
Modeling of Deep Neural Network (DNN)
Placement and Inference in Edge Computing

Mounir Bensalem, Jasenka Dizdarević and Admela Jukan
Technische Universität Braunschweig, Germany
{mounir.bensalem, j.dizdarevic, a.jukan}@tu-bs.de

Abstract—With the edge computing becoming an increasingly
adopted concept in system architectures, it is expected its
utilization will be additionally heightened when combined with
deep learning (DL) techniques. The idea behind integrating
demanding processing algorithms in Internet of Things (IoT)
and edge devices, such as Deep Neural Network (DNN), has in
large measure benefited from the development of edge computing
hardware, as well as from adapting the algorithms for use in
resource constrained IoT devices. Surprisingly, there are no
models yet to optimally place and use machine learning in
edge computing. In this paper, we propose the first model of
optimal placement of Deep Neural Network (DNN) Placement
and Inference in edge computing. We present a mathematical
formulation to the DNN Model Variant Selection and Placement
(MVSP) problem considering the inference latency of different
model-variants, communication latency between nodes, and uti-
lization cost of edge computing nodes. We evaluate our model
numerically, and show that for low load increasing model co-
location decreases the average latency by 33% of millisecond-
scale per request, and for high load, by 21%.

I. INTRODUCTION

The potential benefits of edge computing paradigm and
related distributed system solutions, have been particularly
linked with the breakthroughs achieved in the fast growing
development of deep learning (DL) techniques designed to
boost automation in all application domains. With that in
mind, this vibrant research area has been more and more
focusing on integrating edge computing with deep learning
[1] and the associated challenges due to resource constraints
[2], [3]. Recent hardware developments are making more
and more possible to run highly computationally demanding
algorithms in the edge [4].

Among myriad of open research issues, the models for
machine learning (ML) inference latency and ML model
selection optimization in edge computing, along with related
task placement are of particular importance. This is because
the related such models [5] developed for cloud computing
cannot be directly applied in edge computing. The DNN
placement problem in the edge needs to consider in particular
the communication delay between nodes and the hardware
heterogeneity of devices. To the best of our knowledge
there has been no study of the DNN application selection,
placement and inference serving problem in consideration of
edge computing. This paper presents the first DNN Model
Variant Selection and Placement (MVSP) in edge computing
networks. We provide a mathematical formulation of the
problems of ML placement and inference service, considering

I1

E1 E2 E3
Edge

computing

Internet
of

Things

Inference
requests

I2 I3 I4 I5

Fig. 1: A reference inference service system

inference latency of different model-variants, communication
latency between nodes and utilization cost of edge computing
nodes (resources). Our model also includes a discussion on
the potential effects of hardware sharing, with GPU edge
computing nodes shared between different model-variants, on
inference latency.

An illustration of the DNN application placement problem
is presented in Figure 1 with the arrival of inference requests
from IoT nodes to the edge computing layer. IoT nodes are as-
sumed to be devices with processing and sensing capabilities,
but not enough to run DNN models. In this system abstraction,
edge computing layer, consisting of edge nodes with GPUs
for running ML models, serves as an inference service system
to the requests from IoT nodes. For the illustrated system we
focus on designing a placement strategy of ML models, taking
into account different possibilities of model-variants and how
to forward requests coming from IoT nodes.

The remainder of this paper is organized as follows. Section
II introduces a mathematical model for the MVSP problem.
Section III numerically evaluates the proposed model. We
conclude the paper in IV.

II. SYSTEM MODEL

A. Reference Edge Computing Network Model

In order to analyze MVSP problem in edge computing net-
work we define a system model which will consider inference
latency of different model-variant with shared and unshared
access to GPUs, node communication latency and utilization
cost. The considered system consists of NI IoT nodes, e.g.
smart phone, security camera and smart car cameras, and NE

edge nodes, e.g. access points. Let NI = {1, ..., NI} and
NE = {1, ..., NE} denote the set of indexes of IoT nodes and
edge nodes, respectively. Edge nodes are able to host various
ML applications designated to serve the inference requests

ar
X

iv
:2

00
1.

06
90

1v
1

 [
cs

.N
I]

 1
9

Ja
n

20
20

E1
6 6

E2
5 5

E3
6 6

E4
7 7

E5
7 7

I1 I2 I3 I4 I5 I6 I7 I8 I9
Inference request on model
Inference request on model

Inference request on model
Instance of variant 5 of model 5

 : mobilenet_v1
 : inception_v2
 : inception_v4

Loaded models

I10

Fig. 2: An illustrative example of DNN application placement problem and assignment of inference request in edge nodes

coming from IoT nodes. Every edge node e ∈ NE has a
computing unit specific for inference serving tasks e.g. CPU,
GPU and TPU as well as memory capacity Ce. We assume
that we have M different ML models that can be used for
different tasks such as face recognition and object detection.
Each ML model m can have Vm variants with different sizes
and inference latencies per request and can be deployed via
a VM or a container. We denote by M = {1, ...,M} the
set of ML models and Vm = {1, ..., Vm} the set of variants
of model m. Each model variant (m, v) has a minimum
memory requirement Rmv to be loaded and can process at
most Loadmv with a stable performance. Each IoT node i can
define its own latency requirement Lmaxim for each infered
model m as well as the number of inference requests rim. The
notations used in this paper are summarized in Table I. We
introduce a binary variable xiemv to indicate the forwarding
decision of requests of model-variant (m, v) from IoT node
i ∈ NI to edge node e ∈ NE . The placement decision of
model-variant (m, v) in an edge node e is defined by an
integer variable nemv , which indicates the number of deployed
instances.
Figure 2 shows an illustrative example of a network of 10
IoT nodes (I1, ..., I10) and 5 edge nodes (E1, ..., E5) for
the above described system. In this example, each edge node
stores the 3 ML models and can instantiate them during
loading various model-variants by changing the batch size
parameter, which affects the instance size and throughput. The
figure shows how from this set of 3 models, the optimally
selected model-variants would be placed in edge nodes after
the placement decisions have been made, along with served
inference requests. For example, after placement edge node
E1 has two loaded models, inception v2 and inception v4 and
five served inference requests, four for inception v2 and one
for inception v4. Serving of inference requests is achieved by
assigning them to the appropriate edge node by considering
the latency requirements, capacity and the cost of using
servers. We assume that each IoT node consumes these 3
different ML models with different request rates.

B. Latency Model
We consider two types of latencies: communication latency

between IoT and edge nodes, and inference latency of model-
variants in edge nodes. We denote by CLie the communica-

tion latency between IoT node i and edge node e. The in-
ference latency of a model-variant (m, v) running exclusively
on edge node e is denoted by Le

mv . We define ILe
mv as the

inference latency of a model-variant (m, v) running on edge
node e. For mathematical model of this latency we include
the effects that sharing with other model-variants can have,
as well as observing the case with unshared access to GPU.
With that in mind, we assume in our formulation that an edge
node can be shared by at most K model-variants. The average
latency per request is given by:

L =
1∑

i∈NI

∑
m∈M rim∑

i∈NI

∑
e∈NE

∑
m∈M

∑
v∈Vm

rim(CLe
i + ILe

mv)x
ie
mv

(1)

The communication latency between node i ∈ NI and node
e ∈ NE is considered as the sum of the delay on each link
in the shortest path in both directions (sending request and
receiving response). The delay dl on each link l is assumed
to have a random value with an average µ, including all
possible existing delays in the link i.e. transmission, queuing,
propoagation and processing. We denote by Pie the set of
links in the shortest path between node i and e.

CLe
i =

∑
l∈Pie

dl (2)

We model the inference latency of a model-variant (m, v)
running on edge node e ∈ NE , such that: the inference
latency of a model-variant increases linearly in terms of
the latency of co-located model-variants. A discussion
on resource sharing is provided in subsection II-G. The
expression of inference latency is given by:

ILe
mv =Le

mv + αmvL
e
mv(n

e
mv − 1)

+
∑

m′∈M

∑
v′∈Vm

v′ 6=v

αm′v′Le
m′v′nem′v′ (3)

where the inference latency is the sum of the inference
latency of a model-variant running exclusively on an edge
node (Le

mv), the additional latency created by replication

and the additional latency created by co-locating a different
model on the same node.

IoT nodes (users) are assumed to express their latency
requirements for the inference of a model m ∈ M with a
latency requirement constraint given by:∑

v∈Vm

(CLe
i + ILe

mv)x
ie
mv ≤ Lmaxim

∀i ∈ NI , ∀e ∈ NE , ∀m ∈M
(4)

This constraint assumes that the round trip time (RTT) cannot
exceed a maximum value of latency given by the user as a
requirement Lmaxim. In our case, RTT is the sum of the
communication delay (cumulative delay among the path) and
the processing delay of inference request in the edge node.

C. Utilization Cost Model

The utilization cost model is an abstract formulation of
all the costs induced from the utilization of edge resources,
assuming that such a cost would increase with the increase
of resource utilization. As an example, the utilization cost
can represent the power consumption and energy efficiency
measurements in a unity of power (Watt), considering differ-
ent hardware components such as CPU, GPU, memory, and
I/O. [6] shows some inference benchmarks of several DNN
model-variant using Jetson AGX Xavier, Nvidia GPU.

For the sake of generality, we define a continuous variable
ze denoting the utilization cost of a node e ∈ NE . The average
utilization cost of all edge nodes is given as:

C =
1

NE

∑
e∈NE

ze (5)

The cost of every edge node e is related to its memory
utilization ue. Similarly to [7], the utilization cost follows an
exponential function φ(.) of the utilization. We denote by Y a
set of linear functions tangent to φ(.). Using the set of linear
functions Y , we approximate the utilization cost as follows:

φ(x) = max
y∈Y

y(x),∀x ∈ R (6)

The following constraints insure that the variable ze gets a
value approximately equal to φ(ue).

ze ≥ y(ue),∀e ∈ NE , ∀y ∈ Y (7)

ue =
1

Ce

∑
m∈M

∑
v∈Vm

Rmvn
e
mv ≤ 1, ∀e ∈ NE (8)

Constraint (8) shows the definition of an edge node utilization
ue, as the sum of utilization of all possible model-variants mv
i.e. in terms of required memory per loaded model. Then we
divide the obtained sum by the memory capacity of a node
(mainly GPU memory).

D. Loading and Scaling Model

A model-variant can be loaded in a specific node to
serve requests coming from users (IoT nodes). When the
requests load increases the deployed model-variant may not

be able to serve users. Considering this scenario, the system
may replicate the model instance on top of a new VM or
container which scale up the throughput (based on container
technologies) or use a different model-variant with a bigger
batch size (i.e has higher fps).
The following constraints can insure that the load on a specific
model variant on a specific node cannot exceed the maximum
load Loadmv . Moreover, by conserving the maximum load,
this constraint can scale-up the number of model-variant
replicas (called variant replication in [5]), or choose to use
another model variant that has less inference latency (called
variant upgrading in [5]) regarding the minimization of the
average latency (eq. 1).∑
i∈NI

rimx
ie
mv ≤ Loadmvn

e
mv, ∀e ∈ NE ,∀m ∈M,∀v ∈ Vm

(9)
The following constraints assure that the number of model-
variant instances is bigger than 1 only if at least one node is
sending inference requests.
nemv ≥ xiemv ∀i ∈ NI ,∀e ∈ NE ,∀m ∈M,∀v ∈ Vm (10)

The number of instances shared by a node can be at most K:
nemv ≤ K ∀e ∈ NE ,∀m ∈M,∀v ∈ Vm (11)

The memory capacity constraints can be defined as follows:∑
m∈M

∑
v∈Vm

Rmvn
e
mv ≤ Ce, ∀e ∈ NE (12)

E. Problem Formulation

The Model Variant Selection and Placement (MVSP) prob-
lem aims to minimize both the average latency per request
(eq. 1) and the average utilization cost of edge nodes (eq. 5):

P : minαL+ (1− α)C

s.t.
∑
v∈Vm

∑
e∈NE

xiemv = 1, ∀i ∈ NI , ∀m ∈M

Constraints: (4), (7), (8), (9), (10), (11), (12)

(13)

where α denotes weight of the average latency in the objective
function. The first constraint in the problem (13) insures that
a request from a specific IoT node can be processed only
by one edge node. Constraint (4) assures that RTT cannot
exceed the maximum tolerated latency. Constraint (7) and (8)
are used to compute utilization cost per edge node. Constraint
(9) insures that the load assigned to a specific model-variant
deployed in a specific edge node does not exceed its maximum
processing capacity. Constraints (10) and (11) defines the
values of binary and integer variables used in the model.
Constraint (12) assures the satisfaction of memory capacity
per edge node.

F. Complexity Analysis

Theorem 1. MVSP problem is NP-hard.

Proof. MVSP is a mixed integer program with quadratic
terms in the objective and in the constraints which is complex
to solve. The quadratic terms can be linearized using standard
linearization techniques presented in [8] to obtain a solvable
MILP. MVSP is NP-hard because it combines two NP-hard

problems which are the model-variant allocation problem
and the inference assignment problem. The model-variant
allocation problem can be obtained by a model relaxation
which minimizes the cost under the capacity constraint (12).
The problem is equivalent to a two-dimensional bin-packing
problem [9], where edge nodes are the bins and the DNN
model-variants are the objects to pack. The inference assign-
ment problem can be obtained by relaxing the model P :
we keep the constraint (9), remove the variables nemv , and
minimize the average latency. The problem is equivalent to the
Generalized Assignment Problem, which is NP-hard [10].

TABLE I: Notations

Sets
NI Set of IoT nodes
NE Set of Edge nodes
M Set of models
Vm Set of variants of model m,m ∈M .

Parameters
ILe

mv Inference Latency of a request on variant v of model
m in node e

Pie The set of links in the shortest path between the node
i and e

CLie Communication Latency from node i to node e
αmv Interference Coefficient of variant v of model m co-

located with other model-variants.
rim request rate from node i on model m

Loadmv Maximum load on model variant mv
Lmaxim Inference Latency requirement of requests on model

m from node i
Rmv Memory required for loading the variant v of model

m
Ce Memory capacity of node e

Decision Variables

xiemv =

 1, if variant v of model m is located in node
e and serving requests from node i

0, otherwise
ne
mv ∈ N, Number of deployed instances of model variant

mv in node e
ze ∈ R+, Utilization cost of node e
K Maximum number of model-variants per edge node
α Weight of the average latency in the objective func-

tion

G. Discussion on Resource Sharing

For inference serving systems which deploy ML models,
devices like GPU, TPU, dedicated accelerators are used due
to their high performances and as of now most of them work
exclusively for one ML model at a time [5]. In the literature,
recent works have been proposed. Google Research has
adapted DNN inference to run on top of mobile GPU [11].
Similarly, Amazon Web Services proposed a solution to
run inference models on integrated GPUs at the edge [12].
But for this kind of applications, besides running inference
models on GPU accelerators, it is necessary to consider GPU
sharing as well, in order to allocate resources efficiently,
opening another area of research. This approach is set to
improve on the low utilization and scaling performances
of unshared access to a GPU. That idea of GPU sharing
can be promising as seen in [13], where authors studied

the performance of temporal and spacial GPU sharing and
[14], which presented a GPU cluster manager enabling GPU
sharing for DL jobs.

The resource sharing such as previously mentioned GPU
sharing impacts the inference analysis. The resource allo-
cation required to deploy ML algorithms is complex task,
especially in edge computing. To this end, the emerging new
container-based lightweight virtualization technologies allow
for separating the model instances that would run in parallel
in the same machine. In general this means that resource
management systems can scale-up and scale-down allocated
resources based on the load variation using these new vir-
tualization technologies. How to effectively share resources
across various ML models is an open issues, not only in the
context of scalability but also due to the additional latency in
ML Inference. As an example, studying the impact of GPU
sharing on the performance of ML models is highly important
especially on how to scale-up and scale-down resources and
how to choose the best model-variant. Due to the complexity
of the GPU analysis, which requires a detailed study of
numerous existing benchmarks with different ML models,
different batch sizes, and GPU memory limitations for our
application interference model, in this paper we only use
a simplified analysis of the effects that replication and co-
locating of model-variant can have on the inference latency.

To this end, we propose one scenario for calculating the
inference latency due to resource sharing. We assume parallel
usage of hardware in terms of resource sharing. This approach
still remains unexplored in edge computing. For model sim-
plicity, we consider that the inference latency of a model-
variant increases linearly in terms of the latency of co-located
model-variants.

Lmv2,...,mvK
mv1 = Lmv1 +

K∑
k=2

αkLmvk (14)

where Lmv2,...,mvK
mv1 is the inference latency of model-

variant mv1 in presence of mv2,...,mvK and Lmv1, Lmv2 are
the inference latency of mv1 and mvk running exclusively in
the device, respectively. αk is a coefficient called interference
coefficient of model variant mv1 in presence of model variant
mvk. This coefficient is introduced to estimate the latency of
co-located models in terms of the latency of models running
exclusively in the hardware.

III. NUMERICAL ANALYSIS

In this section, we evaluate our optimization model using
two problem instances P1 and P2, based on MANIAC mobile
ad hoc network. Table II shows the topology of each studied
problem. For each problem, we choose the DNN models
randomly from a pre-defined list. The communication latency
is obtained from [15], which was estimated to have a random
value with an average 12.23 ms per link. The inference
latency of each model-variant was measured on a GPU
GTX 1050 Ti using tensorflow framework. As described in

TABLE II: Topologies
Problem NI NE M Vm
P1 10 5 3 8
P2 11 4 4 8

TABLE III: Average latency and cost for K=2 co-located
model-variants

E(r) = 5.5 E(r) = 22 E(r) = 33
Latency C L C L C L
P1 (α = 0.1, αmv = 0.1, Ce = 8, K = 2)

0.055 17.66 0.083 18.65 0.112 37.10
P2 (α = 0.1, αmv = 0.1, Ce = 8, K = 2)

0.051 13.38 0.051 13.43 0.06 14.10

subsection II-G we consider the case in which the inference
latency increases linearly in terms of the latency of co-located
model-variants.

We set weight α equal to 0.1, node memory capacity
Ce = 0.1, ∀e ∈ NE and interference coefficient αmv =
0.1, ∀m ∈ M, ∀v ∈ Vm. We test our optimization
model using different request rates, which correspond to
the average of requests per node (e.g E(r) = 5.5 where
r denotes the random variable of request rates). Table III
shows the optimization results of latency and cost for two
problems with assumed GPU sharing and K=2 co-located
model-variants. By modifying parameters reported in this
table we want to observe the response of the analysed network
in terms of latency, cost and utilization. This includes latency
measurements for different number of co-locations, as well
as measuring the inference load impact on latency, cost and
utlization, reported in following subsections.

A. Impact of the number of co-location

In our model, we set the maximum number of co-located
DNN model-variants K (K = 1 means that no GPU sharing
is allowed). We set the configuration parameters similar to
the previous experiment of P1, and we vary the number of
co-location K from 1 to 4. Figure 3 shows that the average
latency decreases with an increase of K until it reaches a
maximum value. For our use case, the studied network is
small, which allows the optimization to converge when K
is equal to 4. Increasing the K value in this network does
not further improve the results, but would be interesting to
test in a larger network. For low load increasing model co-
location decreases the average latency by 33% of millisecond-
scale per request, and for high load, by 21%. This result
proves that GPU sharing can improve the average latency of
inference requests. Decreasing the inference latency by opti-
mally managing the DNN model placement is an interesting
result because it allows the system to satisfy latency-critical
applications like augmented reality and online games.

In this paper we used a simplified analysis of the effects
that replication and co-locating of model-variant can have on
the inference latency. This will be extended in future work to
include different scenarios of how the inference latency could
potentially behave as a result of resource sharing.

10 20 30 40
Average Load per node

16

18

20

22

24

26

28

30

Av
er

ag
e

La
te

nc
y

(m
s)

K=1
K=2
K=3
K=4

Fig. 3: Impact of the number of co-location on latency

5 10 15 20 25 30
Average Load per node

18

20

22

24

26

Av
er

ag
e

La
te

nc
y

(m
s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Avg. Cost
Avg. Utilization

Fig. 4: Impact of inference request load on latency and cost
in MANIAC network.

B. Impact of Inference Load

We set the configuration parameters similar to the experi-
ment of P1 in III, Ce = 5, and we vary the average load per
node. Figure 4 shows that the average latency varies slightly
for low loads while the cost is linearly increasing: when
the average load per node increases from 5.5 to 22 (300%
increase), the average latency increases from 18 ms to 19 ms
(5.5% increase), however the cost increases from 0.05 to 0.20
(300% increase), and the utilization from 38% to 63% (65%
increase). This result means that the optimization tends to
keep the allocation decision of DNN models while upgrading
its variant type to bigger ones, which have higher throughput
and higher memory size. Then, when the load is high, the
average latency starts to sharply increase: when the average
load per node increases from 22 to 33 (50% increase), the
average latency increases from 19 ms to 27 ms (42% increase),
the cost increases from 0.2 to 0.4 (100% increase), and the
utilization from 63% to 76% (20% increase). These results
mean that the optimization tends to satisfy inference requests
by allocating new model-variants in distant edge nodes that
have enough capacity to host the instances.

C. Trade-off between the Average Latency and Cost Function

We set the configuration parameters similar to the previous
experiment, setting the average request load to 27.5, and

0.0 0.1 0.2 0.3 0.4
22

24

26

28

30
Av

er
ag

e
La

te
nc

y
(m

s)

0.3

0.4

0.5

0.6

0.7

0.8

Avg. Cost
Avg. Utilization

Fig. 5: Trade-off between the latency and cost in MANIAC
network.

we alter the weight of the latency and cost in the objective
function to evaluate the trade-off between the two objectives.
Figure 5 shows the opposite behavior of the average latency
and the average utilization cost. When we consider only the
cost (α = 0), the optimization tends to allocate the least
possible number of instances of each model that can satisfy
inference requests. This results in a high value of latency due
to the assignment of IoT nodes to distant edge nodes: average
latency is 31 ms, average utilization is 67% and average cost
is 0.23. When we increase the value of α, we consider more
the latency in the decision making. An increase in α cause an
increase in the value of the cost and a reduction in the average
latency, until a maximum value in which the two objectives
converge (α = 0.2). The intersection of Pareto optimal curves,
i.e. curves of the two goals: average latency and average cost,
happens when α is equal to 0.04 with latency equal to 22.7
ms, cost equal to 0.3 and utilization equal to 70%. Setting the
configuration at the intersection point of goals, decreases the
cost by 40% compared to a configuration that set a slightly
higher value of α. It is worth it to mention that we show the
average utilization curve in the figure because it represents a
significant metric while it cannot replace the average cost as
the intersection between goals is different than the intersection
between latency and utilization. The optimization tends to
allocate multiple instances from the same model on different
edge nodes (possibly with different variant types in each edge
node depending on the possible capacity).

IV. CONCLUSION

In this paper, we studied the DNN Model Variant Selection
and Placement (MVSP) in edge computing networks. A math-
ematical model was proposed to formulate the problem con-
sidering the inference latency of different model-variants, the
communication latency between nodes, and the utilization cost
of edge computing nodes (resources). Also, we considered the
effects of hardware sharing on inference latency regarding
GPU edge computing nodes shared between different model-
variants. We studied the placement results of the optimization
and its effect on the average latency and cost. We showed that
GPU sharing is a valuable approach to handle the increase

of inference request rate. Results show that: for low load
increasing model co-location decreases the average latency
by 33% of millisecond-scale per request, and for high load,
by 21%. We plan to further work on extending our model to
consider more GPU sharing scenarios, and analyze parameters
like multiple frameworks, and multiple hardware devices, as
well as implementing heuristic solutions.

REFERENCES

[1] Y. Han, X. Wang, V. C. M. Leung, D. Niyato, X. Yan, and
X. Chen, “Convergence of edge computing and deep learning: A
comprehensive survey,” CoRR, vol. abs/1907.08349, 2019. [Online].
Available: http://arxiv.org/abs/1907.08349

[2] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning
at facebook: Understanding inference at the edge,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2019, pp. 331–344.

[3] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-
scale dnn processor for real-time ai,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), June 2018,
pp. 1–14.

[4] Ramneek, S. Cha, S. H. Jeon, Y. J. Jeong, J. M. Kim, S. Jung, and
S. Pack, “Boosting edge computing performance through heterogeneous
manycore systems,” in 2018 International Conference on Information
and Communication Technology Convergence (ICTC), Oct 2018, pp.
922–924.

[5] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “Infaas: Managed
& model-less inference serving,” arXiv preprint arXiv:1905.13348,
2019.

[6] “Jetson agx xavier: Deep learning inference
benchmarks,” https://developer.nvidia.com/embedded/
jetson-agx-xavier-dl-inference-benchmarks, accessed: 2020-01-15.

[7] F. Carpio, A. Jukan, and R. Pries, “Balancing the migration of virtual
network functions with replications in data centers,” in NOMS 2018-
2018 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2018, pp. 1–8.

[8] F. Glover and E. Woolsey, “Converting the 0-1 polynomial programming
problem to a 0-1 linear program,” Operations research, vol. 22, no. 1,
pp. 180–182, 1974.

[9] D. Pisinger and M. Sigurd, “Using decomposition techniques and
constraint programming for solving the two-dimensional bin-packing
problem,” INFORMS Journal on Computing, vol. 19, no. 1, pp. 36–51,
2007.

[10] M. Yagiura and T. Ibaraki, “The generalized assignment problem
and its generalizations,” St. Marys College of Maryland, St. Marys
City, MD, USA, Tech. Rep.[Online]. Available: http://faculty. smcm.
edu/acjamieson/f12/GAP. pdf.

[11] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi,
R. Sarokin, A. Kulik, and M. Grundmann, “On-device neural net
inference with mobile gpus,” arXiv preprint arXiv:1907.01989, 2019.

[12] L. Wang, Z. Chen, Y. Liu, Y. Wang, L. Zheng, M. Li, and Y. Wang,
“A unified optimization approach for cnn model inference on integrated
gpus,” arXiv preprint arXiv:1907.02154, 2019.

[13] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,
J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” arXiv preprint arXiv:1901.00041, 2018.

[14] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A {GPU} cluster manager for distributed deep
learning,” in 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), 2019, pp. 485–500.

[15] Q. Qin, K. Poularakis, G. Iosifidis, S. Kompella, and L. Tassiulas, “Sdn
controller placement with delay-overhead balancing in wireless edge
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1446–1459, 2018.

http://arxiv.org/abs/1907.08349
https://developer.nvidia.com/embedded/jetson-agx-xavier-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-agx-xavier-dl-inference-benchmarks

	I Introduction
	II System Model
	II-A Reference Edge Computing Network Model
	II-B Latency Model
	II-C Utilization Cost Model
	II-D Loading and Scaling Model
	II-E Problem Formulation
	II-F Complexity Analysis
	II-G Discussion on Resource Sharing

	III Numerical Analysis
	III-A Impact of the number of co-location
	III-B Impact of Inference Load
	III-C Trade-off between the Average Latency and Cost Function

	IV Conclusion
	References

