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Abstract—Random network coding (RNC) is an efficient coding
scheme to improve the performance of the broadband networks,
especially for multimedia applications which are popular in 5G
network. However, it is a challenging work to transmit the real-
time media data because of the time limitation and wide band
requirement. Moreover, the topology of the network changes due
to users’ movement, causing huge channel heterogeneity in large
wireless network area. In this case, the fixed macro base station
(BS) or access point may not fit the real-time user distributions.
Accordingly, the UAV-based BS with high mobility can provide
flexible service by adjusting it position according to users’
locations to fit the dynamic topology of the network. Therefore,
in this paper, we propose a UAV-based adaptive RNC (UARNC)
scheme that jointly optimizes the UAV’s location and RNC packet
scheduling to maximize the throughput in a multicast network
while guaranteeing the service quality of the bottleneck users.
This problem is formulated as an optimization problem, and the
greedy scheduling techniques and particle swarm optimization
(PSO) algorithm are adopted to solve it. Finally, the simulation
results prove the effectiveness of the proposed scheme.

Index Terms—Multicast network, multimedia, PSO, RNC, UAV

I. INTRODUCTION

One of the factors that drive the development of the 5G net-

work is the increasing demand for multimedia data transmis-

sion over broadband network [1]. Generally, the multimedia

data should be transmitted to multiple users simultaneously.

For spectrum efficiency, multicast technology can be integrated

into the 5G ecosystem to satisfy the rapidly increasing demand

for multimedia data and it will play an important role in

emerging 5G networks [2].

Some applications, e.g. mobile TV, live broadcast, real-time

monitoring, are delay-sensitive and require high quality of

service (QoS) to ensure smooth and timely video playback.

To satisfy those requirements, a series of technologies, such

as network coding (NC), can be adopted in multicast network.

NC has been proved to provide a promising platform for the

multicasting transmissions. In addition, the multicast capacity

can be approached by using the random network coding

techniques (RNC). In RNC, a set of the coding packets

combined with the original data are transmitted to multiple

users. However, in wireless mobile network, the locations of

the users may change dynamically over time, causing the
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change of network topology and channel heterogeneity in

the large network area. For example, in a certain period of

the time, part of the users may form clusters around certain

locations [3] which are far away from the base station (BS). In

this case, the fixed terrestrial infrastructures can not provide

high-quality services for them due to the long distance.

Fortunately, with high mobility, UAVs can move close to

the users and provide better channel quality. Therefore, they

have been widely applied in wireless communications [4],

[5]. In addition, some UAV-based multicast network have

been proposed and studied [6]–[9]. [6] characterizes the ca-

pacity of UAV-enabled multicast channel by jointly optimiz-

ing the UAV’s trajectory and power allocation. A fly-and-

communicate protocol is proposed in [7], which designs the

flying speed, UAV altitude and antenna beamwidth jointly for

time minimization and energy minimization. However, few of

them involves NC in the proposed multicast network. In [10],

the random linear network coding is adopted for transmission

in UAV-enabled multicasting network while the authors only

focus on the completion time minimization problem.

In this paper, we consider a UAV-based multicast network

for multimedia data transmission. We propose an UAV-based

adaptive RNC (UARNC) scheme which optimizes the UAV’s

location and RNC packet scheduling to maximize the network

throughput. In UARNC, we use Markov Decision Process

(MDP) to model the network dynamics and an optimization

problem is formulated for the optimal location of the UAV-

based base station (UBS) and the optimal packet scheduling

for RNC. The optimization problem is solved by using two

algorithms. A greedy scheduling techniques (GST) based

algorithm is proposed to find the optimal actions in RNC

scheme and another one is a PSO-based algorithm designed

to optimize the UAV’s location and RNC scheduling jointly.

The simulation results show the effectiveness of the proposed

methods. Note that the boldface letters refer to vectors or

matrices in this paper.

The rest of this paper is organized as follows. The system

model is shown in Section II. The principle of ARNC is

presented in Section III. Section IV models the network dy-

namics as MDP and formulates the optimization problem. The

proposed algorithms are introduced in Section V. Numerical

results are shown in Section VI. Finally, Section VII concludes

the paper.
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Fig. 1: (a) System model; (b) users’ encoding coefficient matrices. “×” means the network encoded packet has not successfully

received by the user. Matrix I and II indicate packet loss at t = 1 for user u1 under two encoding methods. While matrixes

III and IV show the packet loss at t = 2, 3 for user u2.

II. SYSTEM MODEL

We consider a multicast network including K users and one

UBS. In order to provide multimedia streams with diversified

QoS to users, scalable video coding (SVC) [11] is used to

partition the stream data into a base packet (α1) and several

enhancement packets (α2, . . . , αl, . . . , αL). α1 is the most

important one, which provides a reasonable video quality. The

left packets are organized in a hierarchical fashion such that the

αl−1 must be present for αl to be useful. Under this structure,

users can enjoy video with higher quality if they receive more

enhancement packets. Naturally, the priority order of these

multimedia data is α1 ≥ α2 ≥ · · · ≥ αl · · · ≥ αL, and the

UBS should transmit L prioritized packets to all users within

T time slots.

Here the UBS and all users are assumed to be with single

antenna. In a three-dimensional (3D) Cartesian coordinate, the

horizontal coordinate of user i is denoted by ui = (xi, yi) ∈
R

2×1. The UBS is set to fly at a constant altitude H and its

horizontal coordinate is q = (x, y) ∈ R
2×1. Therefore, the

distance from the UBS to user i is

di =
√

‖q − ui‖22 +H2. (1)

According to [12], the line-of-sight (LoS) model can provide

a good approximation for the UAV-user channels. Thus, we

assume that the links between the UAV and the users are

dominated by the LoS channel. In addition, the Doppler effect

caused by the UAV’s continuous mobility is assumed to be

perfectly compensated [13]. As a result, the channel from the

UBS to user i is

hi =
β0

d2i
=

β0

‖q − ui‖22 +H2
, (2)

where β0 is the channel power when the distance from the

UAV and user i is 1m.

Then, the signal-to–noise ratio of user i is expressed as:

γi =
hiPt

σ2
=

β0Pt

(‖q − ui‖22 +H2)σ2
, (3)

where Pt is the transmitting power of the UBS. σ2 denotes

the white Gaussian noise variance at the users.

For simplicity, the encoded packets are assumed to be

modulated by BPSK. Then, the bit error rate of user i can

be calculated as:

P b
i = Q(2

√
γi). (4)

The packet error rate (PER) P p
i of user i is expressed as:

P p
i = 1− (1 − P b

i )
n, (5)

where n is the length of the packet.

At the beginning of each time slot, each user sends a one-bit

feedback message via dedicated control channel to inform the

BS on UAV whether the packet has been received successfully

or not. However, due to its short length, we assume that the

user feedback is error-free.

III. ADAPTIVE RANDOM NETWORK CODING

For easy understanding, we briefly introduce the principle

of adaptive RNC (ARNC) proposed in our pervious work

[14]. For a SVC data block with L prioritized packets, the

UBS builds L coding generators, in which different number

of packets are encoded as a new coded packet. Specifically,

each generator Gl (1 ≤ l ≤ L) consists of l packets

{α1, α2, . . . , αl} for encoding, as shown in Fig. 1(a). At time

slot t, the UBS linearly combines the packets using one of the

L generators. For example, when L = 3, the network coded

packets from the three generators are

• G1: combines only α1, i.e. c1,t = βt1α1;

• G2: combines α1 and α2, i.e. c2,t = βt1α1 + βt2α2;

• G3: combines α1, α2 and α3, i.e. c3,t = βt1α1+βt2α2+
βt3α3,



where βti (i=1,2,3) are the encoding coefficients randomly

drawn from a large finite field Fq.

Unlike the traditional RNC in which the coding packet

combines all original packets, in ARNC the number of packets

for encoding is variable and the user needs only partial set

of the coding packets to decode out useful information. To

explore the advantage, we take the example that each data

block contains L = 3 packets (α1 ≥ α2 ≥ α3) to be delivered

to two users u1 and u2 within T = 4 time slots under the

erasure channel. Fig. 1(b) shows the RNC encoding coefficient

matrices received by different users.

Under the scheme of traditional RNC, even though u1 losses

the first coding packets, its coefficient matrix is still full rank

to decode out all packets. While for u2, it just receives two

coding packets in the 1st and 4th slots so that it cannot decode

out any packet. Therefore, the network throughput is 3/4
packet per time slot.

In ARNC, Fig. 1(b) demonstrates that u1 collects a full set

of the encoded packets to decode out all the packets. It also

shows that u2 can still decode α1 and α2 with only a partial

set of the coded packets using ARNC scheme. As a result, this

scheme achieves a network throughput of 5/8 per time slot,

which is 67% higher than that of the traditional RNC.

Without loss of the generality, when packet in one block

is L, the probability that each user can decode out the first l
packets is shown in (6) according to [14].

IV. PROBLEM FORMULATION

In this paper, we expect to optimize the location of UBS

so as to maximize the throughput while considering ARNC

scheme in the UAV-based wireless multicast network. Given

a 2-D location of UBS q and its flight height H . At the

beginning of each time slot, the UBS transmits the first packet

from the generator G1. Because of the lossy channel with

certain PER, the network status changes in each time slot.

Therefore, the UBS needs to encode the packets using ARNC

for scheduling to maximize the network throughput based on

real-time network status. Clearly, for a certain UBS location,

the network status in the next time slot depends on the current

network state and the scheduling action during the current time

slot. Accordingly, the network dynamics can be modeled as a

MDP, in which the UBS decides the optimal action to take at

each time slot. Specifically, we use parameters (q,A,S, r, T )
to specify the network dynamics.

1) UAV’s location q: for a given location q, the distance

between the UAV and each user can be obtained accord-

ing to (1). Substituting (1), (2), (3) and (4) into (5), the

PER of each user can be obtained.

2) Scheduling mode set A: it includes a set of scheduling

modes to multicast the coding packets from different

generators. In detail, the Gl (1 ≤ l ≤ L) consists

of l packets {α1, α2, . . . , αl} for encoding. The coding

packet gl created by Gl is a linear combination of the

packets in one block.

3) Status matrix si,t: si,t is a L × T status matrix that

denotes the status of the coding packets received by the

user i. The jth row of si contains the coding coefficient

vector received at jth time slot. For example: when we

set L = 3 and T = 5, si,t may be shown as

si,t =





β11 β12 0 β14 0
0 β22 0 β24 0
0 0 0 β34 0



 . (7)

It indicates that user i successfully receives three coding

packets (c11, c22, c34) from G1 at t = 1, G2 at t = 2, and

G3 at t = 4, respectively. Obviously, it can successfully

decode out α1, α2 and α3 from si,t.

4) Network state matrix set S: it shows the packet receiving

status set of the overall network. St (St ∈ S) gives

the network status at time slot t, which is defined as

St =
K∪
i=1

si,t.

5) Immediate reward r(St, q, at): it represents the reward

(i.e., the network throughput improvement) by taking

action at(at ∈ A) for the given q and St(s
t ∈ S) at t.

This reward can be calculated by

r(St, q, a
t) = E [r(St+1|St, q, at)]

=

K
∑

i=1

E [r(si,t+1|si,t, q, at)] ,
(8)

where E[·] denotes the expectation with respect to St+1;

q is the given location of UAV; vector si,t and si,t+1

indicate the network status of ui at t and t + 1;

r(si,t+1|si,t, q, at) is the function that calculates the

future-dependent reward ui from si,t to si,t+1 for the

given q and at. Note that under a given si,t, si,t+1 only

has two states: receiving the encoded packet (denoted as

si,t+1(1)) or not (denoted as si,t+1(0)). For instance, if

the state of ui is

si,t =





β11 β12 0 0 0
0 β22 0 0 0
0 0 0 0 0





at t, and the BS takes scheduling action at = “sending a

coding packet g3 from G3”, the probability for the next

f(l) =















(1− γi)
lγi

L−l−i
∑

i=0

Ci
T−l−1(1− γi)

iγi
T−l−1−i, 1 ≤ l < L;

T
∑

i=L

Ci
T (1 − γi)

i
γi

T−i, l = L.

(6)



state being

si,t =





β11 β12 β13 0 0
0 β22 β23 0 0
0 0 β33 0 0





is expressed as

p(si,t+1(1)|si,t, q, at) = 1− ppi (q)

and the immediate reward is r(si,t+1(1)|si,t, q, at) =
3− 2 = 1. Therefore, (8) can be rewritten as

r(St, q, at) =
U
∑

i=1

(

1
∑

i=0

(1− ppi (q))
i
(ppi (q))

(1−i)
r(si,t+1(i)|si,t, at)

)

.

(9)

6) Deadline T (T ≥ L): it is the number of time slots

available for transmitting the packet block.

Based on the above MDP framework, a transmission policy

Ω is well scheduled by optimizing at ∈ A and UBS’s location

q. Let ΓΩ be the expected reward obtained by following policy

Ω, which is defined as

ΓΩ(S0) =
1

T

T−1
∑

t=0

r(si,t+1|si,t, q, at), (10)

where Ω = (a0, . . . , at, . . . , aT−1, q) and S0 is the initial

network state.

Note that ΓΩ is the average network throughput per time

slot. The goal of the transmission policy is to find an optimal

Ω
∗ = [(a0)

∗, . . . , (at)
∗, . . . , (aT−1)

∗, q∗] during the T steps

that can maximize ΓΩ, where q∗ is the optimal location of

UAV and (at)
∗, t = 0, 1, . . . , T − 1 is the optimal action at

each time slot.

In addition, for network fairness, we should guarantee the

service quality of the bottleneck users which have the worst

channel qualities. According to the characteristics of the SVC

data, each user can get the basic video quality if they can

receive the base packet. The more enhancement packets they

get, the higher quality of the multimedia data they enjoy.

Therefore, we assume that each user should receive at least the

first l packets with higher priority to maintain the basic QoS.

According to (6), the probability that each user can decode

out at least the first l packets is expressed as:

Pi,l =

L
∑

i=l

f(l). (11)

Then, we set a value Pth as the fairness transmission

threshold. Clearly, Pi,l should be no less than Pth and the

optimization problem can be formulated as:

(h∗, r∗) =argmax
h,r

K
∑

1

Ci,

s. t. Pi,l ≥ Pth, i = 1, . . . ,K.

(12)

V. OPTIMIZATION ALGORITHMS

Equation (12) is a joint optimization problem with multiple

constraints and variables. It is difficult to get the optimal re-

sults directly. To simplify this problem, we divide the solution

of this optimization problem into two steps. Firstly, we adopt

a low-complexity greedy scheduling technique (GST) [14] in

Algorithm 1 to find the optimal (at)
∗, t = 0, 1, . . . , T − 1 for

a given position of UAV q0. In GST, based on the network

status from the users, the UBS finds the appropriate at in each

time slot to maximize the reward r(St, q0, at). The output of

the algorithm is the optimal action for each time slot and the

average reward ΓΩ.

Algorithm 1 : Algorithm for the optimal actions

Input: A, q0, T, L, pi.
Output: (at)

∗, t = 0, 1, . . . , T − 1 and ΓΩ

1: Initialize: s0 = [0] and r(s0) = 0
2: for t = 0 to T − 1 do

3: (at)
∗ = arg max

at∈A
r(St, q0, at)

4: end for

5: Ω0 = [(a0)
∗, . . . , (at)

∗, . . . , (aT−1)
∗, q0]

6: ΓΩ = ΓΩ0

According to Algorithm 1, we can get the optimal actions

and the average reward with a given location of UBS.

Next, we adopt the particle swarm optimization algorithm

(PSO) [15] to find the optimal location of UBS. The PSO

algorithm consists of a population of particles that move

over a search space. Each particle is a candidate solution

for the optimization problem. The position and velocity of

each particle is denoted by oi and vi respectively. During the

searching process, each particle will update its position and

velocity according to (13) and (14) respectively to find the

best solution. In our paper, the particle’s position is limited

by the constraints in (12). So before updating the particle’s

position, we need to check if the new position satisfies the

constraints, i.e. Pi,l ≥ Pth, i = 1, . . . ,K .

In order to find the global best, we assume that each particle

will share their local best with other particles.

vi(t+ 1) =wvi(t) + C1φ1(Pi(t)− oi(t))

+ C2φ2(Pgi(t)− oi(t)),
(13)

oi(t+ 1) = oi(t) + vi(t+ 1), (14)

where vi(t) and oi(t) are the velocity and current position of

the particle i; w is a random parameter; C1 and C2 represent

the intensity of the attraction of a particle towards its local

best and global best respectively; Pi(t) and Pgi(t) denote the

local best and the global best of a particle respectively; w is

the inertial coefficient of each particle.

Generally, a fitness function is defined in PSO. We aim to

find the optimal optimization for maximum network through-

put. In this paper, the fitness is the maximal average reward

and it can be obtained by Algorithm 1. The detailed process

of this PSO algorithm is shown in Algorithm 2.



Algorithm 2 PSO algorithm description for the best position

Input: w, C1, C2, φ1, φ2, the number of time slot T and the

packet number L
Onput: The optimal position of UAV

for each particle i do

Initialize velocity vi and the position oi for particle i
Evaluate particle i and set Pi = oi

end for

find the global best Pgi

for j=1; j<maxg; j++ do

for n=1; n<sizepop; n++ do

Update the velocity and position of particle i
Evaluate particle i
Find the optimal action for each particle i using Algo-

rithm 1

Calculate the fitness of each particle according to (10)

if fit(oi) >fit(Pi) then

Pi=oi

end if

if fit(oi) >-fit(Pgi) then

Pgi=oi

end if

end for

end for

print Pgi

In Algorithm 2, ‘fit(oi)’ and ‘fit(Pi)’ denote the fitness of oi

and Pi. ‘sizepop’ and ‘maxg’ are the number of the particles

and literation.

VI. NUMERICAL RESULTS

Assume all the users distribute in a 1000m×1000m area

and the UAV’s flight altitude is fixed at 200m. We assume

that C1=C2=1.4955, maxg=400, sizepop=100, P=25 mW, β0=-

70dB, δ=-150dB and the packet length n=10. To illustrate

the effectiveness of our scheme, we compare the throughput

performance of UARNC with those of other schemes including

Random Network Coding (RNC), Automatic Repeat Request

(ARQ) and Round-Robin Scheduling (RRS).
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Fig. 2: The optimal position of UBS and the algorithm iteration

process with uniformly distributed users.
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Fig. 3: The optimal position of UBS and the algorithm iteration

process when users cluster around some hot spots.

Fig. 2(a) presents the optimal location of the UAV when

users distribute uniformly in the area. The blue asterisks, red

triangle and green filled circle represent the locations of users,

the UBS and a fixed BS respectively. A fixed BS is assumed

to be at the center of the area. In this case, we can see that

the optimal location of UBS is close to the center of the area.

Fig. 3(a) shows the corresponding results when the users

accumulate around some hotpots. Comparing with the results

in Fig. 2(a), we see that the UBS adjusts its location to some-

where near to the hotpots for maximum network throughput.

However, the BS, fixed at (0,0), cannot adjust its location

according to the change of network topology.

In addition, the iteration process of the proposed algorithms

in those two scenarios are demonstrated in Fig. 2(b) and

Fig. 3(b). From the results, we can see that the algorithms

can solve the problem effectively. The optimal location can

be found within 10 and 7 times iteration with different user

distributions respectively.

In Fig. 4, the average network throughput in term of L
with T = 10 is presented. Firstly, we assume that the UBS

is hovering over a fixed location (0,0) which means that

1 2 3 4 5 6 7 8 9 10

Packet number L

1
2
3
4
5
6
7
8
9

10
11
12
13
14

T
hr

ou
gh

pu
t

UARNC(ES)
UARNC
UARNC(fixed)
RNC
ARQ
RRS

Fig. 4: Network throughput vs. packet number L.
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we only adopt the ARNC without optimizing the UAV’s

location. The yellow line with a legend ’UARNC(fixed)’ shows

the corresponding results. In addition, the performance of

other schemes, i.e. RNC, ARQ, RRS, are also plotted in

this figure. Comparing with the results of those schemes,

our proposed scheme performs better even without optimizing

the location of UBS. Then, we give the results (red line) of

UARNC with jointly optimizing UAV’s location and ARNC

scheduling. Comparing the results with others, we can see that

the proposed UARNC outperform all other schemes, especially

with multiple packets.

Moreover, the dark dashed line with a legend ’UARNC(ES)’

represents the results obtained using Exhaustive Search (ES)

algorithm. The performance gap of the red line and the

dark line is negligible, which proves the effectiveness of the

proposed algorithm.

Fig. 5 plots the network throughput of different schemes as a

function of T with L = 4. Similarly, we give the results of four

schemes (UARNC, RNC, ARQ, RRS). The average network

throughput of three schemes (UARNC, ARQ, RRS) declines

with the increasing of T . Generally, users can decode more

packets with more time slots. However, the packet number

is fixed at 4 in this scenario. Thus, there must be a optimal

T at which the network throughput is the biggest. Beyond

the optimal T , the average throughput will decrease and it

(averaged over T ) converges to zero when T approaches

infinity. For those three schemes, the optimal T is 4 when

L = 4. However, the optimal T is 6 for RNC. Therefore, the

throughput of this scheme first increases to the biggest and

then decreases with increasing number of time slot.

VII. CONCLUSIONS

In this paper, we consider a RNC multicast network where

there are multiple users and one UAV-based BS that fully

explores the high mobility to provide flexible service to the

users. To fit this requirement, an UARNC scheme that jointly

optimizes the UAV’s location and RNC packet scheduling to

maximize the throughput in multicast network is proposed.

Then, two algorithms based on greedy scheduling technique

and PSO respectively are proposed to solve the optimization

problem. The proposed UARNC outperforms other schemes,

such as RNC, ARQ and RRS.
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