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Abstract—Visible light communication (VLC) has become in-
creasingly popular and has sparked a wide interest from various
research areas. In order to fully realize the potential of VLC and
to provide seamless connectivity to users, the underlying channel
model of the system must be carefully understood. However,
in a practical environment which considers specific geometrical
configurations of the network and user behavior effects, the
optical channel can often become too complex to be modelled
mathematically. In this work, we apply deep learning (DL) to
design an effective signal detection scheme for an indoor VLC
communication system. With the aid of DL, our system is able
to learn directly from the transmitted and received symbols and
can reliably detect the original transmitted signals during the real
time implementation with only a limited instantaneous knowledge
of the channel. The simulation results confirm that our model
offers very close performance to the optimal maximum likelihood
(ML) detection with perfect channel state information (CSI). We
also consider specific indoor environments (e.g., using a hot spot
model) to confirm the robustness of the learning based schemes
in different indoor scenarios.

Index Terms—Deep learning, long short-term memory
(LSTM), visible light communication (VLC), DCO-OFDM.

I. INTRODUCTION

The increasing demand for wireless data has motivated both
academia and industry to find alternative technologies that are
capable of providing efficient, reliable and high-speed wireless
data services. Visible light communication (VLC) is one of
the most attractive and important representation of the future
indoor optical wireless communication system [1]. VLC offers
numerous advantages in comparison to RF systems which
include massive and unregulated bandwidth in the visible light
spectrum, high potential data rates, high energy efficiency
and better security [2]. In a typical indoor environment, the
information of the channel condition such as the channel
gain can be exploited to improve the communication metrics
such as the signal-to-noise ratio (SNR) and symbol-error ratio
(SER) [3]. Most of the current research literature on VLC
[4]–[6] assume general geometries of the network and the
room and a rather deterministic channel model for simplicity
purposes. However, for a practical implementation of VLC, we
should consider the specific geometrical configurations of the
network and the user behavior effects in the channel model.

Some common traditional channel estimation approaches
such as least squares (LS) and minimum mean square error
(MMSE) have been widely utilized in many applications. A
study in [7] shows that LS estimation is preferred for its
simple and easy implementation, however, since it does not

require any prior channel statistics, its performance may be
insufficient. MMSE estimation method is capable of offering
a better performance compared to LS as it utilizes the second
order statistics of the channel. Even so, it may lead to a
higher computational complexity due to the inverse operations
of the channel matrix. An alternative approach in acquiring
a realistic optical channel can be realized by implementing
deep learning (DL) algorithms in VLC. DL is capable of
extracting useful characteristics of the channel (e.g., channel
gain, SNR, SER, etc.) which may not be easily or directly mea-
sured using conventional approaches. Owing to this advantage,
signal detection with DL can be a simple process that can be
performed in real time and offers a trade-off between accuracy
and complexity.

Recently, machine learning schemes such as DL have gained
attraction in designing different aspects of wireless commu-
nication systems, such as modulation, positioning, resource
allocation and so on [7]–[17]. In [7], the authors proposed a
deep neural network (DNN)-based channel estimation tech-
nique used for learning the wireless channel characteristics
in orthogonal frequency-division multiplexing (OFDM) sys-
tems, which outperformed traditional methods such as LS
and MMSE. Furthermore, DL has also been used for clas-
sifying modulated signals in the physical layer as in [11].
The authors proposed an automatic modulation recognition
based on the implementation of convolutional neural network
(CNN) and a long short term memory (LSTM) model. In
[12], the authors developed a DL-based detection algorithm
for molecular communication systems. The proposed model
was trained based on the known transmitted signals but in
the absence of knowledge of the underlying wireless channel
model. The authors in [13] employed a CNN-aided online
learning model to understand the mobility patterns of users
relying on analyzing the continuous mobile data streams while
the authors in [14] proposed an intelligent deep LSTM aided
system for predicting human mobility in order to provide an
accurate handover management.

It should be noted that compared to the radio wireless
systems, the VLC channel highly depends on the geometry
of the indoor environment and the behavior of the user
including the user mobility and random orientation of the user
equipment (UE). Therefore, the LS estimation may perform
poor when only partial channel state information (CSI) is
available while a learning scheme can specifically adapt to
the environment. Hence, we propose a deep learning-based



signal detection scheme employing LSTM neural network
while taking into account some realistic characteristics of
the VLC channel such as the random orientation of UE and
an infinity order of the non line of sight (NLOS) channel
components. We demonstrate that our DL-based scheme have
the ability to indirectly model the characteristics of the channel
and can efficiently recover the transmitted symbols in real
time. The simulation results show that the proposed scheme
can achieve a very close performance to the optimal maximum
likelihood (ML) detection assuming full CSI and offers a
significantly better performance compared to the classical
channel estimation approach namely least squares estimation
in the scenario where the system have a limited amount of
channel information.

II. SYSTEM MODEL

A. VLC Channel Model

We consider a single input/single output (SISO) configura-
tion for the VLC system. For this configuration, only one AP
transmits the data and only one PD detects the signal. LED and
PD are used as optical source and detector respectively. Due
to the incoherent characteristics of LEDs, the most practical
modulation and down-conversion technique used for VLC is
intensity modulation/direct detection (IM/DD). For a typical
transmission and reception in a VLC link employing IM/DD,
the signal is modulated onto the instantaneous power of the
carrier. At the AP, the transmitted optical signal, x(t) passes
through the channel with the channel impulse response (CIR)
of h(t) and outputs the current, y(t) at the PD. This can be
described as:

y(t) = Rh(t)⊗ x(t) + n(t), (1)

where R is the PD responsivity, n(t) is the signal-independent
additive noise at the receiver and ”⊗” is a convolution operator.
The channel impulse response can be characterized as the com-
bined effect of the low-pass characteristic of the LED and the
optical channel. Thus, in the time domain, the CIR is given by:
h(t) = hled(t)⊗hopt(t), where hled(t) and hopt(t) are the CIR
of the LED and the indoor VLC link respectively. Therefore,
the frequency response of the channel including both the LED
effect and the optical channel is: H(f) = Hled(f)Hopt(f),
where Hled(f) is the Fourier transform of hled(t) and Hopt(f)
denotes the Fourier transform of hopt(t).

The VLC system comprises of a single LED transmitter
situated at the ceiling, facing vertically downwards and a PD
receiver mounted on a UE, firstly assumed to be oriented
vertically upward towards the ceiling. The VLC channel relies
upon the existence of LOS and NLOS components where
LOS is a phenomena when the link established between the
AP and UE is direct and uninterrupted. Meanwhile, NLOS
link relies upon the reflection of light and is achieved by
means of reflecting surfaces (e.g., walls and furniture) in
the environment. It should be noted that an infinite order
of reflections should be considered in order to achieve the
most accurate representation of the NLOS channel. Hence, the
optical channel in an indoor VLC system can be described as:

Hopt(f) = HLOS(f) +HNLOS(f), (2)

where HLOS and HNLOS are the frequency response of the
LOS and NLOS channel components, respectively. The direct-
current (DC) gain of the LOS path between the AP and the
UE is given by:

HLOS(0) = v
(m+ 1)A

2πd2
cosmφgfg(ψ) cosψ, (3)

where A, φ, ψ are the detector area, radiance angle of the
transmitter and incidence angle of the receiver, respectively.
m = − 1

log2(cosΦ1/2)
is the Lambertian order where Φ1/2 is the

half-intensity angle. The optical filter and concentrator gain are
denoted by gf and g(ψ), respectively. v=1 for 0 ≤ ψ ≤ Ψc

and 0, otherwise is the visibility factor where Ψc is the field of
view (FOV). The radiance angle, φ and the incidence angle, ψ
can be calculated by cosφ = d�nt

||d|| and cosψ = −d�nu
||d|| , where

nt = [0, 0,−1]
T and nu = [0, 0, 1]

T denotes the normal vectors
at the AP and UE respectively whereas d is the distance vector
from the receiver to the transmitter. Moreover, the symbols
�, || � || and (�)T are the inner product, the Euclidean norm
operators and the transpose operator, respectively.

For the NLOS links, a high reflection order is required to
obtain an accurate value of the diffuse channel components.
The method described in [18] were used to consider an infinite
order of reflections by calculating the channel gain in the
frequency domain instead of the time domain. In order to
calculate the diffuse link, the environment is segmented into
a number of small surface elements which act as reflectors.
Thus, the NLOS channel gain which include an infinite order
of reflections is expressed as:

HNLOS(f) = rT(f)Gρ(I − He(f)Gρ)
−1t(f), (4)

where the transmitter transfer function vector is denoted as
t(f) = [H1,Tx(f), H2,Tx(f), ..., HN,Tx(f)]

T, He(f) is the
frequency-dependent transfer matrix describing the LOS trans-
fer function between the kth reflector and the ith reflector
which acts as the transmitter and receiver surface elements
respectively. r denotes the receiver transfer function vector
expressed as rT(f) = [HRx,1(f), HRx,2(f), ..., HRx,N (f)].
Gρ = diag(ρ1, ..., ρN ) is the reflectivity matrix of all N
reflectors with the reflection coefficient of ρi for the ith
reflector and I is the unity matrix of size NxN .

B. Random Orientation Model

In VLC, the channel gain highly depends on the random
orientation of the user device. It is important to consider
this factor in order to model the channel more accurately
and as realistic as possible. In a recent work [19], the au-
thors have proposed a novel model for random orientation
of mobile devices which we have adopted in modelling the
indoor channel of the VLC system. Based on this model, the
incidence angle can be derived as cosψ = a sin θ + b cos θ
with a = −

�
xa−xu

d

�
cosΩ −

�
ya−yu

d

�
sinΩ and b =

�
za−zu

d

�
.

Here, (xa, ya, za) and (xu, yu, zu) are the location vectors of
the AP and UE respectively. θ is the elevation angle between
the positive direction of the Z-axis and the UE normal vector,



while Ω is the direction in which the user is facing. Then, we
can directly include cosψ into the channel gain analysis.

C. Modulation Technique

In this paper, OFDM is assumed as the modulation tech-
nique due to its resistance to inter-symbol interference (ISI).
For systems employing IM/DD, the transmitted signal must
be real and positive. Due to the fact that the conventional
OFDM approach takes only complex and bipolar signals, a
number of OFDM based modulation suitable for the optical
wireless systems were introduced (e.g., DC-biased optical
OFDM (DCO-OFDM) and asymmetrically clipped optical
OFDM (ACO-OFDM)). Since DCO-OFDM uses all of the
subcarriers to carry the data symbols, it is more bandwidth
efficient compared to ACO-OFDM which only uses half of
the subcarriers to carry the data symbols [20]. Hence, DCO-
OFDM is considered in this work.

III. SIGNAL DETECTION WITH DEEP LEARNING

A. Deep Learning Method

In this paper, we propose an effective approach for de-
tecting demodulated signals at the receiver of a DCO-OFDM
system with the aid of LSTM neural network. LSTM is a
recurrent neural network which is capable of learning long-
term dependencies between data sequence and therefore has
achieved great success in sequence prediction problems [21],
[22]. LSTM networks have hidden layers which consist of
memory cells controlled by ’gates’ (e.g., input gate, forget gate
and output gate). The gates comprise of a sigmoid function and
a pointwise multiplication operation, and serve by regulating
the flow of information into and out of the memory cell.
Hence, they decide what new information to be input to the
cell, what old information to be discarded, and what will be the
updated information to be output from the cell, respectively.

The sequence of operations in LSTM at time step t can be
described as [23]:
it = σg(xtWxi + ht−1Whi + ct−1Wci + bi),
ft = σg(xtWxf + ht−1Whf + ct−1Wcf + bf ),
ot = σg(xtWxo + ht−1Who + ctWco + bo),
ct = ft � ct−1 + it � tanh (xtWxc + ht−1Whc + bc),
ht = ot � tanh (ct).
Here, xt represents the input to the LSTM block. At the current
time step t, it, ft, ot, ct, ht denotes the input gate, forget gate,
output gate, the cell state and the output of the LSTM block,
respectively. Wxi, Wxf and Wxo are the weights between the
input layer and the input, forget and output gates, respectively
while Whi, Whf and Who are the weights between the hidden
layer and the input, forget and output gates, respectively.
Furthermore, the weights between the cell state and the input,
forget, and output gates, respectively are denoted by Wci, Wcf

and Wco. The biases of the input, output and forget gates are
given by bi, bf and bo, respectively. Finally, � denotes the
dot product, the gate activation function is denoted by σg(.)
and tanh (.) is the hyperbolic activation function. The sigmoid
activation function outputs the values between 0 and 1 which
decides how much information will pass through the cell gates.

B. Deep Learning Implementation in VLC

The architecture of our DL-based DCO-OFDM is illustrated
in Fig. 1. As seen in the figure, the DCO-OFDM system
is similar to the conventional OFDM. The main difference
is that firstly, the signal being transmitted in DCO-OFDM
must have Hermitian symmetry and secondly, a DC bias
should be applied before transmitting the signal through the
channel. This is to fulfil the requirements where the signal
to be transmitted in IM/DD systems must be both real and
positive. During the real-time operation, at the transmitter
side, a sequence of symbols are randomly generated which
then undergo modulation. Then, pilot symbols are uniformly
inserted into the sequence to be transmitted. Due to the Hermi-
tian symmetry, the transmitted signal becomes real after going
through the inverse fast fourier transform (IFFT) process. This
means that the input sequence to the IFFT block should be in
the form of X = [0,X1, . . . ,Xκ/2−1, 0,X∗

κ/2−1, . . . ,X∗
1], where

κ is the total number of subcarriers and it should be noted that
the modulated subcarriers which carry the information is only
κ/2 − 1. Afterwards, in the time domain, CP is inserted and
DC bias is added to make the signal positive before passing
through the optical channel. After going through the channel,
the received signal can be expressed as in (1). The reverse
process is conducted at the receiver side where after removing
the DC bias and the CP, FFT is performed to convert the signal
from the time domain to the frequency domain. Hence, the
received signal in the frequency domain can be described as:
Y (f) = H(f)X(f) + N(f) where Y (f), X(f), H(f) and
N(f) are the FFT of y(t), x(t), h(t) and n(t), respectively.
Finally, after demodulation, the received signal is fed as input
to the trained LSTM model and the model then recovers the
original transmitted data.

For the training stage, using the channel models discussed
in Section II, the training data can be generated by simulation.
The training data were divided into two subsets namely
training set and validation set. The validation set is not used
to train the network, but instead were used to monitor the
validation loss during the training process in order to check if
the network is overfitting the training data. In each simulation,
the transmitted signal undergoes channel distortions caused by
the diffuse channel components and different noise samples.
This will help the DL model to have a good generalization
ability during the online deployment stage. To collect the
training data, a DCO-OFDM system with 128 subcarriers
and QPSK modulation were considered. The transmit signal
consist of 128 randomly generated symbols for 26 different
SNRs ranging from 0 dB to 50 dB. The generation of the
same sequence of signal is repeated but added with different
sequence of independent and identically distributed (i.i.d)
noise to the signal in each iteration. In addition, to consider
the randomness of the device orientation, the signals were
generated based on random samples of θ taken from a Laplace
distribution which has a mean value of 41◦.

Two scenarios were investigated; i) the location of the user
is fixed, ii) the location of the user is random. For the first
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Fig. 1. The structure of deep learning-based DCO-OFDM system.

scenario, the location of the user and the direction of which
the user is facing are fixed (e.g., 4 users sitting around a table).
For this case we consider 4 fixed locations of the user in the
room with each location having a random orientation of the
UE. For the second scenario, random locations, directions and
UE orientations were analyzed. For this particular scenario,
we consider 16 uniformly distributed locations of the user
with 4 different values of Ω (e.g., 45◦, 135◦, 225◦ and
315◦) for each location. It is important to note that random
orientation of the user device (i.e., θ) is applied in both fixed
and random cases. The transmitted and received symbols for
both scenarios were collected as the training data. The weights
are randomly initialised and learned through back-propagation
method. During the training stage, the DL model learns to
minimize the error between the output of the neural network
and the original transmitted data by re-adjusting the weights
using a mean square error (MSE) loss function.

The hyperparameters (e.g., the number of hidden layers, the
number of neurons in each hidden layers, the learning rate,
etc.) were determined by conducting several experiments on
various configurations of the LSTM network. We note that
the optimal performance can be achieved when our LSTM
model consist of 7 layers, which are the input and output
layers, three hidden LSTM layers with 50, 25 and 10 neurons
respectively, one fully connected layer and one dropout layer.
The dropout layer is added to help reduce the overfitting
problem and the model was trained until the validation loss
stops decreasing or becomes larger than the previous minimum
value. Furthermore, we simulate this problem using CNN
where we set the number of convolutional layers to be similar
with the number of layers in the LSTM network. However, we
note that with the same number of hidden layers, the training
time for CNN is faster than LSTM. The reason for this is
that CNN consists of a pooling layer in each convolutional
layers which significantly reduce the amount of parameters and
computation in the network. Therefore, for a fair comparison,
we increased the complexity of CNN by increasing the number
of convolutional layers (e.g., 4 layers) and the filter size for
each layer so that the training time for both LSTM and CNN
is approximately the same. It is important to point out that
the high computational complexity of the proposed method
is only during the training stage which is done offline. The
trained network, however, is capable of offering a much faster

TABLE I
VLC SIMULATION PARAMETERS

Parameter Symbol Value
Room dimension - 5× 5× 3
LED half-intensity angle Φ1/2 60◦

Receiver FOV Ψc 85◦

PD physical area A 1 cm2

Optical filter gain gf 1
Optical concentrator gain g(ψ) 1
PD responsivity R 1 A/W
Reflection coefficient ρ 0.8
Transmitted optical power Pt 1 W
Number of subcarriers k 128

solution during the real-time implementation.

IV. SIMULATION RESULTS

A. Effect of Pilot Numbers

We compare the performance of our LSTM-based signal
detection method with the traditional LS estimation, and with
CNN in terms of SERs for different SNRs. The simulation
parameters are listed in Table I. From the results depicted in
Fig. 2 and Fig. 3, it is clear that the proposed model is proven
to always achieve better performance than both LS and CNN
and can perform almost as good as ML detection in both fixed
and random scenarios. LS is a linear estimator which may
perform well in ideal scenarios but may give poor performance
when a realistic environment is considered. In contrast, our
DL model offers excellent performance since it can adapt to
specific geometrical configurations and user behavior effects.
Hence, focusing on the fixed scenario, a significant gain can
be achieved in comparison to LS especially when fewer pilots
were used. In Fig. 3, we can see that at SER = 3.8e10−3,
an SNR gain of more than 10 dB was obtained for LSTM-
based approach compared to LS. This can be expected as even
when the number of pilots is reduced, the DL model can still
perform well since it has the ability to use the whole sequence
of historical data to learn the channel and the user behavior
and make reliable predictions of the transmitted signal. In
comparison, LS gives poor performance due to the fact that the
reduced number of pilots is not enough for LS to accurately
estimate the channel. Therefore, it appears that even when the
system have a very limited amount of channel information, the
proposed model can still give excellent detection performance,
very close to ML with full CSI.
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Fig. 3. Average SER versus SNR with pilot ratio of 1/32.

B. Hotspot Model

We have also simulated the signal detection problem using
the proposed method which was trained based on a hotspot
model. The hotspot model considers an attraction area in the
room where the probability of the user to be within the area
is higher than being elsewhere. We collect the training data in
a similar manner as the previous approach for all the possible
locations of the user. We then consider 3 types of scenarios
where the probability of the user to be inside the hot spot
area is 100%, 90% or 80%. To realize this hot spot model, for
each scenario, we train the LSTM network by using 100%,
90% and 80% of the total data collected from all possible
locations of the user inside the hot spot area, respectively. For
the second and third case, the balancing 10% and 20% of
the data were taken from the random user positions located
outside the hot spot area. We then compare the performance
between LSTM and LS in the case where the pilot ratio is
1/32. Fig. 4 presents the SER curves for the three different
scenarios. As expected, the best performance similar to ML
can be achieved by having 100% knowledge of the locations of
where the user might be. Although the model would yield to a
higher SER when the amount of training data based on the hot
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Fig. 4. Average SER versus SNR with different hotspot models.

spot area is reduced, the model still provide good performance
in comparison to LS. Hence, from the result shown in Fig. 4,
we can demonstrate that the deep learning model is also robust
when applied for different user behaviors. It is important to
note that as long as the model obtain sufficient training data
based on user behaviors (e.g., the location within the room
where the user would most probably be), it could significantly
help with the learning process of the LSTM network and
improve the detection performance of the system.

C. Size of Training Data

The size of the training data set depends on the complexity
of the system as well as the complexity of the learning
algorithms. Using too little training data may cause poor
performance since the model will not be able to fully learn the
diverse characteristics of the environment under study. Having
too large training data may result in overfitting, in which the
model corresponds too closely to the training data but fail to
give good performance when new data is presented during
the testing stage. Thus, we conduct several experiments to
determine the suitable training data size and see which of them
could provide the best SER vs SNR performance. Focusing on
the fixed scenario, Table II and Table III show the effect of
increasing the total number of training data for LSTM and
CNN when the pilot ratio used is 1/8 and 1/32, respectively.
From these two tables, we can see that increasing the length
of training data for both deep learning methods noticeably
helps to reduce the SNR penalties against ML when read
at SER = 3.8 × 10−3. LSTM still gives better performance
compared to CNN with increasing size of training data.

D. Complexity Analysis

It has been mentioned in previous works that LSTM algo-
rithm is very efficient and is local in space and time [21].
This means that the storage requirements of the network does
not depend on the input sequence length and at each time
step, the computational complexity of an LSTM layer per
weight is O(1). Hence, the total complexity of an LSTM at
each time step is O(w) where w is the number of weights.



TABLE II
EFFECT OF TOTAL NUMBER OF TRAINING DATA FOR PILOT RATIO OF 1/8

SNR penalty against ML at SER = 3.8e10−3, (dB)
Size of training data 2.7 x 10ˆ6 1.4 x 10ˆ7 2.7 x 10ˆ7
LSTM >10 0.9 0
CNN >10 5.9 1.8

TABLE III
EFFECT OF TOTAL NUMBER OF TRAINING DATA FOR PILOT RATIO OF 1/32

SNR penalty against ML at SER = 3.8e10−3, (dB)
Size of training data 2.7 x 10ˆ6 1.4 x 10ˆ7 2.7 x 10ˆ7
LSTM >10 5 2.1
CNN >10 >10 5

Therefore, the time complexity for our model is O(
�d

l=1 wl)
where l and d are the index and the number of LSTM layers,
respectively while wl denotes the number of weights for the
l-th layer. In our simulation, the LSTM model consist of 3
layers with 50, 25 and 10 hidden units, respectively. The
time complexity for all convolutional layers [24] for the CNN
model is O(

�d
l=1 nl−1 · s2l · nl · m2

l ) where l and d are the
index and the number of convolutional layers, respectively.
We used 4 layers with the number of filters denoted by nl

for each layer is 8, 16, 32 and 64, respectively. sl = 3 is the
spatial size of the filter. Since there are 128 symbols and 26
SNR values, we have a total of 3328 data symbols for each
subset of training data. We arrange the input sequence into
a two dimensional (2-D) matrix to obtain an input data size
of 58x58. Hence, the spatial size of the output feature map,
ml is 58. Lastly, since our input data is 2-D, the number of
input channel at the l-th layer, denoted by nl−1 is 1. Note that
the size of the training data exceeds the number of parameters
to be learned by both of the neural network models. It was
mentioned earlier that channel estimation using LS requires
low complexity and can be obtained by a simple division
of the received pilot symbols under the effect of the optical
channel over the transmitted pilot symbols. However channel
estimation with LS gives insufficient performance as opposed
to the DL techniques.

V. CONCLUSION

Our results confirm that the proposed DL approach has the
ability to learn and analyze the complicated characteristics
of the optical channel and the user behavior and is able to
provide a good generalization ability when operating online.
It is observed that the proposed DL method, only with limited
CSI, can provide a close performance to the optimal ML
detection scheme which requires perfect CSI. Furthermore, the
robust performance of the proposed DL scheme in different en-
vironments is shown. Future works for this study will include
the application of deep learning to a multi-user scenario in the
presence of the effect of link blockage, mobility, etc.
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