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Abstract—A Connectivity-constrained based path planning
for unmanned aerial vehicles (UAVs) is proposed within the
coverage area of a 5G NR Base Station (BS) that uses mmWave
technology. We consider an uplink communication between UAV
and BS under multipath channel conditions for this problem.
The objective is to guide a UAV, starting from a random location
and reaching its destination within the BS coverage area, by
learning a trajectory alongside achieving better connectivity.
We propose simultaneous learning-based path planning of UAV
and beam tracking at the BS side under urban macro-cellular
(UMa) pathloss conditions, to reduce its sweeping time with
apriori computational overhead using the deep reinforcement
learning method such as Deep Q-Network (DQN). Our results
show that our proposed learning-based joint path planning and
beam tracking method is on par with the learning-based shortest
path planning, besides beam tracking comparable to heuristic
exhaustive beam searching method.

Index Terms—5G, mmWave, reinforcement learning, UAVs,
path planning, beamforming

I. INTRODUCTION

Over the last few years, there is tremendous research
interests towards integrating unmanned aerial vehicles (UAVs)
into cellular networks using fifth Generation (5G) and beyond
wireless communications [1], [2]. The deployment of cellular-
enabled UAV-User Equipment (UE)s (here after addressed as
UAVs) adds an additional dimension of challenges in the design
and planning of these communication systems for high altitude
coverages in a myriad of civil applications, such as traffic
surveillance, mineral exploration, internet drone delivery sys-
tems, etc. [3], [4]. For instance, Amazon is projected to deploy
a commercial fleet of 450,000 drones under “Amazon Prime
Air” worldwide delivery operating service by 2020 [5].

Millimeter wave (mmWave) beamforming communication
is considered as one of the key innovations for 5G networks
[6], [7]. The wide spectrum (ranging from 30 GHz to 300
GHz) of mmWave frequencies with beamforming has provided
a promising way for sustaining a real-time ultra-high speed
transmissions for UAVs. Besides, mmWave provides high-
capacity and line-of-sight (LoS) dominated connectivity for
UAVs, it also suffers from many challenges, such as rapid
channel variation, blockage effects, atmospheric attenuations,
range limits etc. [8], [9], leading to substantial interference
problems especially in multi-cell scenarios. The recent studies
have even reported nearly 150 UAV crashes occurred due
to loss of communication with ground base stations [10].

As there is an expected increase of UAVs in near future,
it is of significant importance to support high-performance
communications between UAVs and Base Station (BS).

Connectivity-constrained trajectory optimization for UAV-
mounted relays and UAV-mounted base stations in cellu-
lar networks has been widely investigated in [11]–[14]. In
[11], a minimal delay trajectory design for UAV relays was
proposed to ferry data from multiple sources to destination
using reinforcement learning (RL) algorithm. In [13], a multi-
UAV enabled multi user communication system was jointly
optimized with UAV trajectory and communication resource
allocation to maximize throughput over all users for downlink
transmission scenario. The authors in [14], proposed a deep
RL framework based on echo state network (ESN) cells for
optimizing the trajectories in a multi-cellular UAV scenario.
This approach allowed UAVs act as individual RL agents to
minimize their interference on ground network under latency.

In this paper, we consider a connectivity-constrained based
trajectory optimization for any cellular-enabled UAV within
the coverage area of mmWave BS, using deep RL framework.
Unlike in previous works, here the mmWave BS acts as RL
agent to learn communication-aware optimal trajectory and
optimal beam tracking for UAV. Some literature has recently
studied the use of RL for mmWave beam learning in an online
manner. [15], [16]. The deep RL framework offers a generic
and scalable solution, where BS acts as a commander for
all UAVs in a multi-UAV scenario. Besides, the smart BS
approach for cellular-enabled UAVs can comply well with
current UAV battery standards [17].

The main contribution of this paper is that we propose
a deep RL based generic framework at BS side, to jointly
optimize path planning and beam tracking for any uplink
mmWave cellular-enabled UAV. This communication is sim-
ulated by considering a multi-path channel model, Multiple
Inputs Multiple Outputs (MIMO) beamformers and UAV-BS
environment. The simulated environment is used for offline
training of BS RL agent before deployment similar to prior
works [11]–[14]. The trained agent is used to benchmark
our results against learning-based shortest path planning with
heuristic exhaustive beam searching method.

The rest of the paper is organized as follows. Section II
presents the system and communication model with the prob-
lem formulation. Section III describes the implementation of



our deep RL framework and UAV environment. Section IV
elaborates our simulations and benchmark results. Section V
summarizes our conclusion and future work.

II. PROBLEM FORMULATION AND SYSTEM MODEL

As illustrated in Fig 1, we consider a mmWave uplink
multi-path (both LoS and Non-Line of Sight (NLoS)) radio
beamforming communication between a fixed BS and a mov-
ing unmanned aerial vehicle (UAV), following 5G protocol
standards as mentioned in [18]. UAV starts from a random
source location with the goal to reach destination by assuming
all the locations hovered by UAV (as UE) are within the
coverage area of BS. The objective of this problem is to guide
the UAV via BS in reaching destination, by predicting the next
best UE location as well as BS radio frequency (RF) beam
direction based on its connectivity-constraints.

A. System Model

We consider a multi-antenna UE, multi-antenna BS scenario
and also conceptualize the coverage area U around BS into a
grid as shown in Fig 1(a). The BS acts as fixed serving node
located at O(0, 0). UE transmits a radio signal in multiple
beam directions following a codebook B defined as

bi = (i− 1)
π

N − 1
, 1 ≤ i ≤ N, (1)

where bi represents a RF radio beam direction with a fixed
narrow beam width( π

N−1 ), N represents the number of code-
book directions in B. BS receives the radio signal through
one of its multiple beam directions each time, following the
same codebook set B. UE starts from source location UEs and
moves with velocity v = (vx, vy, vz) (|vx|,|vy|,|vz| ∈ V , where
V denote the set of UE pre-defined speed values) towards
a defined target location UEd, following a certain path p.
Meanwhile, the RX radio unit starts with a random beam
br ∈ B at time t = 0 and learns to choose the beam direction
bk ∈ B every time, until reaching the target location at along
the path p. Let M ∈ {‘L’,‘R’,‘U ’,‘D’} represents the set of
possible UE move directions under the coverage area U. If
UEs is denoted as (x1, y1, z1), then the position of UE via
BS at any time instant t is given by

UEt = (x1 + vxt, y1 + vyt, z1 + vzt),∀ 1 ≤ t ≤ tp, (2)

where {x1+vxt, y1+vyt} ∈ U and {z1+vzt} ∈ Z, depending
on UE move direction and tp is the maximum time step limit.
Here, U and Z is the coverage area of the the serving Node
BS and altitude range of UAV respectively.

B. Communication Model

We consider an uplink MIMO mmWave communication
between UE at location UEt ∈ R2 and BS at location O ∈ R2,
as shown in Fig. 1(b). UE acts as transmitter (TX), BS as
receiver (RX) and are equipped with Uniform Linear Array
(ULA) structure of Nt and Nr antennas respectively. We
assume UEt is unknown and estimated using (2) while BS
location is known as O(0, 0). The radio channel considered
in this problem is a multi-ray link (LoS and NLoS) with
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Fig. 1. (a) Illustration of problem formulation, (b) Radio Communication
system between MIMO transmitter and receiver.

propagation delay τm ∀ 0 ≤ m ≤ M , where M represents
the number of reflection points between UE and BS. Let
α ∈ [0, 2π) be the angle of rotation of UE antenna array
with respect to y-axis. θtx,m, θrx,m are the Angle of Departure
(AoD) and Angle of Arrival (AoA) of mth communication link
between BS and UE respectively. Using these notations, we
can now define α = π + θtx,m − θrx,m and propagation delay

τm with velocity of light c is given by τm =
‖UEt,m‖

c .
UE transmits radio signals in all codebook directions at a

carrier frequency fc (or wavelength λ) with bandwidth W .
The BS receives carrier fc signal through one of its multiple
beams defined under same direction set B using (1). Based on
this, we employ a narrow band receiver signal model given by

y(t) =

M∑
m=0

√
Ptxβ wHaR(θrx,m)a

H
T (θtx,m)fx(t− τm)

+wH n(t),
(3)

where Ptx is transmission power, β is the antenna chan-
nel gain with UMa environment multi-path loss conditions
[19], w ∈ CNr , f ∈ CNt are the transmit and receive
unit-norm beamforming vectors, n(t) ∈ CNr is a Gaus-
sian noise vector with zero mean and two-sided power
spectral density N0

2 , x(t) represents one Orthogonal Fre-
quency Division Multiple access (OFDM) symbol of the time-
domain transmitted signal with bandwidth W and time period
Tsym with 1

Tsym

∫ Tsym

0
‖x(t)‖2dt = 1, aR(θrx,m) ∈ CNr ,

aT (θtx,m) ∈ CNt are the array response vectors for θrx,m
and θtx,m along mth communication path. Here, a(θ)]N−1l=0 =
1√
N
exp(j 2πldλ sin(θ), where θ = θrx,m, N = Nr and θ =



θtx,m, N = Nt for aR(θrx,m) and aT (θtx,m) , respectively.
If NFFT represents the number of OFDM subcarriers, then
signal-to-noise ratio (SNR) can be defined as

SNR =

NFFT∑
n=0

M∑
m=0

|β|2nPtx|wHaR(θrx,m)|2n|fHaT (θtx,m)|2n
N0W

and overall rate measurement R is given by

R =W log(1 + SNR). (4)

C. Problem Formulation

We now formulate the problem to guide UE along a path via
BS, with the goal to reach its destination using its mobility and
data rate measurements (4). At any time instant t, we define
the parameters, ot = {at−1, Rt−1, at−2, Rt−2, ..., a1, R1} that
denote observation history of previous data rate measurements
Rt and at are the action parameters at = (ηt, bt) where
ηt ∈ M represents UE move direction and bt ∈ B represent
receiver beam direction from (1).

The BS aims at maximizing the long-term average of both
connectivity and path guidance to UE by following a stocastic
policy π, mapping current observation history ot to selected
action parameters probabilities at. The goal of BS is to serve
UAV with an optimal path guidance as well as provide better
connectivity at every instant along the path. We consider
the connectivity and path constraints in terms of data rate
measurements between UAV-BS and distance measurements
with respect to destination location respectively. Therefore,
in order to achieve the desired goal, we need to find an
optimal policy that can maximize the data rate measurements
by moving closer towards destination at every instant along
the path. Based on this, optimization problem can now be
formulated as

(P1) : max
{π(at|ot)}

∞∑
k=t

γk−tEπ[
Rt
δt

], (5)

where γ ∈ [0, 1) is the discount factor for future constraints
along the path reaching destination, Rt corresponds to the
data rate measurements of UEt while δt is the UEt distance
from destination. Here, the expectation operator E helps in
providing the long-term average both connectivity and path
constraint measurements as t → ∞. Since, the dynamics of
the system is Markovian over time and is defined by DQN
flowchart to be further discussed below as shown in Fig. 2,
this is considered as a Partially Observable Markov Decision
Process (POMDP) problem [20] that is generally intractable.
Approximate solution using deep RL method will be discussed
in Section. III.

III. IMPLEMENTATION

As shown in Fig. 2, we apply a DQN [21] learning
framework for the uplink radio communication with BS as
a learning Q-agent and UE as the environment. The objective
is to predict the immediate UE direction along with its RX
beam direction using its distance from target and current data
rate measurement information.

We consider st ∈ S, ot ∈ O, at ∈ A and rt ∈ R
as any state, observation, action and reward at time instant
t, from their corresponding sets, respectively. The BS-agent
observes the current state st corresponding to the observations
history ot and selects a specific action at ∈ A(st) following
standard DQN procedure. Here, st represents set of indices
mapping to UEt−1 location and at corresponds to (ηt, bt)
pair described under Section II-C. Once an action at is
performed on the environment, the Q-agent will receive a
scalar reward rt+1 observing a new state st+1. As our goal is
to optimize the UE path guidance, the reward function should
be defined according to the considered constraints such data
rate measurements Rt and distance from destination δt as

r(t+ 1) = log10 (
Rt
δt

). (6)

In this section, we introduce the Neural Networks (NN)
architecture, used as the DQN-Agent at BS and learn the
desired goal using the optimization function described in
P1. At every iteration, the UAV environment computes the
subsequent states and rewards (6) for DQN-Agent based on
the UE target distance and data rate measurements (4).

A. UAV Environment

We implement a UAV custom environment (denoted as
UAVEnv) using python framework and OpenAI gym interface
[22]. UAVEnv consists of defined coverage area U of the BS
using 2D discrete state space S (2), radio beam direction set
B (1), possible UE directions M and discrete action space
A. The BS and target location (UEd), multi-path channel
model h with UMa conditions, received signal (3) and data
rate measurements (4) are also implemented under UAVEnv
class interface. At each episode, UAVEnv resets to random
source location UEs, computes new observations and rewards
based on the received action until it reaches destination.

B. DQN Architecture

DQN is a value-based RL approach [21], learning an
optimal approximated policy of states mapping to actions
π(s) = a by parameterizing and estimating state-action value
function Q(s, a; θ) using Deep Neural Networks (DNN). We
denote the primary DNN network weight matrix and target
DNN network weight matrix as θ and θ, respectively [21].
We consider a fully connected DNN for both the networks
where θ is updated with primary network parameters θ, after
every K iterations. The input of DNN is given by the variables
in st. The intermmediate layers are fully connected linear
units with Rectifier Linear Units (ReLU) by using the function
f(x) = max (0, x) while the output layer is composed of
linear units, which are in one-one corresponding relationship
with all available actions in A. We consider initialization of
bias and weights of these layers with zeros and Kaiming
normalization [23], respectively.

At a time instant t, at selects either a random action from
A or perform forward propagation of Q(st, at; θ) following
ε−greedy policy [20]. A memory buffer of experiences Dt =
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{e1, e2, e3, ..., et}, ei = (si, ai, ri+1, si+1) are collected where
a mini batch of them U(D) are randomly sampled and sent
into DQN [21]. During back propagation, a Mean Squared
Error (MSE) loss function is computed between primary, target
networks and θ is updated using Stocastic Gradient Descent
(SGD) [24] and Adam Optimizer [25] as

θt+1 = θt − ξAdam∇LDQN(θt), (7)

where ξAdam is the learning rate. ∇L(θt) is the gradient of
the DQN loss function, given as

∇LDQN(θt) =

E
(si,ai,ri+1,si+1)

[
(Ri+1 + γmax

a
Q(si+1, a; θt)

−Q(si, ai; θt))∇θQ(si, ai; θt)
]
,

(8)

where θt is used to estimate future value of Q-function inside
LDQN. Complete steps followed by DQN for every episode
of our path planning problem is shown in Algorithm. 1.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DQN algorithm for our path planning problem. We compare
our learning-based joint path planning and beam tracking
method against learning-based path planning with heuristic
exhaustive beam searching method [26]. We adopt standard
radio channel modelling parameters for mmWave communi-
cations as well as grid environment parameters listed together
in Table I. The hyper-parameters used for DQN learning
algorithm are also listed in Table II.

As our state space dimension is smaller (UEx,UEy), for
now we consider a three layer network in our implementation.
However, with increase in action space A and state space S
for more generalization, more layers in DNN’s have to be
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Fig. 3. Average received rewards against DQN training episodes for BS agent

used. Thus, our DQN architecture is set with two 128 hidden
layers and one 64 hidden layer ReLU units, respectively.
Also, we assume a 2D uplink beamforming communication
between UAV and BS by considering the altitude of UAV
fixed. Fig. 3 plots the received episodic reward over train-
ing episodes, smoothened for every 200 samples (given as
E{r} = 1

200

∑200
i=0

1
Nstep

∑Nstep

t=0 rt i.e. one episode consists
of duration Nstep). It can be observed that DQN converge to
a optimal value function Q∗(s, a) over 2500 training episodes.
The increase in average reward over training episodes in all
the observations demonstrate that DQN can successfully learn
the optimal trajectory for UAV along with BS beam directions.

Red colored path along the grid in Fig. 4 shows the UAV
trajectory of proposed DQN-agent based joint path planning
and beam tracking method for a random test episode starting



Algorithm 1: DQN Based Path Planning
Input: The set of UAV x,y location coordinates and

training iterations M
1 Algorithm hyperparameters: learning rate ξ ∈ (0, 1],

discount rate γ ∈ [0, 1), ε−greedy rate ε ∈ (0, 1], target
network update frequency K;

2 Initialization of replay memory M to capacity C, the
primary Q-network with parameters θ1, the target
Q-network with parameters θ2

3 S,A: State and Action space of DQN agent
4 for Iteration ← 1 to M // for each episode
5 do
6 Initialization of s1 by executing a random action a0
7 n,N = 0, Episode Limit
8 while True do
9 if pε < ε then

10 select a random action at ∈ A
11 else
12 select at = argmaxa∈AQ(st, a, θ)

13 BS applies at over the channel, receive signal for
(t+ 1)th iteration during uplink communication

14 UE observes St+1 and calculate the reward using
eqs. (4)-(6)

15 Store transition e = (st, at, rt+1, st+1) in replay
memory D

16 Sample random minibatch of transitions U(D)
17 Compute Loss and Perform gradient descent for

Q(s, a; θ) using eqs. (7),(8)
18 Every K steps update the target network

parameters θ2 = θ1
19 n = n+ 1 // Increment episode time
20 if done or (n = N) then
21 break // End episode

from source (UEs=(450, 450)) and reaching towards destina-
tion (UEd=(−500,−500)). Similarly, black colored path along
the grid represents learnt shortest path planning UAV trajectory
using a different RL BS agent under same simulation condi-
tions. The BS for this scenario is located at (0, 0) as shown
in Fig. 4. We consider a multi-path communication model
scenario with 3 reflection points at rp1=(0, 150), rp2=(250, 50)
and rp3=(−200,−150). The DQN-agent used for the proposed
path is trained over 2500 episodes. For the shortest path plan-
ning method, we retrained the same DQN-agent by computing
rewards without rate conditions. A heuristic exhaustive beam
search method is separately performed later at every location
along the learnt path, computing the best possible data rate
measurements.

We observe that DQN approach follows a different path
compared to shortest path in reaching the same target location.
Despite different optimization criteria, both the methods are
able to reach the destination in an equal number of steps. Thus,
the DQN approach can offer as a generic framework to learn

TABLE I
SIMULATION PARAMETERS

Parameters Value
mmWave Channel UMa

UMa-LoS Pathloss coefficients {α : 2.8, β : 11.4, γ : 2.3, σ : 4.1}
UMa-NLoS Pathloss coefficients {α : 3.3, β : 17.6, γ : 2.0, σ : 9.9}

mmWave freq 30 GHz
carrier spacing freq df 60 kHz

Num of subspace carriers NFFT 1200
antenna element spacing d 0.5

Transmit power Ptx 30 dBm
Transmit antenna elements Nt 8

Receiving antenna elements Nr 8
Noise Level N0 -174 dBm

BS location [0, 0, 0]
coverage xloc Uxloc [−500, 500, 50] m
coverage yloc Uyloc [−500, 500, 50] m
coverage zloc Uzloc [0] m

Cardinality of Beamset M = |B| 8

TABLE II
DQN HYPER-PARAMETERS

Hyperparameters Value
Learning rate λAdam 5e−4

ε−start 1.0
ε−end 0.01
ε−decay 0.9983

Soft-Update rate τ 0.001
Target Q-Network Update Frequency K 10

Minbatch Size U(D) 64
Replay Memory Size |D| 105

Discount rate γ 0.999

the optimal trajectories for UAV under different constraint
conditions. Also, the computed data rate measurements (in
Gbps) are labelled in a bounding box (following color coding)
at every location along the path, for both the methods. Rate
measurements along the red path are learnt directly from
the joint path-planning and beam tracking DQN approach
while the measurements along black path are computed using
heuristic exhaustive beam search method following multipath
channel conditions. We observe that red labelled learnt data
rate values are comparable to that of heuristic grey labelled
values, justfying the beam learning under multi-path condi-
tions. The learnt beam directions at each location along the
path, prevents frequent beam scanning at BS, reducing its
communication overhead to a great extent. This can be very
energy efficient especially when the BS commands multiple
UAVs at the same time. BS considers a prior computational
overhead by learning optimized UAV trajectories within its
coverage area, based on its constraints and prevent frequent
beam sweeping overhead all the time.

However, the accuracy of the learnt data rate values still
needs to be analyzed. This can be better understood by
considering learnt and heuristic data rate values along red
and blue line respectively, starting from same random source
location as shown in Fig. 5. We observe that increase in
cumulative rates along the blue curve is higher compared to
that of cumulative rates in red plot. This indicates that the
learnt rate values are comparable to heuristic approach but the



average learnt rate measurement for a location is slightly lower
than its average exhautive rate measurement along the similar
joint path planning and beam tracking path. The difference in
measurements is due to joint optimization of target distance
and receiver beam direction at BS, during path planning.
This justifies that the proposed approach jointly optimize the
trajectory as well as achieve mmWave data rates comparable
to that of exhaustive method, using beam tracking.
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V. CONCLUSION AND FUTURE WORK

We developed a deep RL based uplink trajectory optimiza-
tion framework for cellular-enabled UAVs within the coverage
area of BS. We confined our UE constraints to target distance
and data rate measurements while designing the generic frame-
work using DQN algorithm. We initially shown the converge
performance of DQN algorithm and then analyzed the results
of joint path planning and beam tracking based trajectory
against learnt shortest path planning towards destination. We
also compare the performance of learnt rate measurements
against the heuristic exhaustive beam search method. Thus, the
proposed approach provides a generic framework for jointly
optimizing multiple practical constraints to the path planning
problem via BS. Having demonstrated some promising results,
we would like to consider other constraints such as energy,
fading and other complex terrestial channel conditions in a
multi-UAV scenario around BS, as extension to this research
in future.
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