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Abstract—One main goal of 5G-and-beyond systems is to si-
multaneously serve many users, each having a requested spectral
efficiency (SE), in an energy-efficient way. The network capacity
cannot always satisfy all the SE requirements, for example, when
some users have bad channel conditions, especially happening
in a cellular topology, and therefore congestion can happen.
By considering both the pilot and data powers in the uplink
transmission as optimization variables, this paper formulates
and solves an energy-efficiency problem for cellular Massive
MIMO (Multiple Input Multiple Output) systems that can handle
the congestion issue. New algorithms based on the alternating
optimization approach are proposed to obtain a fixed-point
solution. Numerical results manifest that the proposed algorithms
can provide the demanded SEs to many users even when the
congestion happens.

I. INTRODUCTION

Massive MIMO can provide large improvements in spectral

efficiency (SE) and energy efficiency in the next-generation

cellular systems by enabling multiple users to share the

same time and frequency resource [1]. Different from current

wireless systems, each base station (BS) in Massive MIMO

systems can use a simple linear processing scheme such as

maximum ratio combining (MRC) or regularized zero forcing

to obtain good performance. Due to a large number of users,

there will be plenty of inter-user interference that needs to

be dealt with by appropriate resource allocation. In Massive

MIMO, some of the resource allocation tasks (e.g., power

control) can be done on the large-scale fading time scale

instead of the conventional small-scale fading time scale,

thanks to the channel hardening property [1]. This might

make it feasible to implement advanced resource allocation

algorithms in practical Massive MIMO systems.

Instead of scheduling users in time based on their long-

term rate requirements, Massive MIMO systems can serve all

users simultaneously and set the per-user SEs equal to that

required by each user application [2]. When there are given

SE requirements, the resource allocation can be optimized

to satisfy them with maximum energy efficiency. This was

done in [3] where the total transmit power was minimized.

However, since the users were randomly distributed, around

30% of realizations of the user locations resulted in infeasible
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optimization problems due to poor channel conditions for

some users [3], [4]. This congestion issue was handled in [3],

[5] by ignoring the SE constraints and instead maximizing

the minimum SE of the users, which is an entirely different

problem that might lead to not satisfying any of the SE

requirements. To the best of our knowledge, there is no

previous work that deals with congestion due to infeasible

SE constraints in Massive MIMO.

In conventional multi-user MIMO communications, the con-

gestion issue was discussed in [6]–[8] and references therein.

A primal-dual decomposition was used in [6] to iteratively

identify and remove the user that interfers the most with

the other users until the remaining SE requirements can be

satisfied. While there were no power constraints in [6], the

case with power constraints was considered in [7], [8]. These

papers developed policies to decrease the requested SE of the

users with poor channel conditions.

These previous works consider perfect channel state in-

formation (CSI), so the impacts of imperfect CSI and pilot

contamination are not considered, and the pilot powers are

not optimized. Additionally, the SE is computed based on

the instantaneous channel realizations (small-scale fading)

which require the optimization problems to be solved often to

combat the small-scale fading. In contrast, this paper tackles

the congestion issue in cellular Massive MIMO systems by

considering the ergodic SE. Our main goal is to serve as

many users as possible with their requested SEs. We formulate

a total uplink power minimization problem where both the

pilot and data powers are optimization variables. To cope

with the congestion issue originating from users with poor

channel conditions, we propose a new algorithm that exploits

the alternating optimization method with low computational

complexity. We show numerically how the system can operate

effectively also under congestion.

Notations: The bold upper-case and lower-case letters de-

note matrices and vectors, respectively. E{·} is the expectation

of a random variable. The transpose and Hermitian transpose

are denoted as (·)T and (·)H , respectively. Finally, CN (·, ·) is

the circularly symmetric Gaussian distribution.

II. SYSTEM MODEL

We consider a multi-cell Massive MIMO system with L
cells, each having a BS equipped with M antennas and serving

http://arxiv.org/abs/2006.07750v1


SINRlk =
M(βl

lk)
2τpplkp̂lk

(

τp
∑L

l′=1 β
l
l′kp̂l′k + σ2

)(

∑L
l′=1

∑K
k′=1 pl′k′βl

l′k′ + σ2
)

+Mτp
∑L

l′=1,l′ 6=l(β
l
l′k)

2pl′kp̂l′k
(5)

K users. Even though the radio channels vary over time and

frequency, we assume that the radio resources are divided

into coherence intervals of τc symbols where the channels

are static and frequency flat. The channel between user k′ in

cell l′ and BS l, hl
l′k′ ∈ CM , follows uncorrelated Rayleigh

fading: hl
l′k′ ∼ CN (0, βl

l′k′IM ), where βl
l′k′ is the large-scale

fading coefficient. Each BS will estimate the realizations of

the channels from itself to the intra-cell users in the uplink

pilot training phase, which requires an overhead of τp ≥ K
symbols in each coherence interval.

A. Uplink Pilot Training

We assume that a set of K orthogonal pilot signals

{ψψψ1, . . . ,ψψψK} is reused in every cell of the system with

ψψψk ∈ Cτp and ‖ψψψk‖2 = τp. Without loss of generality, we

assume that every user k in each cell shares the pilot signal

ψψψk. The received pilot signal, Yl ∈ CM×τp , at BS l is

Yl =

L
∑

l′=1

K
∑

k′=1

√

p̂l′k′hl
l′k′ψψψH

k′ +Nl, (1)

where p̂l′k′ is the pilot power used by user k′ in cell l′ and

Nl ∈ C
M×τp is additive receiver noise with the elements

independently distributed as CN (0, σ2) with variance σ2. The

minimum mean square error estimate of hl
l′k′ can be obtained

from (1) as [9]

ĥl
l′k′ =

√
p̂lk′βl

l′k′

τp
∑L

l′′=1 p̂l′′k′βl
l′′k′ + σ2

Ylψψψk′ . (2)

These channel estimates will be used for linear combining of

the uplink data signals.

B. Uplink Data Transmission

In the uplink data transmission phase, user k′ in cell l′ is

transmitting a data symbol sl′k′ with E{|sl′k′ |2} = 1. The

received signal at BS l, yl ∈ CM , is the superposition of

transmitted signals from the KL users in the system:

yl =

L
∑

l′=1

K
∑

k′=1

√
pl′k′hl

l′k′sl′k′ + nl, (3)

where pl′k′ is the data power allocated by user k′ in cell l′ and

nl ∈ C
M is the additive noise distributed as CN

(

0, σ2IM
)

.

By utilizing MRC, a closed-form expression for the uplink

ergodic SE of user k in cell l is [10, Corollary 1]:

Rlk =

(

1− τp
τc

)

log2 (1 + SINRlk) , (4)

where the effective signal-to-interference-and-noise ratio

(SINR), SINRlk, is given by (5), shown at the top of this page.

The closed-form SE in (4) enables us to optimize the resource

allocation without resorting to Monte-Carlo simulations. In

particular, we will formulate an uplink power minimization

problem that jointly optimizes both the pilot and data powers.

III. UPLINK ENERGY CONSUMPTION MINIMIZATION

This section describes an uplink energy consumption min-

imization problem and then demonstrates its infeasibility for

certain user locations, where users may not meet the requested

SE due to interference and limited power budgets. We assume

that user k in cell l requests an SE ξlk > 0 and has a maximum

transmit power budget of Pmax,lk > 0.

A. Problem Formulation

Since τp pilots and τc−τp data symbols are transmitted per

coherence interval, the total energy consumption in cell l per

sent for the pilot and data symbols as

El = τp

K
∑

k=1

p̂lk + (τc − τp)
K
∑

k=1

plk. (6)

We minimize the total energy consumed of all cells subject to

the requested SEs and limited power per symbol as

minimize
{p̂lk,plk∈R+}

L
∑

l=1

El

subject to Rlk ≥ ξlk, ∀l, k,
p̂lk ≤ Pmax,lk, ∀l, k,
plk ≤ Pmax,lk, ∀l, k,

(7)

where ξlk is the requested SE of user k in cell l and the

ergodic SE in (4) must be larger or equal to it; Pmax,lk is the

maximum power that user k in cell l can supply to pilot and

data symbols. By setting ξ̂lk = 2ξlkτc/(τc−τp)−1, problem (7)

is converted from having SEs constraints to the corresponding

formulation with SINR constraints:

minimize
{p̂lk,plk∈R+}

τp

L
∑

l=1

K
∑

k=1

p̂lk + (τc − τp)

L
∑

l=1

K
∑

k=1

plk (8a)

subject to SINRlk ≥ ξ̂lk, ∀l, k, (8b)

p̂lk ≤ Pmax,lk, ∀l, k, (8c)

plk ≤ Pmax,lk, ∀l, k. (8d)

For a given realization of user locations, problem (8) may not

have an optimal solution since not all users’ SE requirements

can be simultaneously satisfied. Notice that only one unfor-

tunate user with an unsatisfied SE is sufficient to create an

empty feasible domain for any resource allocation problem.

The problem then lacks a feasible solution [11, Section 4.1].

B. Optimal Solution to Problem (8)

If problem (8) has a nonempty feasible set, the globally

optimal solution is obtained as follows.

Lemma 1. Problem (8) can be reformulated as a geometric

program and, thus, the globally optimal solution can be

obtained in polynomial time if the problem is feasible.
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Proof: Problem (8) can be written as a geometric program

on standard form [11]. In (8), the objective function is a linear

combination of the uplink transmit powers, so it is a posyno-

mial.1 The power constraints are monomials, while the SINR

expressions can be rearranged as posynomial constraints.

Notice that geometric programs have a hidden convex

structure [11] that enables them to be efficiently solved in the

centralized fashion, for example, by using the interior-point

toolbox CVX [12].

C. Feasible and Infeasible Problems

If the problem (8) is feasible, all users will use non-zero

data and pilot powers at the optimum solution since their SE

requirements are assumed to be non-zero. For a given set of

users, SE requirements, and power budgets, problem (8) may

not have a feasible solution. This can be caused by high inter-

user interference, that some users might have too weak channel

conditions, and/or that some users requests too high SE. If (8)

is infeasible it cannot be solved by any method.

However, there might still exists feasible selections of the

transmit powers where most users obtain their requested SE,

while only one or a few users does not. It might be enough to

remove one user to turn an infeasible problem into a feasible

problem, but it is nontrivial to identify which user to remove.

If one attempts to solve an infeasible instance of problem (8)

using a standard convex optimization solver, the output might

not give us any clue. The goal of this paper is to develop

power control policies for such infeasible situations.

IV. ALTERNATING OPTIMIZATION APPROACH

This section proposes an algorithm to obtain a fixed-point

solution to a modified version of problem (8), where the SINR

constraints of users potentially causing the congestion issue are

relaxed.

A. Preliminary Setting
Before providing the algorithms, Definition 1 introduces

important notation that will be used in this paper.

Definition 1. Let a and a′ be KL × 1 real vectors whose

m-th element is denoted by am and a′m. The notation a � a′

implies element-wise inequality: am ≥ a′m, ∀m = 1, . . . ,KL.

For sake of simplicity in comprehension, we first consider

the case when problem (8) is feasible so that all the requested

SINR constraints are satisfied using power variables that

satisfy the power budget. For a particular cell l, the SINR

constraint of user k in (8b) can be reformulated as a function

of the pilot and data powers p̂lk, plk as

p̂lkplk ≥ Ilk ([p̂;p]) , (9)

1A function h(x1, . . . , xN1
) =

∑N2
n=1

cn
∏N1

m=1
x
an,m
m is posynomial

with N2 terms (N2 ≥ 2) if the coefficients an,m are real numbers
and the coefficients cn are nonnegative real numbers. When N2 = 1,
h(x1, . . . , xN1

) is a monomial.

where p = [p11, . . . , pLK ]T , p̂ = [p̂11, . . . , p̂LK ]T ∈ RLK
+ ,

and the concatenated vector [p̂;p] ∈ R2LK
+ ; Ilk ([p̂;p]) is

defined in (10) shown at the top of this page. Since we

are jointly optimizing both the pilot and data powers, the

conventional power control method based on the standard

interference function, for example [13], cannot be directly

applied to our framework, which handles (9) and attain a fixed

point. Therefore, we introduce the so-called joint interference

functions to enable the joint pilot and data power allocation

as shown in Definition 2.

Definition 2. (Joint interference function) A function

I ([a; a′]) is a joint interference function, if the following prop-

erties are satisfied: a) Positivity: I ([a; a′]) > 0, ∀[a; a′] � 0.

b) Monotonicity: I ([ã; ã′]) ≥ I ([a; a′]) if [ã; ã′] � [a; a′].
c) Scalability: αα′I([a; a′]) > I ([αa;α′a′]), for all constants

α, α′ > 1.

The positivity property comes from the inherent interference

and noise in radio systems. Consequently, the transmit powers

cannot be zero if users have non-zero SE requirements. The

monotonicity property implies that the joint interference func-

tion can be scaled up or down by adjusting the power vector.

Different from [13], the scalability property in Definition 2

provides a method to uniformly scale down the joint interfer-

ence function with a factor αα′ when updating the product of

the pilot and data powers p̂lkplk from any initial selection of

{p̂lk, plk} in the feasible domain.

Lemma 2. Assume that each base station serves at least one

user, each interference function Ilk ([p̂;p]) , ∀l, k, defined in

(10) is a joint interference function.

Proof. The proof will testify that all the functions Ilk ([p̂;p])
satisfy the properties in Definition 2. Specifically, the positivity

holds since

Ilk ([p̂;p])
(a)

≥ ξ̂lkσ
4

M(βl
lk)

2τp
> 0, (11)

where the equality in (a) holds when p̂lk = plk = 0, ∀l, k.

Moreover, the numerator of Ilk ([p̂;p]) is an increasing func-

tion of the optimization variables p̂lk and plk, ∀l, k, thus for

two given concatenated vectors [p̂1;p1] and [p̂2;p2] with

[p̂1;p1] � [p̂2;p2], it holds that

Ilk ([p̂1;p1]) ≥ Ilk ([p̂2;p2]) , (12)

and therefore the monotonicity is proved. Finally, the scala-

bility holds since

αα′Ilk ([p̂;p])− Ilk([αp̂;α
′p]) > 0, ∀α, α′ > 1, (13)

as shown in (14) at the top of this page, with noticing that

αα′ ≥ 1. This completes the proof.



αα′Ilk ([p̂;p])− Ilk ([αp̂;α
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α (α′ − 1)σ2τp
∑L

l′=1 β
l
l′kp̂l′k + α′ (α− 1)σ2

∑L
l′=1

∑K
k′=1 pl′k′βl

l′k′ + (αα′ − 1)σ4

M(βl
lk)

2τpξ̂
−1
lk

(14)

Lemma 3. Assume that 0 ≤ Ilk ([p̂;p]) ≤ P 2
max,lk is

always true for ∀p̂,p in the feasible domain. For a given

concatenated vector [p̂(0);p(0)] with p̂lk(0) = p̂lk(0) =
Pmax,lk, ∀l, k, there exist pilot and power coefficients such that

Ilk ([p̂(n);p(n)]) is a non-increasing function of the power

vectors along iteration index, which converges to a fixed point.

Proof. The proof is done by induction. We start updating the

powers with p̂(0),p(0) and iteration n updates the pilot and

data power variables as

p̂lk(n)plk(n) = Ilk ([p̂(n− 1),p(n− 1)]) . (15)

The range of Ilk ([p̂;p]) as in the lemma ensures that there

exists a concatenated vector [p̂(1),p(1)] satisfies (15) and

[p̂(0),p(0)] � [p̂(1),p(1)]. (16)

We suppose that the fact (16) holds up to iteration n, i.e.,

[p̂(n− 1);p(n− 1)] � [p̂(n);p(n)], then we must prove the

existence of a vector [p̂(n+1);p(n+1)] and [p̂(n);p(n)] �
[p̂(n + 1);p(n+ 1)], for which Ilk ([p̂(n− 1);p(n− 1)]) ≥
Ilk ([p̂(n);p(n)]). Indeed, the following series of the inequal-

ities holds

p̂lk(n)plk(n)
(a)
= Ilk ([p̂(n− 1);p(n− 1)])

(b)

≥ Ilk ([p̂(n);p(n)])
(c)
= p̂lk(n+ 1)plk(n+ 1),

(17)

where (a) and (c) are based on the update in (15), while

(b) is based on the monotonicity. From (17), the bounds

p̂lk(n)plk(n) ≥ p̂lk(n+1)plk(n+1), ∀l, k, give the existence

of [p̂(n+ 1);p(n+ 1)] and we complete the proof.

Every user k in cell l has a joint interference function

Ilk ([p̂;p]) satisfying the properties in Definition 2, which

makes sure that we can construct an iterative algorithm that

converges to a fixed-point solution to the initial point of pilot

and data powers as explained in the next subsection.

B. Solution to Problem (8) based on Alternating Optimization
Notice that the aforementioned analysis works on the as-

sumption that problem (8) is feasible. The power budget

constraints (8c) and (8d) are handled by observing the obvious

convergence of an update p̂lk(n)plk(n) = P 2
max,lk, ∀n leading

to the selection p̂lk(n) = plk(n) = Pmax,lk, ∀n. We then

define the constrained joint interference function for user k
in cell l as

Îlk ([p̂(n− 1);p(n− 1)])

= min
(

Ilk ([p̂(n− 1);p(n− 1)]) , P 2
max,lk

)

.
(18)

For a cellular Massive MIMO system with the interference

constraints in (9) and the initial power vector p(0) with

plk(0) = p̂lk(0) = Pmax,lk, ∀l, k, iteration n can update

p̂lk(n)plk(n) = Îlk ([p̂(n− 1);p(n− 1)]) . (19)

Algorithm 1 Joint pilot and data power control to problem (8)

by alternating optimization

Input: Define maximum powers Pmax,lk, ∀l, k; Select initial

values p̂lk(0) = plk(0) = Pmax,lk, ∀l, k; Compute the energy

El(0), ∀l, using (6); Set initial value n = 1 and tolerance ǫ.

1. User k in cell l computes the joint interference function

Ilk ([p̂(n);p(n)]) using (10).

2. If Ilk ([p̂(n);p(n)]) > P 2
max,lk, update p̂lk(n) =

plk(n) = Pmax,lk. Otherwise, update p̂lk(n), plk(n) by

solving problem (21).

3. Repeat Steps 1, 2 with other users, then compute the ratio

γ(n) = |
∑L

l=1
El(n)− El(n− 1)|/

∑L

l=1
El(n− 1).

4. If γl(n) ≤ ǫ → Set p̂∗lk = p̂lk(n), p
∗

lk = plk(n), and Stop.

Otherwise, set n = n+ 1 and go to Step 1.

Output: A fixed point p̂∗lk and p∗lk, ∀l, k.s

From (18) and (19), if Îlk ([p̂(n− 1);p(n− 1)]) = P 2
max,lk,

the current pilot and data powers are updated at iteration n as

p̂lk(n) = plk(n) = Pmax,lk, (20)

which maintains the non-increasing property of the

objective function in (8a). Otherwise, it holds that

Îlk ([p̂(n− 1);p(n− 1)]) = Ilk ([p̂(n− 1);p(n− 1)])
and we must find a proper solution to p̂lk(n) and plk(n)
that also satisfies the power budget constraints (8c) and (8d).

Mathematically, the solution to the pilot and data powers

of user k in cell l, which fulfills the above requirements, is

attained by solving the following optimization problem

minimize
p̂lk,plk∈R+

τpp̂lk + (τc − τp)plk

subject to p̂lkplk = Ilk([p̂(n− 1);p(n− 1)]),

τpp̂lk + (τc − τp)plk ≤ t(n− 1),

p̂lk ≤ Pmax,lk,

plk ≤ Pmax,lk,

(21)

where t(n − 1) = τpp̂lk(n − 1) + (τc − τp)plk(n − 1).
Since problem (21) is convex with only the two optimization

variables, the global optimal solution can be obtained easily

by using CVX with an interior-point solver or, alternatively,

by a two-dimensional grid search with a given accuracy.

Furthermore, this problem only minimizes the total energy

consumption of a specific user k in cell l, thus it basically

provides a local solution of p̂lk and plk to problem (8).

The proposed alternating approach obtaining a fixed point to

problem (8) is summarized in Algorithm 1. The convergence

of this algorithm can be proved by utilizing the methodology

in [13, Theorem 7]. We stress that the proposed algorithm can

be applied to both feasible and infeasible systems.



Idlk (p) =

(

τp
∑L

l′=1 β
l
l′kp̂l′k + σ2

)(

∑L
l′=1

∑K
k′=1 pl′k′βl

l′k′ + σ2
)

+Mτp
∑L

l′=1,l′ 6=l(β
l
l′k)

2pl′kp̂l′k

M(βl
lk)

2τpp̂lk ξ̂
−1
lk

(23)

Remark 1. Algorithm 1 does not explicitly exploit the hidden

convex structure for a low complexity algorithm design and

problem (21) only focuses on minimizing the total energy

consumption for a particular user each time, thus a fixed-point

solution to the pilot and data powers is not identical to the

globally optimal solution in general. However, the total energy

consumption between them has small difference as shown by

numerical results in Section V.

C. Uplink Energy Minimization for Data Power Control Only

For sake of completeness, we also study the case of which

only the data powers are optimized. If the feasible set is not

empty, the optimization structure is given in Corollary 1.

Corollary 1. If the system only optimizes the data powers,

problem (8) reduces to a linear program, for which the

constraints (8c) are removed.

Corollary 1 shows that when optimizing the data powers,

problem (8) becomes a convex problem on standard form,

thus the use of an alternating approach is guaranteed to obtain

the globally optimal solution. Moreover, to perform the power

control for both feasible and infeasible systems, we utilize the

standard interference function from [13].

Definition 3. (Standard interference function) A function I (a)
is a standard interference function, if the following properties

are satisfied: a) Positivity: I (a) > 0, ∀a � 0. b) Monotonic-

ity: I (ã) > I (a) if ã � a. c) Scalability: αI(a) > I (αa),
for all constants α > 1.

By removing the fixed terms representing the energy con-

sumption of the uplink pilot training, the optimization problem

is defined to minimize the energy consumption of the uplink

data transmission as

minimize
{plk∈R+}

L
∑

l=1

K
∑

k=1

(τc − τp)plk

subject to Rlk ≥ ξlk, ∀l, k,
plk ≤ Pmax,lk, ∀l, k.

(22)

More precisely, from the SINR constraint of user k in cell l,
we can define the corresponding standard interference function

Idlk(p) as shown in (23) at the top of this page, which

satisfies all the properties in Definition 3. From the initial

setup plk(0) = Pmax,lk, ∀l, k, the proposed algorithm will then

update the data power at iteration n as

plk(n) = min (Idlk(p(n− 1)), Pmax,l,k) , ∀l, k, (24)

and this iterative process will converge to a fixed-point solu-

tion. The proposed iterative solver is shown in Algorithm 2.

This algorithm yields the global solution if problem (22) is

feasible.

Algorithm 2 Data power control to problem (22) by alternat-

ing optimization

Input: Setup maximum values Pmax,lk, ∀l, k; Select initial

values p̂lk = plk(0) = Pmax,lk, ∀l, k,; Compute the energy of

uplink data transmission E(0) =
∑L

l=1

∑K
k=1(τc−τp)pl,k(0);

Set initial value n = 1 and tolerance ǫ.

1. User k in cell l updates the data power plk(n) using (24).

2. Repeat Step 1 with other users, then update E(n) =
∑L

l=1

∑K
k=1(τc−τp)pl,k(n) and compute the ratio γ(n) =

|E(n)− E(n− 1)|/E(n− 1).

3. If γ(n) ≤ ǫ → Set p∗lk = plk(n), and Stop. Otherwise, set

n = n+ 1 and go to Step 1.

Output: A fixed point p∗lk, ∀l, k.

V. NUMERICAL RESULTS

A cellular Massive MIMO system with L = 4 square cells

in an area 1 km2 is considered. Each cell has a BS located

at the center, serving K = 5 users which are uniformly

distributed within its cell and we assume that no user is

closer to its BS than 35 m. The required SE of each user is

1.5 [b/s/Hz]. The wrap-around technique is applied to avoid

boundary effects. We model the large-scale fading coefficients

based on the 3GPP LTE specifications [14]. The system uses

20 MHz of bandwidth, and the noise variance is −96 dBm

with the noise figure 5 dB. The large-scale fading coefficient

βl
l′k′ [dB] is

βl
l′k′ = −148.1− 37.6 log10

(

dll′k′/1km
)

+ zll′k′ , (25)

where dll′k′ ≥ 35 m denotes the distance between user k′ in

cell l′ and BS l. The shadow fading coefficient zll′k′ has a

Gaussian distribution with zero mean and standard derivation

7 dB. The pilot and data symbols have a maximum power of

200 mW. Monte-Carlo simulations are done over 3000 random

sets of user locations. In the proposed algorithms, we set ǫ =
0.01. We include the global optimum (obtained using interior

point methods) from previous works [3], [4] as reference, but

only for feasible systems.

Fig. 1 shows the cumulative distribution function (CDF) of

the uplink power per user for feasible systems. The joint pilot

and data power control requires the lowest power per user. The

global optimum requires 12.6 mW per user on average, while

the proposed method needs 13.3 mW (6% more). Hence, the

proposed algorithm does not find the global optimum. Fig. 1

also demonstrates the behavior when we only optimize the

pilot powers. In this case, the proposed method finds the global

optimum, but it requires on average 27% more power than

when optimizing both pilot and data powers.

Fig. 2 show the CDF of the power consumption [mW] per

user for infeasible systems. This is the case of main interest

in this paper since there is no global optimum to compute



Fig. 1. The CDF of the power consumption per user [mW] for feasible
systems. (PD) is the joint pilot and data power control and (D) is the data
power control only.

Fig. 2. The CDF of power consumption per user [mW] for infeasible
systems. (PD) is the joint pilot and data power control and (D) is the data
power control only.

Fig. 3. The CDF of served SE per user [b/s/Hz] in both feasible and infeasible
domain. (PD) is the joint pilot and data power control and (D) is the data
power control only.

or compare against. As can be seen from the figure, all users

transmit with non-zero power at the operating points identified

by the proposed algorithms. By jointly optimizing the pilot and

data powers, we can reduce the power consumption by 36%
on the average.

Fig. 3 shows the CDF of the actual SE per user [b/s/Hz]

by utilizing the different power control algorithms with the re-

quested SE 1.5 [b/s/Hz]. We compare our proposed algorithm,

which guarantees non-zero SE, with the solution obtained with

the convex optimization solvers. In the latter case, all the SEs

are set to zero for infeasible setups. We notice that 34.8%
of the considered setups are infeasible when performing joint

pilot and data power control, while 58.5% are infeasible when

performing only data power control. In contrast, when using

the proposed methods, we can satisfy the SE requirements of

most users also in the infeasible setups. More precisely, only

5% or 9% of users, respectively, cannot receive their requested

SE in those cases, and even those users obtain non-zero SE.

VI. CONCLUSION

There are known algorithms that can minimize the transmit

power required to deliver the SE required by the users in

cellular Massive MIMO systems, but these cannot be applied

when the requirements cannot be simultaneously achieved.

This paper has developed a joint pilot and data power control

algorithm that can deal with such situations. Instead of trying

to actively identify the problematic users and removing them

from service, we develop an algorithm where most users get

their requested SEs while the problematic users are given a

lower SE than requested, which can still be non-zero. The

numerical results demonstrated that in scenarios where many

random user realizations lead to infeasible power control

problems, we can still satisfy the SE requirements for the vast

majority of the users.
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