Inputs: ∆, N,K, T̂, v, ρ, S, CD0
,W,AR, e0, γc, γm and

xi, yi ∀i = 1, 2 . . . , N
2: Initialize δ = 1
3: While δ ≤ ∆

Roulette Wheel Selection;
4: Compute fitness Fk(δ), ∀k = 1, 2, . . . ,K;
5: Calculate cumulative sum of the fitness ratio of all

chromosomes, F
6: For i = 1, . . . , U
7: Generate random number, m, from 0 to 100
8: Go through F starting from 0, and select the

chromosome at the point where ui ∈ F > m,
to form U

9: End
Crossover

10: While U > 0
11: Select 2 random chromosomes a and b from U
12: Choose 2 random crossing points and swap enclos-

ing genes between chromosomes a and b
13: Swap genes if there is repetition as shown in Fig. 2
14: Denote new offsprings as ã and b̃ and compute their

fitness
15: Replace a and b by ã and b̃, if they have higher

fitness
16: U = U − 2
17: End while

Mutation
18: For k = 1, . . . ,K
19: Generate a random number, nk
20: If nk > γm,
21: Compute Gi,∀i = 1, . . . , N
22: Swap the 2 genes with the highest Gi
23: End if
24: End
25: T †(δ) = max(F (δ))
26: δ = δ + 1
27: End while
28: Output: T? = max(T †)

BS i and the previous BS in the trajectory (BS i − 1), the
straight-and-level flight energy between BS i and the next BS
in the trajectory (BS i+1) and the turn energy at BS i, which
is defined as

Gi = Esi−1 + Eti + Esi . (16)

In order to determine which chromosomes are selected for
mutation, we generate K random numbers between 0 and 1,
one for each chromosome in the population. A chromosome is
selected for mutation if its value is less than a given threshold,
γm.

Note that the first entry of Tk is always untouched during
mutation because the UAV always starts and terminates at the
origin. The choice of using gross energy in our mutation is
because it best defines the energy cost of visiting any given
BS in the trajectory, with reference to the previous BS and
the next one.

Our proposed GA approach is summarized in Algorithm I.

Table I
SIMULATION PARAMETERS [6, 20, 21, 23]

Parameter Value Parameter Value

l (dB) 90 ε 11.95

ηLoS (dB) 1 ς 0.136

ηNLoS (dB) 20 λ (m) 0.15

c1 9.26 ×10−4 c2 2250

m (kg) 10 g (m/s2) 9.81

γc (%) 80 γm 0.2

IV. NUMERICAL RESULTS

In this section, we compare the performance of our pro-
posed algorithm against the algorithms of [11] and [16].
Instead of using the fitness function of [16] in our imple-
mentation of their algorithm, which takes into account data
volume for each BS and latency, we use our fitness function.
On the other hand, the fitness function of [11] is maintained
as it is based on the straight-and-level energy requirement
of the UAV during the flight. The crossover and mutation
designs of the benchmark algorithms are maintained. In this
paper, we employed 1000 runs of Monte Carlo simulation,
whereby new BS locations are randomly placed over an area
of 1600 m × 1600 m in each iteration and the results are
averaged out. We assume that the first BS in each trajectory
acts as the gateway and is located at the point (1,1) on the
grid. The simulation parameters used in this paper have been
summarized in Table I.

In Fig. 3, we compare the energy requirement of our
trajectory design versus UAV speed, against the benchmark
algorithms based on [11] and [16] for N = 16 BSs, K = 520
chromosomes and ∆ = 180 generations. It can be observed
that as the UAV speed increases, the power requirement of all
the algorithms decreases to a minimum speed of 30 m/s and
then starts to increase again. This behavior is consistent with
the power profile of aircrafts and it has to do with the power
required to overcome the parasitic and lift-induced drag. It
can be seen that our design outperforms the algorithms based
on [11] and [16] by over 38% and 14%, respectively, at high
UAV speed. This is due to the superiority of our GA, which
performs crossover on a given percentage of the population
in each generation and replaces the new offprings only if they
have better fitness than their parents. Moreover, our algorithm
also takes into account the energy cost of visiting each BS in
the trajectory during mutation, compared to both benchmark
algorithms. It is obvious that when the complete energy (CE)
requirement is taken into account, whereby the turn energy
requirement is also considered in the fitness function, the
resultant energy requirement is lower than when only the
energy straight-line flight is considered by about 1% to 7%
as the UAV speed increases, as shown in the algorithm of
[11] with CE. However, our algorithm still outperforms the
algorithm of [11] with CE by over 30%. This confirms the
superiority of our design over then algorithms of [11] and
[16].

Fig. 4 shows the energy requirement of our trajectory de-
sign versus increasing number of BSs against the benchmark
schemes for v = 30 m/s, K = [250, 350, 430, 520, 650, 800]
and ∆ = [50, 100, 140, 180, 300, 450]. Given that the search
space of the trajectories increases with the number of BSs, K
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Figure 3. UAV energy requirement comparison of our proposed trajectory
design against benchmark methods for increasing UAV speed.
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Figure 4. UAV energy requirement comparison of our proposed trajectory
design against benchmark methods for increasing number of BSs.

and ∆ in our proposed design and the benchmark algorithms
have been set to vary according to the number of BSs.
As expected, the energy requirement of all the algorithms
increases with the number of BSs. This has to do with the
increased flight time and the number of turns that the UAV has
to make to get to all the BSs, as the number of BSs increases.
It can be observed that the performance gap between our
proposed design and the algorithm of [16] on one hand,
and the algorithm of [11] on the other hand, increases with
the number of BSs. This is due to our crossover selection
criteria and our mutation design that is dependent on the
gross-energy requirement of each BS, and the fact that the
algorithm of [16] chosses the 2 fittest chromosomes in each
iteration for crossover and mutation, and their offsprings
replace the weakest ones in the next. This results in our
algorithm outperforming the algorithm of [11] by between
23% to 40% at low and high number of BSs, while achieving
up to 12% lower energy requirement when compared to the
algorithm of [16]. Again, there is a difference of about 4%
when the complete energy requirement is taken into account
in the algorithm of [11].
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Figure 5. CPU computational time comparison of our proposed trajectory
design against benchmark methods for increasing number of BSs.

In Fig. 5, we show the CPU computational time comparison
of our proposed trajectory design against the benchmark
schemes for increasing number of BSs. It is obvious that
the CPU computational time of all algorithms increases with
increasing number of BSs. It is evident that our trajectory
design has a higher CPU computational time when compared
to the benchmark algorithms. Our algorithm has about 10
to 50 times the computational complexity of the algorithms
of [11] and [16] at low and high number of BSs. This is
because γc and γm of the population undergoes crossover
mutation, respectively, in each generation, whereas only 2
parent chromosomes undergo crossover and mutation in each
generation in the benchmark algorithms. Moreover, our pro-
posed mutation involves finding the BSs with the highest
gross energy requirements and swapping their positions,
against randomly choosing BSs to swap in the benchmark
algorithms. This approach results in performance gains of up
to 40% and 12%, when compared to the algorithms of [11]
and [16], respectively, as shown in Fig 4. It is worthy of note
that although our proposed trajectory algorithm has a higher
complexity when compared to the benchmark algorithms, it is
expected that optimization would be performed offline, which
results in the computational time being less of an issue.

V. CONCLUSION

In this paper, we have proposed a GA-based trajectory
design that minimizes the energy requirement of a UAV to
travel to and receive data from BSs deployed around a disaster
zone and return to a gateway BS to offload the data. The
trajectory design takes into account both the straight-and-
level flight and banked-level turns of the UAV in computing
its energy requirement. Simulation results show that the
proposed solution outperforms a trajectory algorithm based
on [16] and Nearest Neighbor algorithm, with respect to
total energy requirement. In the future, we plan to design an
intelligent BS positioning scheme by using machine learning
and also evaluate the energy efficiency of our trajectory
design, by considering throughput and data transmission time
at each BS in the trajectory.
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