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Abstract—In this work a feed-forward neural network-based
channel predictor is derived, where assumptions on a physical
wave propagation channel model in a fading scenario are
incorporated into the design procedure of the predictor. We
start with the general expression of an approximated minimum
mean squared error (MMSE) predictor and derive a predictor
having the structure of a feed-forward neural network by making
two key assumptions. By properly training this neural network
it is possible to compensate the approximation errors due to
these assumptions. It is further possible to outperform the
linear MMSE (LMMSE) predictor with perfect knowledge of
the statistical moments of second order based on the covariance
function for specific channel model assumptions, especially for
low SNR values.

Index Terms—time-variant channel state information, mini-
mum mean squared error prediction, machine learning, neural
networks

I. INTRODUCTION

Channel state information (CSI) estimation and prediction

is one major task in wireless communication systems. It is

beneficial to have CSI at the transmitter, i.e., at the base station

(BS) to increase the achievable transmission rate in a wireless

communication system [1]. In high mobility scenarios, where

the users are moving with relatively high velocities, the CSI

knowledge at the transmitter side may get outdated rapidly.

This problem can be tackled with accurate channel prediction.

In [2], a low-complexity convolutional neural network

(CNN)-based channel estimator was derived, where assump-

tions on the 3GPP spatial channel model were incorporated

into the design procedure of the estimator [3], [4]. Following

the derivation of the CNN-based channel estimator from [2], a

similar approach was followed in [5] to derive a feed-forward

neural network-based channel predictor, where assumptions

on a physical wave propagation channel model in a fading

scenario were incorporated into the design procedure of the

predictor. The derivation of the neural network based channel

predictor starts with a reformulation of the general expression

of the linear minimum mean squared error (LMMSE) predic-

tor. By making two key assumptions, it is possible to derive a

predictor, which has the structure of a feed-forward neural

network. In this way, we obtain the initialization weights

and biases of the neural network predictor, which is then

further trained offline to achieve a performance enhancement

as compared to the untrained case.

In [5], the neural network predictor performance was eval-

uated using a ray-tracing-based indoor scenario of the generic

DeepMIMO dataset [6]. However, in the following we want to

focus more on the derivation of the offline learning-based feed-

forward neural network predictor and its capability to serve

as a blueprint predictor for specific communication scenarios,

e.g, line of sight (LOS) scenarios as in [5]. We further

present simulation results using the physical wave propagation

channel model, with which the neural network-based predictor

is derived. With the offline-learned neural network predictors

it is possible to outperform the LMMSE predictor based on

the Jakes assumption of the underlying Doppler spectrum.

A. Notation:

Given a vector x ∈ C
K , its transpose and the conjugate

transpose are denoted by xT and xH , respectively. The

modulus |x| and the exponential function exp(x) are applied

element-wise. With diag(x) we denote the square matrix with

the entries of x on its main diagonal and zero elsewhere. The

circular convolution of two vectors x,y ∈ C
K is given by

x ∗ y ∈ C
K . The K × K identity matrix is IK and the all

ones vector is denoted by 1.

II. NEURAL NETWORK-BASED CHANNEL PREDICTION

The physical wave propagation channel model used to

derive the feed-forward neural network-based predictor is con-

structed by the superposition of P plane-waves impinging at

a user, which moves with a constant velocity v [1], [7]. These

plane-waves correspond to paths, which are mainly determined

by path-specific Doppler shifts fp = cos (δp)fcv/c, and phases

ψp, where fc is the carrier frequency, c the speed of light

and δp the direction of arrival (DoA) of path p. The Doppler

bandwidth is defined as BD = fcv/c and is the maximum

possible Doppler shift. We assume that each path-phase ψp
and each path specific DoA δp are uniformly distributed over

the interval [−π, π) and that the path specific Doppler shifts

and phases do not change over a block of Mo +Np symbols,

where Mo is the observation length, Np is the prediction
length [1], [7]. The symbol duration Ts, is much longer than

the delay spread of the channel, thus, we have a frequency-

flat channel [1]. Following the argumentation of [1], [7] the

channel coefficients h[m] are constructed by:

h[m] =

P−1∑
p=0

1√
P
ejψpej2πfpTsm =

P−1∑
p=0

ape
j2πfpTsm, (1)

with m = 0, . . . ,Mo + Np − 1. An example of the fading

process with three propagation paths (P = 3) is depicted in

Fig. 1, where the black dots represent channel coefficients in

the observation interval IMo
= {0, 1, . . . ,Mo−1} and the red

dots represent channel coefficients in the prediction interval
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Fig. 1. Fading process channel construction example with P = 3.

INp
= {Mo,Mo+1, . . . ,Mo+Np−1}. If P →∞, the chan-

nel coefficients follow a Gaussian distribution based on the

central limit theorem. However, if the channel is constructed

with a few paths only, the obtained channel coefficients are

distributed non-Gaussian.

The time-variant block-fading model is a zero mean and

unit variance process, which is wide-sense stationary over

a block consisting of the union of the observation interval

IMo and the prediction interval INp [1], [8]. After observing

all channel coefficients in the observation interval IMo
, a

pre-selected channel coefficient out of the prediction interval

INp
is predicted. This can be achieved by exploiting the

correlation properties between all channel coefficients within

the considered block. The power spectral density (PSD) of the

process is given by [1], [9]: Sh(f) =
∑P−1
p=0 |ap|2δ(f − fp),

and the covariance function Rh[k] can be obtained by sampling

the inverese Fourier transform of the PSD [9], [10], viz.,

Rh[k] =
∑P−1
p=0 |ap|2ej2πfpTsk at k = 0, 1, . . . ,Mo +Np − 1.

If P →∞, the limit of the discrete covariance function Rh[k]
is equal to J0(2πkTsfcv/c) [1], [9], [11]. We now collect

the channel coefficients h[m] of the observation interval IMo

in a vector h = [h[Mo − 1], h[Mo − 2], . . . , h[1], h[0]]T . The

corresponding covariance matrix Σh [1] is:

Σh =

⎡
⎢⎢⎢⎢⎢⎣

Rh[0] Rh[1] . . . Rh[Mo − 1]
R∗

h[1] Rh[0] . . . Rh[Mo − 2]
.
.
.

.

.

.
. . .

.

.

.
R∗

h[Mo − 2] R∗
h[Mo − 3] . . . Rh[1]

R∗
h[Mo − 1] R∗

h[Mo − 2] . . . Rh[0]

⎤
⎥⎥⎥⎥⎥⎦
. (2)

A. LMMSE Predictor

At the BS, we do only have access to noisy observations

of channel coefficients within the observation interval IMo
.

These are collected in a vector

y = h+ n, (3)

where the complex additive white Gaussian noise (AWGN)

is described by n ∼ NC(0,Σn = σ2
nIMo). The covariance

matrix of the noisy observations y is Σy = Σh + σ2
nIMo .

Channel coefficients of the prediction interval INp
can be

obtained with the l−step LMMSE predictor [1], [12]:

ĥ[m] = ĥm = cHhmyΣ
−1
y y, (4)

with m ∈ INp
and l = m − (Mo − 1) and the correlation

vector cHhmy equal to

cHhmy = [Rh[l], Rh[1 + l], . . . , Rh[Mo − 1 + l]]. (5)

A reformulated version of the LMMSE predictor is derived

in the following, with the ultimate goal to derive the so-called

Gridded Predictor, the Structured Predictor and eventually the

Neural Network Predictor. The derivations of these predictors

can also be found in [5].

First, we fix a desired step length l and extend the vector of

channel coefficients h of the observation interval IMo
artifi-

cially by l channel coefficients of the prediction interval INp
:

hl−ext = [h[m], h[m− 1] . . . , h[Mo],h
T ]T , with m ∈ INp

and m = l+(Mo−1). The extended covariance matrix Σl−ext
h

is constructed analogous to the covariance matrix Σh from (2).

The covariance matrix Σh is embedded in the bottom right part

of Σl−ext
h . The correlation vector cHhmy is identical to the zeroth

row starting from the l−th column of the extended covariance

matrix Σl−ext
h . With the following definitions,

eT1 = [1, 0, . . . , 0] (1×Mo + l) (6)

S =

[
0

IMo

]
(Mo + l ×Mo). (7)

the correlation vector cHhmy and the covariance matrix Σh can

be extracted from the extended covariance matrix Σl−ext
h with:

cHhmy = eT1 Σ
l−ext
h S and Σh = STΣl−ext

h S. (8)

The reformulated l−step LMMSE predictor is then [5], [13]:

ĥm = eT1 Σ
l−ext
h S(STΣl−ext

h S+ σ2
nIMo

)−1y (9)

= eT1 W
l−exty. (10)

B. Gridded Predictor

Using Bayes’ approach of [2] an approximated minimum

mean squared error (MMSE) predictor is derived in the fol-

lowing. We assume to have a random variable δ, corresponding

to the DoAs of a sampled scenario that determines the path-

specific Doppler shifts, which are characterized by a prior

p(δ). Accordingly, we require for each sample, that the closed-

form solution Wδ of the LMMSE predictor according to

Wl−ext as in (10) is available [2], [3], [14]:

ŴMMSE =

∫
p(δ|y)Wδdδ. (11)

The estimated filter can be reformulated to:

ŴMMSE =

∫
p(y|δ)Wδp(δ)dδ∫
p(y|δ)p(δ)dδ , (12)

where, the likelihood p(y|δ) is assumed to be Gaussian:1

p(y|δ) ∝ exp (−yHΣ−1
yδ

y)

|Σyδ
| . (13)

1The second order statistical moments are indexed with δ in the following,
to express the dependency on the selected sample of a specific realization.



Σ−1
yδ

is re-expressed in terms of Wδ . To this end, we identify

Wδ with the predictor in (9) [13]:

Σl−ext
hδ

S(STΣl−ext
hδ

S+ σ2
nIMo

)−1 = Wδ (14)

Σl−ext
hδ

S = Wδ(S
TΣl−ext

hδ
S+ σ2

nIMo
) (15)

IMo
= STWδ + σ2

nIMo
(STΣl−ext

hδ
S+ σ2

nIMo
)−1 (16)

Σ−1
yδ

= Σ−1
n (IMo

− STWδ). (17)

Incorporating this result into the expression for the likelihood

yields:

p(y|δ) ∝ exp (σ−2
n tr(STWδyy

H))|IMo
− STWδ|. (18)

We further define Ĉ = σ−2
n yyH and

bδ = log|IMo − STWδ|, (19)

such that we can reformulate the likelihood p(y|δ) as:

p(y|δ) ∝ exp (tr(STWδĈ) + bδ). (20)

Inserting the above expression into (12) yields:

ŴMMSE =

∫
exp (tr(STWδĈ) + bδ)Wδp(δ)dδ∫
exp (tr(STWδĈ) + bδ)p(δ)dδ

. (21)

The overall approximated MMSE predictor is (we still have

to multiply with eT1 from the left, see (9)):

ŵT (Ĉ) = eT1

∫
exp (tr(STWδĈ) + bδ)Wδp(δ)dδ∫
exp (tr(STWδĈ) + bδ)p(δ)dδ

. (22)

For arbitrary priors p(δ) a closed form solution for this filter

does not exist. Nevertheless, with following assumption it is

possible to obtain a computable expression [2], [13].

Assumption 1: The prior p(δ) is discrete and uniform:

p(δi) = 1/N, ∀i = 1, . . . N. (23)

We obtain the Gridded Predictor [13], by replacing the prior

in (22) by 1/N and the integrals by sums:

ŵT (Ĉ) = eT1
(1/N)

∑N
i=1 exp (tr(S

TWδiĈ) + bδi
)Wδi

(1/N)
∑N
i=1 exp (tr(S

TWδiĈ) + bδi
)

,

(24)

where each sample specific filter Wδi is calculated according

to (9) and bδi is evaluated by (19). The Gridded Predictor

allows to predict channel coefficients, without any knowledge

on the true PSD of a specific scenario. With an increasing

number of samples N the approximation error decreases.

Nevertheless, there will be a gap compared to the LMMSE

predictor with perfect knowledge of the statistical moments of

second order based on the coveriance function Rh[k], because

of a finite N . This gap is even more significant if the δi are

sampled from a prior p(δ), with more than one propagation

path. In such a case, many combinations of DoAs are possible,

which can not be fully captured by the Gridded Predictor with

a finite number of samples N .

C. Structured Predictor

The drawbacks of the Gridded Predictor are the numerical

complexity and a large memory requirement, due to the

storage of a filter for each sample Wδi . With the following

assumption, it is further possible to simplify the predictor and

to reduce the memory overhead [13]:

Assumption 2: ∀i = 1, . . . , N the filters STWδi
can be

decomposed as:

STWδi
= QHdiag(wδi

)Q, (25)

with wδi ∈ R
K and a common matrix Q ∈ C

K×M .

Instead of storing a matrix for each sample Wδi
, it is now

sufficient to store a vector wδi
for each sample, which reduces

the memory overhead. Similar as in [2], possible candidates for

Q are either the Mo ×Mo DFT matrix, Q = F1 ∈ C
Mo×Mo

(Circulant approx.) or the first Mo columns of the 2Mo×2Mo

DFT matrix, Q = F2 ∈ C
2Mo×Mo (Toeplitz approx.). By

defining:

ĉ = σ−2
n |Qy|2, (26)

and using (25), the trace expressions in (24) are reformulated:

tr(STWδiĈ) = tr(QHdiag(wδi)Qσ
−2
n yyH) (27)

= tr(diag(wδi
)σ−2
n QyyHQH) (28)

= wT
δi
ĉ, (29)

since ĉ contains the diagonal entries of σ−2
n QyyHQH . In-

serting this result into (24), simplifies the Gridded Predictor:

ŵT (ĉ) =

∑N
i=1 exp (w

T
δi
ĉ+ bδi)e

T
1 Wδi∑N

i=1 exp (w
T
δi
ĉ+ bδi

)
. (30)

By further collecting the sample specific vectors and biases in

matrices A1 and A2 and the vector b:

A1 =

⎡
⎢⎣
wT

δ1

...

wT
δN

⎤
⎥⎦ A2 =

⎡
⎢⎣
eT1 Wδ1

...

eT1 WδN

⎤
⎥⎦
T

b =

⎡
⎢⎣
bδ1

...

bδN

⎤
⎥⎦ , (31)

we end up with the Structured Predictor [13]:

ŵ(ĉ) = A2
exp (A1ĉ+ b)

1T exp (A1ĉ+ b)
, (32)

D. Neural Network Predictor

An expert observation yields that a feed-forward neural

network with one hidden layer and the softmax activation

function, has the same structure as the Structured Predictor.

Therefore, we define a neural network which is depicted in

Fig. 2 as [13]:

ŵNN(ĉ) = A(2)

exp (A(1)ĉ+ b(1))

1T exp (A(1)ĉ+ b(1))
+ b(2). (33)

The matrix A1 of the Structured Predictor from (32), which

comprises the sample specific filter vectors wδi
∈ R

K , equals

to the weight matrix A(1) of the first layer of the neural

network: A(1) = A1. The vector b is the bias vector of the

first layer, thus b(1) = b. If we carefully consider (31), we can



A(1) A(2)
exp (·)

1T exp (·)

b(1) b(2)

ĉ ŵ
NN

(ĉ)

Fig. 2. Feed-forward neural network with one hidden layer and softmax activation function.

see that the entries of the second matrix A2 consist of sample

specific filter vectors eT1 Wδi
∈ C

1×M . Thus, the matrix A2

is complex. We split the matrix A2 into its real and imaginary

part and define

A(2) =

[
(A2)
�(A2)

]
. (34)

We further define a bias term for the second layer and the

Structured Predictor suggests: b(2) = 0. Accordingly, the

output of the neural network ŵNN(ĉ) is the concatenation of

the real and imaginary parts of the Structured Predictor ŵ(ĉ):

ŵNN(ĉ) =

[
ŵNN,�(ĉ)
ŵNN,�(ĉ)

]
=

[
(ŵ(ĉ))
�(ŵ(ĉ))

]
. (35)

In this way, the Structured predictor can serve as a

blueprint predictor for specific system models, by initializing

the weights A(1) and A(2) and biases b(1) and b(2) of the

Neural Network Predictor with the parameters of the Struc-

tured Predictor as explained above. By further training the

Neural Network Predictor offline, we wish to achieve a better

performance as compared to the predictors described above.

Therefore, a predefined number of mini-batches are generated.

A mini-batch consists of B channel realizations hb,IMo
, where

each comprises Mo channel coefficients of the observation

interval IMo , and corresponding channel coefficients hb,INp

of the prediction interval INp (for the desired step l), with

b = 1, 2, . . . , B. For each channel realization hb,IMo
a noisy

version yb,IMo
is generated by adding complex AWGN with

known variance σ2
n. According to (26), the input of the neural

network ĉb for each yb,IMo
can be evaluated depending on

Q (Toeplitz or Circular). For each input ĉb a specific filter

ŵNN (ĉb) is present at the output, which can be further

processed to obtain an estimate ĥb,IN by calculating:

ĥb,IN = [ŵNN,�(ĉb) + jŵNN,�(ĉb)]Tyb,IM (36)

As performance metric (cost function), we choose the mean

squared error (MSE). The stochastic gradient is then:

g =
1

B

B∑
b=1

∂

∂[A(i);b(i)]
‖hb,IN − ĥb,IN ‖22, (37)

with i = 1, 2. Then, the variables of the neural network are

updated with a desired gradient algorithm (e.g., [15]). The

described procedure is repeated until a convergence criterion

is fulfilled.

The learning procedure is summarized in the following [13]:

Algorithm 1 Learning the MMSE Channel Predictor

1: Init. the Neural Network with the Structured Predictor

2: Generate a mini-batch of in total B channel realizations, of

the observation interval hb,IMo
and corresponding channel

coefficients of the prediction interval (of desired prediction

step l) hb,INp
, for b = 1, 2, . . . , B.

3: Generate noisy version yb,IMo
of hb,IMo

and calculate ĉb
(input of the neural network), for b = 1, 2, . . . , B.

4: Calculate the stochastic gradient (i = 1, 2):

g =
1

B

B∑
b=1

∂

∂[A(i);b(i)]
‖hb,INp

− ĥb,INp
‖22,

5: Update the variables of the neural network with a desired

gradient algorithm (e.g., [15])

6: Repeat steps 2-5 until a convergence criterion is fulfilled.

III. SIMULATION RESULTS

In this Section, we discuss the performances of the previ-

ously described predictors. As baseline we use the LMMSE

predictor with perfect knowledge of the statistical moments

of second order based on the coveriance function Rh[k] (i.e.,

the DoAs are known) and denote it as LMMSE Perfect. The

LMMSE predictor with the assumption of P →∞, is denoted

as LMMSE Jakes, Clearly, assuming infinitely many paths

is not true for specific cases with a finite number of paths.

Nevertheless, constructing the LMMSE predictor with the

assumption of having infinitely many paths is straightforward,

since in this case the covariance function is equal to the zeroth

order Bessel function. The Gridded Predictor is simply denoted

as Gridded, and the Structured Predictor as Structured Toep
(Toepltiz approx.) or as Structured Circ (circulant approx.).

The Neural Network Predictor is denoted as NN Toep or as

NN Circ. Table I summarizes all considered predictors.

TABLE I
CONSIDERED PREDICTORS IN THE SIMULATIONS

LMMSE Perfect with perfect knowledge of the statistical moments
of second order based on Rh[k]

LMMSE Jakes LMMSE predictor with assumption P →∞
Gridded Gridded Predictor
Structured Toep Structured Predictor with Q = F2

Structured Circ Structured Predictor with Q = F1

NN Toep Neural Network Predictor with Q = F2

NN Circ Neural Network Predictor with Q = F1

For all simulations in the following the symbol duration

Ts = 20.57 μs and the carrier frequency fc = 2GHz as in [1].
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Fig. 3. MSE at prediction step l = 4, Mo = 16, SNR 10 dB, P = 1,
fc = 2GHz, Ts = 20.57 μs, N = 16 or N = 32

For the construction of the Gridded Predictor, the Structured

Predictors and the Neural Network Predictors, a fixed number

of samples is needed, which is predefined depending on the

number of observed symbols Mo, in order to achieve easier

interpretation in terms of computational complexity. For the

cases, where Q = F2 (Toeplitz assumption) the number of

samples N is doubled (the input of the Structured Predictor

and the Neural Network Predictor with Q = F2 is twice

as long as for the case Q = F1). All of the predictors are

specifically constructed for each simulated velocity, i.e., we

have to construct and train the Neural Network Predictors for

each velocity separately. The performances of the predictors

are evaluated by calculating the MSE of 200.000 predictions.

In the first simulation (Fig. 3), the number of observed

symbols Mo = 16 and the prediction step l = 4. The SNR is

10 dB and the number of impinging plane-waves at the user is

one, i.e., P = 1. Thus, we have one randomly generated DoA

for each channel realization, which remains constant over the

considered block. The number of samples for the construction

of the predictors is set to N = 16 or N = 32 (depending

on Q). The MSE of the LMMSE Perfect predictor remains

constant for all velocities. The LMMSE Perfect predictor

outperforms the LMMSE Jakes predictor for all velocities,

since the LMMSE Perfect predictor has perfect knowledge of

the spectrum, whereas the LMMSE Jakes predictor assumes

P → ∞. As compared to the LMMSE Jakes predictor, the

Structured Circ predictor performs worse, whereas the Gridded

and Structured Toep predictor outperform the LMMSE Jakes

predictor for velocities higher than 50 km/h (Fig. 3). As

explained above the NN Toep is initialized with the Structured

Toep predictor and the NN Circ predictor is initialized with

the Structured Circ predictor. For training the Neural Network

Predictors 3000 mini-batches, each of size B = 50, were used.

After training the Neural Network Predictors, both of them

outperform the LMMSE Jakes predictor for all considered ve-
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Fig. 4. MSE at prediction step l = 4, Mo = 16, SNR 0 dB, P = 1,
fc = 2GHz, Ts = 20.57 μs, N = 16 or N = 32

locities. The NN Circ predictor has a lower MSE as compared

to the Gridded Predictor for velocities smaller than 70 km/h
(Fig. 3). The NN Toep predictor outperforms the Gridded

predictor for all velocities. We can conclude that the the Neural

Network Predictors are able to compensate the approximation

error of Assumption 1 with a finite number of samples

N . Already the differences in the MSEs for the Structured

Toep and Structured Circ predictors suggest that the Toeplitz

assumption (Q = F2) is a better approximation. In addition

to that, the neural network size with Toeplitz assumption is

twice as large as compared to the Circular case. This may

also explain the gap between the two Neural Network Predictor

performances. For the velocity range from 0 km/h to 30 km/h
(Fig. 3) the Neural Network Predictors even outperform the

LMMSE Perfect predictor based on the knowledge of the

covariance function. This is the consequence of the assumed

channel model, i.e., channel coefficients, constructed with

a low number of paths (propagation channel models with

specular geometry), which are not Gaussian distributed render

the LMMSE predictor to be not optimal and therefore to be

outperformed by other approaches that take into account the

actual underlying distribution of channel coefficients or their

respective samples.

In the next simulation setting (Fig. 4), the number of

observed symbols remains Mo = 16 and the prediction step

remains as well unchanged, l = 4. The SNR is now 0 dB and

the number of impinging plane-waves at the user is again one,

i.e., P = 1. The number of samples for the construction of

the predictors is set to N = 16 or N = 32 (depending on

Q). As in the previous simulation, the MSE of the LMMSE

Perfect predictor remains constant for all velocities. Obviously,

the LMMSE Perfect predictor again outperforms the LMMSE

Jakes predictor for all velocities. The Structured Circ predictor,

the Gridded predictor, the Structured Toep predictor and the

LMMSE Jakes predictor perform equally well. The Neural
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Network Predictors are again initialized as described above

and for training them again 3000 mini-batches, each of size

B = 50, were used. After training the Neural Network Pre-

dictors, both of them outperform the LMMSE Jakes predictor

and the Gridded predictor for all considered velocities. The

NN Toep predictor has a slightly lower MSE as compared

to the NN Circ predictor for velocities larger than 60 km/h
(Fig. 4). Both of the Neural Network Predictors outperform the

LMMSE Perfect predictor for the velocity range from 0 km/h
to 90 km/h (Fig. 4).

So far we have only considered the case of having only

one impinging plane-wave at the user. In the next simulation

setting (Fig. 5), we now increase the number of impinging

plane-waves at the user to two, i.e., P = 2. The number of

observed symbols remains Mo = 16 and the prediction step

remains as well unchanged, l = 4. The SNR is 0 dB. The

number of samples for the construction of the predictors is

still set to N = 16 or N = 32 (depending on Q). In contrast

to the previous simulations, the MSE of the LMMSE Perfect

predictor does not remain constant for all velocities due to

the increased number of paths to two. The LMMSE Jakes

predictor with P →∞ suggests that the predictor performance

heavily depends on the Doppler bandwidth BD of the system

setup, which depends on the velocity of the user. The Gridded

predictor, the Structured Circ predictor, the Structured Toep

predictor and the LMMSE Jakes predictor perform again

almost equally well. We train the neural networks with 3000

mini-batches, each of size B = 50, where each channel

realization is constructed with P = 2, i.e., two DoAs are

randomly generated for each channel realization and remain

constant over the considered block. In this simulation setting,

the trained Neural Network Predictors outperform all other

predictors for the velocity range from 0 km/h to 50 km/h
(Fig. 5).

IV. CONCLUSION

A feed-forward neural network channel predictor, which is

trained offline, was presented in this paper. We started with

the general expression of an approximated MMSE predictor

and derived a predictor having the structure of a feed-forward

neural network by making two key assumptions. By using the

Structured Predictor as a blueprint an by further training the

Neural Network Predictor, it was possible to compensate the

approximation errors due to the assumptions. The Neural Net-

work Predictor outperformed the LMMSE Perfect predictor for

the specific channel models with low path numbers, especailly

for low SNR values. We considered simulation settings with

low path numbers, since with a relatively high number of

propagation paths the channel is similar to Jakes model. In

[5] the performance of the Neural Network Predictor was

evaluated by using an indoor LOS scenario of the DeepMIMO

dataset. The Structured Predictor which served as a blueprint

predictor was constructed by creating scenarios with P = 1
as above. However, the dynamic construction procedure from

above can be also used for other scenarios, where there is

no dominating LOS component, e.g., in scenarios with two

dominant paths.
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