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Abstract—In this paper, we consider the problem of mini-
mizing the transmission completion time in energy harvesting
devices on time-varying channels with a reinforcement learning
approach. Because of the randomness of energy arrival and
fading channel in wireless communications, a reinforcement
learning algorithm often converges to suboptimal points with
a degraded performance. To solve this problem, we first prove
that the expected discounted reward sum in the environment is an
increasing function of negative time, amount of data sent, channel
gain, harvested energy, and remaining battery. We leverage this
proof to construct a partially monotonic network that efficiently
approximates the optimal action-value function for learning. Ex-
perimental results show that our approach with the exploitation
of the partial monotonicity of the desired function achieves better
performance than existing power allocation policies. Further
experiments show that the performance of our learning-based
approach is close to the theoretical upper bound over rapidly
time-varying channels.

Index Terms—energy harvesting communications, transmission
completion time minimization, reinforcement learning.

I. INTRODUCTION

Transmit power allocation to achieve energy efficiency

and low latency is essential for green communication net-

works. In particular, transmission completion time minimiza-

tion (TCTM) has become one of the essential requirements

of the emerging Internet of Things (IoT) and sensor net-

works. However, the devices for the networks with an energy-

harvesting technology cannot employ the conventional power

allocation schemes because there is no guarantee that the same

amount of energy will be supplied continuously. Moreover,

due to the randomness of the channel state in time-varying

channels, it is often difficult to find an optimal power allo-

cation policy in an analytical form. In this paper, to address

the realistic constraints of green wireless communications, we

deal with the TCTM problem in time-varying channels with

an energy-harvesting constraint.

Power allocation problems can be categorized according to

the type of available information the transmitter can exploit for

establishing its policy. The first is the offline case, a scenario in

which the transmitter knows about all future energy arrivals or

channel state transitions. In [1], the optimal policy for a single

user of a TCTM problem in an offline scenario according to

packet preparation has been studied. Similar to TCTM, delay

minimization problems, which minimize the interval between

the packet arrival and transmission times, were addressed with

broadcast channels and infinite-sized battery in recent works

[2]. The authors of paper [3] solved the optimal policy of

TCTM in the fading channel through the directional water-

filling approach. In [4], the fading channel was studied with the

energy harvesting constraint, and the problem of minimizing

the energy required for packet transmission was considered.

In [5], the TCTM for the uplink transmissions with multiple

nodes was considered. In [6], the problem of deciding the

time of harvesting energy and delivering data with a specific

transmission rate for TCTM was studied. A non-orthogonal

multiple-access environment was considered with the mini-

mization of the offloading delay in [7].

If the transmitter has only the casual information on the

energy arrival or channel states, it is classified as an online

scenario. An online policy for time-invariant channels was

provided with a performance bound of the policy in [8]. The

authors of [6] provided the online solution running on the

wireless power transmission network with separate charging

and transmission phases. In this paper, we assume the online

scenario and consider the time-varying channels as well as the

randomness of the energy arrivals.

We formulate a TCTM problem into a Markov decision

process (MDP) problem. This follows from the fact that the

MDP problem with a small number of states can be solved by

tabular-based reinforcement learning (RL) methods [9], but

the methods take longer to learn as the number of states

increases due to the curse of dimensions. In light of this,

RL approach through function approximators, especially the

value-based method, is applied to efficiently solve this prob-

lem. In particular, as the strong capability of neural networks

has been proven, many RL algorithms have shown improved

performance using neural networks as function approximators

[10]–[12].

However, using such a capable neural network indiscrim-

inately will make the function approximator overly complex

for approximating the desired function, thereby inhibiting the

learning process [13]. To solve this problem, we prove that the
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Fig. 1. An energy harvesting communication system in a time-varying
channel.

optimal action-value function is a partially and monotonically

increasing function to avoid a heuristic network construction,

and provide a mathematical basis for function approximator

design.

Our contributions to solving the problems of network

construction for the function approximation and TCTM are

summarized as follows:

• To reflect the realistic wireless communications, we pro-

vide an online policy by interpreting the TCTM problem

as a reinforcement learning problem considering time-

varying channels with an energy-harvesting constraint.

• We prove that the action-value function widely used in

reinforcement learning problems is a partially monotonic

function that increases over negative time, transmitted

data, channel gain, harvested energy, and remaining bat-

tery in the TCTM problem. Based on the proof, we

build a partially and monotonically increasing network

with respect to its input variables by adopting the lattice

network.

• Numerical results show that the performance of our learn-

ing approach outperforms several existing approaches and

achieves low transmission delay which is close to that of

the upper bound of the online approaches.

II. SYSTEM MODEL

An energy harvesting communication system is considered

with a time-varying channel as shown in Fig. 1. An AWGN

fading channel is assumed where (the received signal at the

receiver is) Y =
√
HX +Z, X is the transmitted signal, and

Z is a Gaussian noise with power density N0. It is assumed

that the transmitter transmits a signal first when a time slot

begins and then harvests energy. The harvested energy is stored

in the finite-sized rechargeable battery of the transmitter. The

harvested energy at time slot i is denoted by ehi which is

independent and identically distributed (i.i.d.) for all i ≥ 0.

The harvested energy is used only for the data transmission.

The harvested energy ehi (≤ ehmax) ∈ E and the amount of

energy in the rechargeable battery bi(≤ bmax) ∈ B are discrete

values in bounded discrete spaces E and B, respectively. The

finite size of the battery, maxB = bmax, is assumed. Note that

Hi ∈ H represents the channel gain at time slot i, which is

i.i.d. for all i ≥ 0. H is discrete space and the transmitter has

the channel state information (CSI) on Hi at time slot i.

The Shannon’s capacity for Gaussian noise channels is given

by

D(H, p) = WTt log(1 +
Hp

WN0
) (1)

where W is the bandwidth the transmitter uses, H is the

channel gain, and p is the transmission power during the trans-

mission time Tt. We write a negative time j (= −i for i <
−rb) ∈ J and i is increased by 1 every time slot. If i ≥ −rb,

j = rb. The remaining battery determines the action space

P (s) ⊂ [0, b/Tt] every time slot and the transmitter uses power

p ∈ P (s) based on the state s consists of five components:

s = (j, d,H, eh, b). pi is the transmission power at time slot

i. In addition, the amount of data sent to the receiver by the

time slot i is denoted by d ∈ D. J and D are discrete spaces

and the state space is S = J × D ×H× E × B. The reward

function r can be expressed as

r(s, p)

{
= 1 for j − rb > 0, d+D(H, p) ≥ do

= 0 otherwise,
(2)

where d0 is the total size of the desired data packet that the

transmitter want to send to the receiver and (rb < 0) is the

baseline performance which is determined before learning.

This reward function r indicates that the faster the transmitter

completes the transmission than the baseline performance, the

higher the reward. The state transition probability is denoted

ps(si+1|si, pi) which means the the probability of moving

from state si to si+1 with performing the action pi.
Our goal is to maximize the discounted reward sum by

allocating power pi every time slot with the energy constraint

as

maximize
{pi}∞i=0

E

[
∞∑
i=0

γir(si, pi)|s0
]

subject to bi+1 = m(bi, pi, e
h
i ),

(3)

where γ ∈ (0, 1) is the discount factor. Function m(b, p, eh) =
min

{
b− Ttp+ eh, bmax

}
indicates the causality of the

rechargeable battery. When the transmitter uses power pi
at time slot i, the remaining battery bi+1 is decreased by

Ttpi from bi then increases by the harvested energy ehi . The

maximum power in the remaining battery cannot exceed the

maximum capacity of the battery, bmax.

III. VALUE FUNCTION ANALYSIS FOR TRANSMISSION

COMPLETION TIME MINIMIZATION

In this section, we prove that the optimal value function,

which takes a five-element state as an input, is an increasing

function for each element in the system model. The increasing

property demonstrated in this section are the basis for our

network construction for RL.

As the state space S in the system model is countable

and discrete, and the action space A is finite and countable,

there exists an optimal stationary policy π∗(s) that maximizes

the discounted reward sum [14]. Let us denote the stationary

optimal power allocation policy as π∗ that maximize the

objective function in (3). The optimal value function V ∗ can be



obtained through the optimal policy that satisfies the Bellman

optimality equation [14] which is given as

V ∗(s) = max
p∈P (s)

{
r(s, p) + γ

∑
s̄

ps(s̄|s, p)V ∗(s̄)
}
, (4)

where notation ·̄ means the next timeslot value, i.e., s̄i = si+1.

Time slot notations (i) of all variables are omitted in this

section. The stationary policy π∗ also satisfies the Bellman

optimality equation which is given as

π∗(s) = argmax
p∈P (s)

{
r(s, p) + γ

∑
s̄

ps(s̄|s, p)V ∗(s̄)
}
. (5)

As a consequence, solving the optimization problem (3) is

equivalent to finding the optimal value function V ∗ which

satisfies (4) in our system dynamics. The value iteration is

well known algorithm that converges to the optimal value

function V ∗ by the contraction dynamic operator, starting with

any initial function with discrete action and state spaces and

bounded reward function [14]. The update method of the value

iteration can be obtained by repeating

Vn+1(s) = max
p∈P (s)

{
r(s, p) + γ

∑
s̄

ps(s̄|s, p)Vn(s̄)
}
. (6)

Note that, if n −→ ∞, then Vn −→ V ∗. Repeating (6) can be

impractical for large state and action spaces since it requires

to compute (6) for all s ∈ S. Due to the impracticability, we

use the gradient-based method to estimate the optimal value

function. However, we exploit the value iteration to extract

some features of the optimal value function, which is useful

for building function approximators. By using the convergence

property of the value iteration which is widely used [15]–[17],

the following lemmas can be proved.

Lemma 1: The optimal value function V ∗(j, d,H, eh, b) is

increasing in j for any given d,H, eh, and b.
Proof: Let us assume that Vn is increasing in j for any

given d,H, eh, and b. As the state transition probability ps
is partially deterministic, we can write (6) in detail using the

value iteration of

Vn+1(j, d,H, eh, b) = max
p∈P (s)

{
r(s, p)

+ γEēh,H̄

[
Vn(j̄ − 1, d̄+D(H, p), H̄, ēh,m(b, p, eh))

]}
.

(7)

As j is a negative time, it is decremented by 1 at each time

step and j̄ = j. If j = rb, j̄ − 1 = j. The total amount

of data sent in the next state is increased by D(H, p) and if

d + D(H, p) ≥ do, d̄ + D(H, p) = do, otherwise, d̄ = d.

The remaining battery amount is added or subtracted by the

battery causality. This extension of the value iteration equality

can also be applied to j′ which is greater than j as

Vn+1(j
′, d,H, eh, b) = max

p∈P (s)

{
r(j′, d,H, eh, b, p)

+ γEēh,H̄

[
Vn(j̄

′ − 1, d̄+D(H, p), H̄, ēh,m(b, p, eh))
]}

.

(8)

Let us denote p∗ which is the optimal action for the equation

(7), i.e.,

p∗ = argmax
p

{
r(s, p)

+ γEēh,H̄

[
Vn(j̄ − 1, d̄+D(H, p), H̄, ēh,m(b, p, eh))

]}
.

(9)

The optimal action p′∗ for the state s′ = (j′, d,H, eh, b) in (8)

can be represented as

p′∗ = argmax
p

{
r(s′, p)

+ γEēh,H̄

[
Vn(j̄

′ − 1, d̄+D(H, p), H̄, ēh,m(b, p, eh))
]}

.

(10)

By using (9) and (10), we can get the following

Vn+1(j
′, d,H, eh, b) (11)

= max
p∈P (s)

{
r(j′, d,H, eh, b, p)

+ γEēh,H̄

[
Vn(j̄

′ − 1, d̄+D(H, p), H̄, ēh,m(b, p, eh))
]}

(12)

= r(j′, d,H, eh, b, p′∗)

+ γEēh,H̄

[
Vn(j̄

′ − 1, d̄+D(H, p′∗), H̄, ēh,m(b, p′∗, eh))
]

(13)

≥ r(j′, d,H, eh, b, p∗)

+ γEēh,H̄

[
Vn(j̄

′ − 1, d̄+D(H, p∗), H̄, ēh,m(b, p∗, eh))
]
.

(14)

The equality between (12) and (13) holds by definition of

p′∗. Note that action p′∗ is the optimal action for state s′ =
(j′, d,H, eh, b). As there is no guarantee that p∗ is also the

optimal action for state s′ = (j′, d,H, eh, b), the inequality

between (13) and (14) holds. The reward function r in (2) is

clearly an increasing function of j for given d,H, eh, and b.
Consequently, we have

r(j′, d,H, eh, b, p∗)

+ γEēh,H̄

[
Vn(j̄

′ − 1, d̄+D(H, p∗), H̄, ēh,m(b, p∗, eh))
]

(15)

≥ r(j, d,H, eh, b, p∗)

+ γEēh,H̄

[
Vn(j̄ − 1, d̄+D(H, p∗), H̄, ēh,m(b, p∗, eh))

]
(16)

= Vn+1(j, d,H, eh, b). (17)

The inequality (15) and (16) holds by the increasing property

of r for j and assumption that Vn is an increasing function for

j. The equality between (16) and (17) holds by definition of

the (n + 1)th value function (7). By mathematical induction,

we can conclude that if Vn is an increasing function for j,

then Vn+1 is still an increasing function for j. Regardless of

the initial value function V0, the value iteration algorithm (6)

make the value function converge to the optimal value function

[14]. V0 can be initialized as an increasing function for j, and

limn−→∞ Vn = V ∗ is still an increasing function for j.



Lemma 2: The optimal value function V ∗(j, d,H, eh, b) is

increasing in d for any given j,H, eh, and b.

Proof: Let us assume that Vn is increasing in d for any

given j,H, eh, and b. By using the definition of p∗ and d′(>
d), we have

Vn+1(j, d
′, H, eh, b) (18)

= max
p∈P (s)

{
r(j, d′, H, eh, b, p)

+ γEēh,H̄

[
Vn(j̄ − 1, d̄′ +D(H, p), H̄, ēh,m(b, p, eh))

]}
(19)

≥ r(j, d′, H, eh, b, p∗)

+ γEēh,H̄

[
Vn(j̄ − 1, d̄′ +D(H, p∗), H̄, ēh,m(b, p∗, eh))

]
(20)

≥ r(s, p∗)

+ γEēh,H̄

[
Vn(j̄ − 1, d̄+D(H, p∗), H̄, ēh,m(b, p∗, eh))

]
= Vn+1(j, d,H, eh, b). (21)

The inequality between equations (18) and (20) holds because

p∗, which is the optimal action for state s = (j, d,H, eh, b)
does not guarantee optimality in state (j, d′, H, eh, b). Note

that r is an increasing function of d for any given j,H, eh, b,
and p. By the increasing properties of r and Vn for d, the

inequality between (20) and (21) is satisfied. The increasing

property of the value function Vn for d does not disappear by

the value iteration. As in Lemma 1, by mathematical induction,

V ∗ is still an increasing function for d.

Since the following lemmas can be proved in the similar

manners as in Lemmas 1 and 2, we omit the proofs.

Lemma 3: The optimal value function V ∗(j, d,H, eh, b) is

increasing in H for any given j, d, eh, and b.

Lemma 4: The optimal value function V ∗(j, d,H, eh, b) is

increasing in b for any given j, d,H , and eh.

Lemma 5: The optimal value function V ∗(j, d,H, eh, b) is

increasing in eh for any given j, d,H , and b.

Finally, we prove that the optimal action-value function,

Q∗(s, p) = r(s, p) + γ
∑

s̄ ps(s̄|s, p)V ∗(s̄), is a partially and

monotonically increasing function for s.

Theorem 1: The optimal action-value function Q∗ is an

increasing function for j, d,H, eh, and b. In other words, the

optimal action-value function is an increasing function of some

of its variables (j, d,H, eh, and b) but not all (p).

Proof: Combining Lemma 1, 2, 3, 4, and 5 proves that

the optimal value function V ∗ is an increasing function for

all variables in the input elements j, d,H, eh, and b. As we

mentioned above, the transition probability is partially deter-

ministic. The optimal action-value function can be expanded

as

Q∗(s, p) = r(s, p)

+ γEēh,H̄

[
V ∗(j̄ − 1, d̄+D(H, p), H̄, ēh,m(b, p, eh))

]
.

(22)

Due to the increasing property of the optimal value function

V ∗, we have

Q∗(s, p) ≤ r(ǰ, ď, Ȟ, ěh, b̌, p)

+ γEēh,H̄

[
V ∗(ˇ̄j − 1, ˇ̄d+D(Ȟ, p), H̄, ēh,m(b̌, p, ěh)

]
.
(23)

where checked variables with ˇ̇ are equal to or greater than

non-checked variables. Consequently, for given p, we have

Q∗(s′, p) ≥ Q∗(s, p) ∀s′, s ∈ S (24)

where sn is nth element of vector s and s′n ≥ sn for all

1 ≤ n ≤ 5.

IV. GRADIENT-BASED Q-LEARNING WITH PARTIALLY

MONOTONIC NETWORK

1) Partially Monotonic Network: We use a lattice network

[18], which is a interpolated multidimensional look-up table,

to reflect a partially and monotonically increasing behavior

of the optimal action-value function we proved in the previ-

ous section. The action value function is represented by the

partially monotonic lattice, which is defined as

Q(s, p) = θTφ(s, p) (25)

where θ is the vector of the lattice parameters and φ(s, p) is the

interpolation function with a 5-spaced linear calibration layer

[18, Sec. 9]. Let us denote the number of vertices in the lattice

network along the dth feature by vd (1 ≤ d ≤ 6). Then the total

number of the vertices in the lattice network is Πdvd. The set

of the lattice parameter θ is Πdvd dimensional vector. Each

lattice parameter in θ corresponds to a vertex in the lattice

network and can be updated. When the lattice network takes

inputs in-between the vertices, the output value is interpolated

with the simplex interpolation method [18]. We build our

partially monotonic lattice network as a single framework for

fast learning and the network is forced monotonicity only for

the j, d,H, eh, and b with a linear transformation layer for

normalization.

2) Gradient-based Q-Learning with function approximator:

Although information is known by the transmitter that the

channel or energy arrival is i.i.d., the exact distributions are

known very rarely. Therefore, we use the Q-learning [9] that

updates the action-value function Q(s, p) to the optimal action-

value function Q∗(s, p) even without the information on the

state transition probability ps. Due to the impracticality of

the traditional action-value function update process, we use

a gradient-based Q-learning techinique. As we mentioned

in the previous subsection IV-1, the lattice network enforce

the monotonicity on its input variables except p. The partial

monotonicity of the lattice network enables robust learning

in the random wireless communication environments, since

the action-value function (the lattice network) have the in-

creasing property of the optimal action-value function from

the beginning of the learning. We build one more lattice

network θ′Tφ′(s, p) called the target network to overcome



the instability of gradient update and adopt the double Q-

learning update technique [19]. The parameters of the lattice

network θTφ(s, p) are updated with the learning rate α by a

gradient descent technique in the direction that minimizes the

loss function L as

L = E[(yi − θTφ(si, pi))
2], (26)

yi = ri + γθ′Tφ′(si+1, argmax
p

θTφ(si+1, p)). (27)

To remove the correlation between the sampled data used to

approximate (26), transition information of each step is stored

in the finite experience replay buffer and then randomly sam-

pled [11]. The parameters in the lattice network are updated

with the following constraint

θTφ(j, d,H, eh, b, p) ≤ θTφ(ǰ, ď, Ȟ, ěh, b̌, p) (28)

due to the partial increasing property of the optimal action-

value function in Theorem 1. In order to take into consid-

Algorithm 1 Partially Monotonic Lattice with Q-Learning

1: Set hyperparameters for partially monotonic lattice net-

work

2: for e = 0, Ne do

3: Get initial state si=0

4: while d0 is not transmitted do

5: Select action pi with the ε-greedy method

6: Apply action pi to environment and get ri with

si+1 (2)

7: Store data (si, pi, ri, si+1) in replay memory

8: Update the parameters in the lattice network in di-

rection of minimizing L with the monotonicity constraint

(28) by using batch sampled from replay memory

9: si ← si+1 and α← α× αd

10: if (d0 is transmitted) then

11: θ′ ← θ, φ′ ← φ
12: End episode

13: end if

14: end while

15: end for

eration the balance between exploration and exploitation, the

learning agent follows the greedy policy

pi = argmaxpθ
Tφ(si, p) (29)

from the evaluation lattice network with probability 1− ε and

takes action randomly from P (si) with probability ε. Since

the transmitter knows Hi, if there is a candidate set of pi
that can complete the packet transmission at time slot i, the

smallest pi value is selected from the set. The learning rate α
is decayed by a factor of αd every step. Algorithm 1 shows the

double Q-learning scheme with the partially monotonic lattice

network.

V. NUMERICAL RESULTS

A. Simulation Environments

The bandwidth is set as W = 1 MHz with N0 = 10−20

W/Hz. Under the Rician fading assumption, H has a mean of

2× 10−13 and a standard deviation of 2× 10−14. The energy

arrival distribution is assumed to be a uniform distribution

from 0 to ehmax, and discretized in units of 5 × 10−7J. The

maximum battery capacity is set as 5× 10−6J, and the packet

size is do = 150 (bits). B and A are discretized in unit of

1× 10−6J.

To measure the general performance of each algorithm,

all algorithms were trained through the 100 training datasets

which are randomly generated. The random episodes were

created under the same state transition probability, and we

also generated the 100 episodes to measure the validation

performance. During the validation phase, the learning agent

does not follow the random exploration with probability ε. We

halt the learning process if there is no validation performance

improvement in 10 episodes with ε < 0.03.

We compare the performance of our proposed method with

other power allocation policies, which are described below.

1) Offline Policy: It is assumed that the battery size is infi-

nite and the transmitter knows all future channel and harvested

energy state transitions. This ideal offline assumption contrasts

with the online scenario where only the causal channel gains

and harvested energy arrivals can be observed. In this ideal

situation, the transmitter optimally uses its energy to minimize

the transmission completion time and the performance is an

upper bound for the various online schemes.

2) Partially Monotonic Lattice with Q-Learning (LQL):

This is the method we propose. We use a partially monotonic

lattice network to reflect the partially and monotonically

increasing tendencies of the optimal action-value function.

The partially monotonic lattice network θ is constructed with

vd = 2 ∀d. We use the Adam optimizer for learning with a

learning rate of 1× 10−3 and a decay αd of 0.99. The batch

of size 64 is made from the replay buffer of size 4,096. All

input variables for the lattice network are normalized. For the

ε-greedy action selection, we set the initial value of ε as 1.0

and multiply it by 0.995 every time slot.

3) Lattice Q-Learning without Partial Monotonicity (LQL-

NC): To observe how large the performance improvement is,

by forcing the network to have partial increasing behaviors,

we test this algorithm that uses the same setting as LQL but

does not have the partially increasing characteristics.

4) Greedy Policy: This policy uses pi = bi/Tt for all i
to achieve the maximum transmission rate at time slot i and

avoid the battery overflow. The average performance of the

greedy policy is considered as the baseline for the problem.

5) Random Policy: The transmitter chooses a transmit

power value randomly from B every time slot i with the

same probability. If the transmit power value selected by the

transmitter is greater than bi/Tt, the value is clipped to bi/Tt.

B. Discussion

In Fig. 2, the average performance of the LQL exceeds that

of other naive online power allocation policies and the LQL-

NC during the learning process. These experimental results

show that the exploitation of the increasing property extracted

from the desired function of the system model enables the



Fig. 2. Transmission completion time according to the episode. All the
algorithms are tested on a randomly generated validation dataset which has
never been used for the training. ehmax = 5e− 7J is assumed.

Fig. 3. Transmission completion time according to the maximum amount of
energy harvested per second.

agent to avoid converging the suboptimal point. In the course

of the learning process, the average performance of the LQL

algorithm does not exceed about 13 time slots to complete the

packet transmission. After 15 learning episodes, the average

performance of the LQL algorithm achieves about 12 time

slots for the packet transmission completion. On the other

hand, the LQL-NC converges to the suboptimal performance

and the greedy policy constitutes the lower bound in this

environment. The performance difference between LQL and

the offline policy is much smaller than that of other naive

algorithms and the offline policy.

Fig. 3 shows the measurement of algorithms’ performance

in different environments for validation. The greater the

amount of energy coming in per unit time, the averages of

transmission completion times for all the algorithms decrease

gradually. In all the tested environments, the performance

of the LQL exceeds that of all the algorithms except the

performance of the offline policy. The greater the amount

of energy that can be collected relative to the amount of

battery, the closer the performances of the learning-based

algorithms are to the performance of the greedy algorithm,

because they consume more power in each step to avoid the

battery overflow. In such an environment, the random policy

performs worse than the greedy policy because the battery

overflow happens due to the randomness.

VI. CONCLUSION

In this paper, we proposed a novel power allocation tech-

nique based on the reinforcement learning method to mini-

mize the transmission completion time for the time-varying

channel in energy harvesting communications. We proved that

the action-value function is a partially increasing function

of negative time, transmitted data, channel gain, harvested

energy, and remaining battery. This proof provided a basis

for constructing the partially monotonic lattice network that is

optimized for the desired action-value function. The gradient-

based Q-learning technique with the optimized lattice network

overcame the severe randomness of the energy harvesting

communications systems and achieved low delay. Through the

performance comparisons, we show that our approach with

the shape constraints for the function approximator according

to the proven system characteristics outperforms the existing

approaches and it is able to achieve performance closer to that

of the offline policy.
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