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Abstract—This paper investigates the maximum coding
rate of the multiple-user multiple-input-multiple-output (MU-
MIMO) uplink in coherent block-fading channels and with finite
blocklength. The backoff of the maximum coding rate from the
capacity caused by finite blocklength is precisely characterized
by a parameter, called the channel dispersion. In particular, we
derive exact analytical and approximation results for a large
number of the base station (BS) antennas. By analyzing these
results, we observe that even when considering the channel
dispersion, the maximum coding rate still increases with respect
to the number of BS antennas, whilst the SNR for each user can
also improve the performance to a ceiling limited by the inter-
user interference. Fast channel dynamics (shorter coherence
time) and high diversity gain (large number of blocks) are
beneficial for the maximum coding rate under finite blocklength
and coherent setting. Moreover, to obtain a certain fraction of
the capacity with fixed error probability, the minimum required
blocklength (delay) can be reduced by increasing the number
of BS antennas. We also show that the channel dispersion will
converge to a constant while the minimum required blocklength
can approach to zero with massive number of the BS antennas.
Hence, from a theoretical viewpoint, deploying a large number
of the BS antennas is beneficial for low latency communications.

Index Terms—Channel dispersion, coherent block-fading
channel, finite blocklength, maximum coding rate, multiple-user
MIMO.

I. INTRODUCTION

The future Internet-of-Things (IoT), ranging from
machine-type communications to mission-critical
communications, entails new requirements, such as higher
spectral efficiency, ultra-higher reliabilities and low latency.
The future 5G networks and beyond are expected to support
ultra reliable low latency communication (URLLC) with
latency going from less than 1 ms to few milliseconds and
reliability higher than 99.999% [1] [2]. Thus, providing
URLLC is important, challenging and has attracted lot of
research attention over the past decade. If it is not necessary
to consider latency constraints, the conventional Shannon
capacity is sufficient enough for the performance analysis.
However, when low latency communication is required, the
assumption of long codewords becomes irrelevant and we
need to resort to short codewords in order to fulfill the
stringent latency constraints [3]. Having said this, finite
blocklength systems have come at the forefront of wireless
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communications research, particularly after the pioneering
work of [4]. Most importantly, Shannon capacity yields
an overestimation of the performance, and another refined
performance metric, the maximum coding rate, which is as
a function of finite blocklength and coding error probability,
becomes mostly relevant.

A. Related Works

Polyanskiy, Poor and Verdú [4] showed that with an error
probability no larger than 0 < ϵ < 1 and under finite
blocklength n, the normal approximation of the maximum
coding rate under real additive white Gaussian noise (AWGN)
channel (no fading) with unit variance can be expressed as

R∗(n, ϵ) = C −
√

V

n
Q−1(ϵ) +O

(
log2 n

n

)
, (1)

where Q−1(ϵ) is the inverse Q-function, C = 1
2 log2(1 + ρ)

is the capacity, and V = ρ(ρ+2)
2(1+ρ)2 log

2
2 e denotes the channel

dispersion with the definition as [4, Definition 1], in which
ρ is the SNR. The term O

(
log2 n

n

)
represents the remaining

terms that vary with the same speed as log2 n
n .

Following [4], a series of works have extended the result
(1) to other kinds of point-to-point channels. For instance, [5]
studied the channel dispersion under additive non-Gaussian
noise channels by using random Gaussian codebooks and
nearest neighbor decoding. For the generalization to fading
channels, [6] derived the dispersion of a single-input single-
output (SISO), stationary coherent fading channel with real
valued AWGN. The result showed the significant effect
of the channel fading dynamics on the dispersion. Quasi-
static single-input multiple-output (SIMO) and multiple-input
multiple-output (MIMO) fading channels under finite block-
length with unit variance AWGN were thoroughly investigat-
ed in [7] and [8], respectively. The results showed that under
mild conditions on the channel gain, the channel dispersion
is zero regardless whether the channel state information
(CSI) is available at transmitter and/or receiver. Regarding
the block-fading channel, [9]–[12] studied the performance
metrics from SISO to MIMO systems with unit variance
AWGN. Specifically, in [9], the non-asymptotic bounds of
the maximum coding rate were presented in the noncoherent
setting for SISO systems. It was shown that the maximum
coding rate is not monotonic with respect to the channel
coherence time and there exists a coherence time that max-
imizes the coding rate and makes a trade-off between the
diversity gain obtained by a large number of blocks and the



resources used for channel estimation. Following this, a high-
SNR normal approximation of the maximum coding rate was
presented in [10] under noncoherent SISO Rayleigh block-
fading channels, which complements the non-asymptotic
bounds in [9] and provides us with a tractable formula
for performance analysis. Very recently, [11] and [12] have
provided a channel dispersion formula for AWGN coherent
MIMO block-fading channel and the analysis showed that as
we increase the number of receive antennas, the normalized
dispersion decreases and the exact dispersion will approach
to a constant. Also, [12] pointed out that the transmit and the
receive antennas are not symmetric in affecting the channel
dispersion.

B. Contributions

In this paper, we will focus on block-fading channels,
in which the channel coefficient remains constant during
one coherence block and varies independently to a new
realization in the next block [9]. We also assume coherent
communication, which means that the BS has perfect CSI.
Different from [4]–[12], which focused on point-to-point
networks, we take a step further by exploiting the multiple-
user uplink networks, in which multiple users transmit signals
to a multiple-antenna BS. Thus, the interference from other
users must be considered, which is actually not Gaussian. A
more refined performance metric, the maximum coding rate
under finite blocklength and non-Gaussian noise is presented
and analyzed. The results enable us to obtain some important
insights, which are listed as follows:

1) The new maximum coding rate under finite blocklength
is an increasing function with respect to the number of
BS antennas and the signal-to-noise-ratio (SNR) of each
user boosts the performance to a ceiling determined by
the inter-user interference;

2) Fast fading channel dynamics (shorter coherence time)
and high diversity gain (large number of blocks) can
strongly improve the performance even under the inter-
user interference, which has been proved in [12] for
point-to-point MIMO systems;

3) The minimum blocklength required for obtaining a fixed
fraction of capacity with given error probability reduces
when a massive number of antennas is deployed at the
BS. In addition, longer blocklength is needed if the
number of users increases;

4) Lastly, the channel dispersion will converge to a constant
when the number of antennas at the BS goes to infinity.

Notation: Boldface lower and upper case letters are used to
denote vectors and matrices, respectively. The notation ∥ · ∥2
and (·)T denote the 2-norm and the transpose of a vector or
matrix, respectively. The operators E{x}, Var{x}, ℜ(x) and
ℑ(x) denote the mean, variance, real and imaginary part of
a random variable x, respectively. The notation CN (0, σ2)
represents the complex Gaussian distribution with zero mean
and variance σ2 and CM×N denotes complex arrays with
dimension M × N . Finally, f(x) = O(g(x)) means that
lim
x→∞

f(x)
g(x) = c < ∞.

II. SYSTEM MODEL

In the uplink, K single-antenna users transmit signals to
the common BS with N antennas. A coherent block fading
channel is considered, i.e., the BS has perfect CSI. Assume
that each block has Tc symbols and there are in total L
blocks. Thus, the finite coding blocklength is n = LTc. The
transmission process is as follows.

At a certain block j, for j = 1, 2, . . . , L, for each symbol
i ∈ [Tc] = {1, 2, . . . , Tc}, the channel input-output relation
or the received signal at the BS is

yi(j) =
K∑

k=1

hk(j)xk,i(j) + ni(j), (2)

where yi∈CN×1; hk(j)=[hk,1(j), hk,2(j), . . . , hk,N (j)]T∈
CN×1 denotes the channel vector from the k-th user to the BS
at block j, which has independent and identical distributed
(i.i.d.) elements and each element is distributed as CN (0, γ2

k);
xk,i(j) denotes the i-th transmit symbol for user k at block
j; and ni(j)=[ni,1(j), . . . , ni,N (j)]T ∈CN×1 is the AWGN
vector, which has i.i.d. elements with zero mean and variance
σ2.

The received signal matrix at BS, Y(j) ∈ CN×Tc , for all
symbols [Tc] at block j, is

Y(j)=
K∑

k=1

hk(j)x
T
k (j)+N(j) = H(j)X(j)+N(j), (3)

where Y(j) = [y1(j), . . . ,yTc(j)] ∈ CN×Tc ; xk(j) =
[xk,1(j), . . . , xk,Tc(j)]

T contains the transmitted symbols of
length Tc for user k; N(j) = [n1(j), . . . ,nTc(j)] ∈ CN×Tc

is the AWGN matrix with i.i.d. CN (0, σ2) elements; H(j) =
[h1(j), . . . ,hK(j)] ∈ CN×K denotes the uplink channel ma-
trix from all users to the BS; X(j) = [x1(j), . . . ,xK(j)]T ∈
CK×Tc contains the transmitted signals from all users.

Based on [6] and [13], when the distribution of the channel
realization H(j) is isotropic and the input signal X(j)
satisfies X(j) ∼ CN (0, TcP), in which P ∈ CK×K is a
diagonal matrix with the k-th diagonal element equal to the
transmit power constraint Pk of user k, for k = 1, . . . ,K, the
Shannon capacity can be achieved and this capacity achieving
input distribution is unique when the number of BS antennas
is N ≥ 2 [11, Proposition 3]. Thus, in the following, we
will always assume that X(j) ∼ CN (0, TcP). With this
assumption, the transmitted signal for each user at each block
satisfies the power constraint

E
{
∥xk(j)∥22

}
= TcPk, k = 1, 2, . . . ,K. (4)

Meanwhile, we also assume that xk(j) ∈ CN (0, PkITc), for
j = 1, . . . , L and k = 1, 2, . . . ,K.

Without any combination scheme at the BS, (3) can be
rewritten as

Y(j) = hk(j)x
T
k (j) +

K∑
m=1
m ̸=k

hm(j)xT
m(j) +N(j), (5)

where the first term denotes the desired signal, the second
term represents interference from other users and the last
term is the AWGN.

III. PERFORMANCE ANALYSIS

Denoting the interference matrix in (5) as



NI(j) ,
K∑

m=1
m ̸=k

hm(j)xT
m(j), (6)

and treating the interference plus noise term in (5) as the
effective noise denoted as

Ntotal(j) , NI(j) +N(j). (7)

Then, (5) can be rewritten as

Y(j) = hk(j)x
T
k (j) +Ntotal(j), (8)

which now can be treated as the single-input-multiple-output
(SIMO) fading channel with the input signal xT

k (j), the
fading channel hk(j) and the noise Ntotal(j). Here, we should
note that the noise Ntotal(j) is not Gaussian distributed due
to the effect of the interference term NI(j).

In (8), the signal-to-interference-plus-noise (SINR) ratio
for the user k is

SINRk =
Pk∥hk(j)∥22
σ2 + σ2

K/k

, (9)

where σ2
K/k =

K∑
m=1
m ̸=k

γ2
mPm is the second-order moment of

the interference term NI(j) in (6).
Then, by treating the noise Ntotal(j) in (7) as Gaussian

noise and with the mismatched decoder at the BS as in [14],
the maximum coding rate in nats per channel use of the k-th
user Rk(n, ϵk) with blocklength n and block error probability
not greater than ϵk can be asymptotically expressed as1

Rk(n, ϵk) = Ck −
√

Vk

n
Q−1(ϵk) +O

(
1

L

)
, (10)

where 0 < ϵk < 1/2 is the maximum error probability2

that is allowed for transmission for user k; Ck denotes the
Shannon capacity which admits the form

Ck = E
{
ln [1 + SINRk]

}
. (11)

The term Vk is the channel dispersion, which is used to
characterize the backoff of the maximum coding rate from
the capacity under finite blocklength, and has the form

Vk = Tc Var
{
ln [1 + SINRk]

}
+ 2

{
1− E

{
1

(1 + SINRk)

}}

+

(
ξ

Tc(σ2
K/k + σ2)2

− Tc − 1

)
E


1(

1 + 1
SINRk

)2
 , (12)

where ξ is as

ξ , Tc

{
(Tc + 1)(σ2

K/k + σ2)2

+(Tc + 2)

Ku∑
m=1
m ̸=k

γ4
mP 2

m −

 Ku∑
m=1
m ̸=k

γ2
mPm


2
 . (13)

In the following, we will theoretically characterize the

1The maximum coding rate in our paper is obtained under the assumption
that the input signals are i.i.d. Gaussian distributed, while the result obtained
by Polyanskiy, Poor and Verdú in [4] assumed that the input signals are under
the unitary space time modulation (USTM).

2Here, the error probability 0 < ϵk < 1/2 is used to guarantee Q−1(ϵk)
is positive.

maximum coding rate in (10). The exact analytical expression
under the general case and the approximation result under
large number of the BS antennas will be provided.

A. Analytical Result of Maximum Coding Rate

Proposition 1: The analytical expression of the maximum
coding rate (10) under finite blocklength for an intended user
k can be expressed as follows,

Rk(n, ϵk) = R̄c
k(n, ϵk)

= C̄c
k −

√
V̄ c
k

n
Q−1(ϵk) +O

(
1

L

)
, (14)

where C̄c
k and V̄ c

k denote the analytical results of the capacity
Ck in (11) and the channel dispersion Vk in (12) respectively,
which have the form as

C̄c
k =

1

Γ (N)
G3,1

2,3

(
1

2vk

∣∣∣∣ 0, 1
0, 0, N

)
, (15)

V̄ c
k =

2Tc

Γ (N)
e

1
2vk

N−1∑
m=0

(−1)mCm
N−1

×G4,0
3,4

(
1

2vk

∣∣∣∣ m+ 1,m+ 1,m+ 1
N,m,m,m

)

− Tc

 1

Γ (N)
G3,1

2,3

(
1

2vk

∣∣∣∣ 0, 1
0, 0, N

)
2

+ 2

1− 1

Γ(N)
G2,1

1,2

(
1

2vk

∣∣∣∣ 1
N, 1

)
+

(
ξ

Tc(σ2
K/k+σ2)2

−Tc−1

)
1

Γ(N)
G2,1

1,2

(
1

2vk

∣∣∣∣ −1
N, 0

)
,

(16)

where Ck
m = m!

k!(m−k)! denotes the binomial coefficient. The

symbol Gm,n
p,q

(
x| a1, . . . , ap

b1, . . . , bq

)
is Meijer’s G-function [15,

Eq. (9.301)] and the parameter 1
2vk

, σ2+σ2
K/k

γ2
kPk

.
Proof: See Appendix A.

In Proposition 1, define the signal-to-noise-ratio (SNR) as
SNR = P1

σ2 = . . . = PK

σ2 = P
σ2 . When SNR = P

σ2 → ∞, we
have

1

2vk
=

σ2
K/k

γ2
k

+
1

γ2
k

1

SNR
→

σ2
K/k

γ2
k

, (17)

which is a constant limited by the inter-user interference. By
replacing all the coefficient 1

2vk
in Proposition 1 with the term

σ2
K/k

γ2
k

, we can conjecture that the maximum coding rate will
be limited to a constant under high SNR due to the existence
of the inter-user interference.

The result in Proposition 1, though analytical, provides
limited insights due to presence of the non-linear Meijer’s G-
function. For this reason, we now present an approximation
result of the maximum coding rate.

B. Approximation Result of the Maximum Coding Rate

In this part, we will provide the approximation of the
maximum coding rate for a large number of the BS antennas.

Firstly, recall the functions and variables defined in Ap-
pendix A, from the variance approximation in [16, Chapt.



4.3.2], the approximation of the variance of g(xk(j)) in (28)
of Appendix A can be obtained as in the following lemma.

Lemma 1: The variance of the Shannon capacity
g(xk(j)) = ln

(
1 + vkxk(j)

)
can be approximated as

Var{g(xk(j))}=Var
{
ln [1 + SINRk]

}
≈ 4Nv2k
(1 + 2Nvk)2

. (18)

Then, the defined random variable xk(j) , ∥
√
2

γk
hk(j)∥22 in

Appendix A, is distributed as xk(j) ∼ χ2(2N). With [17,
Eq. (74)], when the number of the BS antennas N is large,
the following approximation holds tight,

xk(j) ≈ E{xk(j)} = 2N. (19)

By substituting the above approximation result in Lemma
1 and the approximation result in (19) into the maximum
coding rate in (10) and the corresponding terms (11) and (12),
we obtain the approximating maximum coding rate shown in
the following proposition.

Proposition 2: For a large number of the BS antennas N ,
the maximum coding rate of (10) can be approximated as

R̄app
k (n, ϵk)= C̄app

k −
√

V̄ app
k

n
Q−1(ϵk)+O

(
1

L

)
, (20)

where C̄app
k and V̄ app

k are the approximations for the capacity
and channel dispersion, respectively, given by

C̄app
k = ln [1 + 2vkN ] , (21)

V̄ app
k =Tc

4Nv2k
(1 + 2Nvk)2

+2

(
1− 1

1 + 2vkN

)
+

(
ξ

Tc(σ2
K/k+σ2)2

− Tc − 1

)
1(

1 + 1
2vkN

)2 . (22)

In Proposition 2, by increasing the number of BS antennas
N , the capacity in (21) will grow without bound, whilst the
channel dispersion in (22) will approach to a constant as

V̄ app
k

N→∞−−−−→V̄ ∞=2 +

(
ξ

Tc(σ2
K/k+σ2)2

−Tc − 1

)
. (23)

As given in [6, Eq. (3)], by ignoring the third term O
(
1
L

)
of (10) as [9, Eq. (9)], the minimum blocklength required
for achieving a certain fraction 0 < ηk < 1 of the Shannon
capacity can be approximated as

n &
[
Q−1(ϵk)

1− ηk

]2
Vk

C2
k

, (24)

where V nor
k = Vk

C2
k

is defined as the normalized channel
dispersion. From Proposition 2, we have

V nor
k =

Vk

C2
k

≈
V̄ app
k

(C̄app
k )2

N→∞−−−−→ 0. (25)

Thus, the minimum blocklength required in (24) will ap-
proach to zero with increasing number of the BS antennas.
This implies that employing large number of antennas at the
BS is beneficial in the URLLC systems.

IV. NUMERICAL RESULTS

In this section, a set of numerical results is provided to
verify the correctness of the analytical results as well as to
enable us to find some new insights. These numerical results

are given under some basic system parameters setting as in
Table I unless otherwise stated.

Please note that in this numerical section, all the numerical
results are given by ignoring the term O

(
1
L

)
in (10). This

is reasonable as this term is very small and can be neglected
without affecting the performance but is convenient for the
theoretical analysis, as done in the majority of relevant papers
[4, Eq. (1)] [9, Eq. (9)].

TABLE I: Numerical Setting

Coherence interval Tc

Number of blocks L
Blocklength n

Tc = 30
L = 20

n = LTc = 600
Number of the BS antennas N = 10

Number of users K = 6
Transmit power P1 = . . . = PK = P = 20dBm
Noise variances σ2 = 1
Error probability ϵk = 10−5, for k = 1, . . . ,K

Channel gain γ2
k = 1, for k = 1, . . . ,K

A. The Analytical Result in Proposition 1

Fig. 1 and Fig. 2 verify the correctness of the analytical
result of the maximum coding rate presented in Proposition
1. Specifically, from Fig. 1, the maximum coding rate under
finite blocklength will converge to the Shannon capacity with
large number of blocks L and better performance can be
obtained with longer coherence interval Tc. This is reasonable
because the channel dispersion will be averaged under these
two cases. Also, from Fig. 2, increasing the SNR of each
user can boost the performance to a ceiling due to the
presence of inter-user interference. Furthermore, for a fixed
total blocklength n, with smaller coherence interval Tc (fast
channel dynamics) and larger number of blocks L (high
diversity gain), we can obtain higher maximum coding rate.
This is because under this scenario, the information can be
coded via a large number of independent channel realizations,
which provides higher diversity gain. On the other hand, large
number of blocks needs more symbols for channel estimation,
which will lead to a rate loss. But in this paper, as we assume
the coherent case, there is no rate loss. Thus, the performance
can be improved and this result has also been proved in [9].

B. The Approximation Result in Proposition 2

The accuracy of the approximation result under a large
number of the BS antennas in Proposition 2 is illustrated
in Fig. 3. From this figure, the maximum coding rate, the
capacity and the channel dispersion match very well with
the corresponding simulation results. Futhermore, we can
infer that even when the channel dispersion caused by finite
blocklength is considered, the maximum coding rate is still
an increasing function with respect to the number of the
BS antennas. More interestingly, it shows that the channel
dispersion converges to a constant with large number of the
BS antennas.

From Fig. 4, though our approximation result in Propo-
sition 2 is given under a large number of the BS antennas,
it also matches well with respect to the number of users.
Also, from this figure, increasing the number of users reduces
the maximum coding rate of an individual user and no solid



Fig. 1: The maximum coding rate versus the number of
blocks with K = 6, N = 10 and P = 20dBm.

Fig. 2: The maximum coding rate versus the SNR = P
σ2 with

K = 6, N = 10, and n = LTc = 600.

conclusion has been drawn about the channel dispersion with
respect to the number of users.

Most importantly, in Fig. 5, a larger number of the BS
antennas is beneficial in reducing the minimum blocklength
(delay) required for obtaining a certain level of the capac-
ity and the minimum blocklength approaches to zero with
increasing the number of BS antennas. Moreover, increaing
the number of users would need longer blocklength since
the inter-user interference is increased. However, increasing
the transmit power of each user may not be beneficial to the
minimum blocklength, especially in the large number of the
BS antennas region.

V. CONCLUSION

An uplink multiple-user MIMO system with a multiple-
antenna BS under coherent block-fading channel and finite
blocklength has been investigated. A new and more refined
performance metric, the maximum coding rate under finite
blocklength was studied. We derived a new, analytical ex-

Fig. 3: The maximum coding rate and the channel dispersion
versus the number of BS antennas with K = 6.

Fig. 4: Maximum coding rate, capacity and the channel
dispersion versus the number of users with N = 100.

Fig. 5: The minimum blocklength versus the number of BS
antennas with ηk = 0.8.



pression based on the Meijer’s G-function, and approximation
results under large number of the BS antennas. From these
theoretical results, we obtained the following insights: i)
faster channel fading dynamics (shorter coherence time)
and higher diversity gain (large number of blocks) help to
improve the maximum coding rate; ii) increasing the number
of BS antennas boosts the performance and the SNR for each
user improves the performance to a ceiling limited by the
inter-user interference; iii) the minimum blocklength required
for obtaining a fixed fraction of rate reduces with large
number of the BS antennas; and iv) the channel dispersion
will converge to a constant while the minimum blocklength
required will approach to zero when a massive number of
antennas is deployed at the BS. Thus, we can conclude that
increasing the number of BS antennas will be beneficial in
URLLC systems when considering finite blocklength channel
coding.

APPENDIX A
PROOF OF PROPOSITION 1

Recall the maximum coding rate in (10) and the corre-
sponding terms (11) and (12). We can now define the coef-
ficient vk , γ2

k

2
Pk

σ2+σ2
K/k

and the random variable xk(j) ,
∥
√
2

γk
hk(j)∥22, then, xk(j) is written as

xk(j)=
2

γ2
k

N∑
m=1

{
[ℜ(hk,m(j))]2+[ℑ(hk,m(j))]2

}
, (26)

which is distributed as χ2(2N) and the corresponding PDF
is

f(xk(j)) =

 (xk(j))
N−1e−

xk(j)
2

2NΓ(N)
, xk(j) > 0

0, otherwise
. (27)

With this, we define the related terms in (10)-(12) as

g(xk(j)) , ln (1 + SINRk) = ln
(
1 + vkxk(j)

)
, (28)

h(xk(j)) ,
1

1 + SINRk
=

1

1 + vkxk(j)
, (29)

q(xk(j)) ,
1(

1 + 1
SINRk

)2 =
1(

1 + 1
vkxk(j)

)2 . (30)

Then, based on (27), the first-order moment of g(xk(j)) is

E
{
g(xk(j))

}
=

+∞∫
0

g(xk(j))f(xk(j))dxk(j)

=
1

Γ (N)
G3,1

2,3

(
1

2vk

∣∣∣∣ 0, 1
0, 0, N

)
. (31)

The second-order moment of g(xk(j)) can be obtained from
[18, Eq. (41)], which is as follows

E
{[

g(xk(j))
]2}

=

+∞∫
0

[g(xk(j))]
2f(xk(j))dxk(j)

=
2

Γ (N)
e

1
2vk(j)

N−1∑
m=0

(−1)mCm
N−1

×G4,0
3,4

(
1

2vk

∣∣∣∣ m+ 1,m+ 1,m+ 1
N,m,m,m

)
. (32)

Combining the results in (31) and (32), the variance of the
random variable g(xk(j)) can be derived as

Var{g(xk(j))} = E
{[

g(xk(j))
]2}−

[
E{g(xk(j))}

]2
. (33)

Now, the expectation of h(xk(j)) =
1

1+vk(j)xk(j)
is

E
{
h(xk(j))

}
=

+∞∫
0

h(xk(j))f(xk(j))dxk(j)

=
1

Γ(N)
G2,1

1,2

(
1

2vk

∣∣∣∣ 1
N, 1

)
. (34)

The mean value of q(xk(j)) =
1(

1+ 1
vkxk(j)

)2 is as

E
{
q(xk(j))

}
=

+∞∫
0

q(xk(j))f(xk(j))dxk(j)

=
1

Γ(N)
G2,1

1,2

(
1

2vk

∣∣∣∣ −1
N, 0

)
. (35)

Substituting (31)-(35) into (10), Proposition 1 can be ob-
tained, which completes the proof.
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