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Abstract—Natural signals are inherently comprised of two
components, real and imaginary components. Due to recent suc-
cesses and progress in Deep Learning, specifically Convolutional
Neural Networks (CNNs), this field of machine learning has
become extremely popular when handling a wide variety of data,
including natural signals. However, deep learning frameworks
have been developed to deal with exclusively real-valued data
and are unable to compute convolutions for complex-valued data.
In this work, we present a linear combination that enables deep
learning architectures to compute complex convolutions and learn
features across the real and imaginary components of natural
signals. When implemented into existing I/Q modulation classi-
fication architectures, this small change increases classification
accuracy across a range of SNR levels by up to 35%.

Index Terms—Complex Convolution, Deep Learning, I/Q Mod-
ulation

I. INTRODUCTION

Complex numbers are fundamental for signal processing. In

fields such as telecommunications, speech and audio process-

ing, and medical image processing, the data is comprised of

real and imaginary components. For example, in digital com-

munications the real and imaginary components of complex

numbers are the in-phase (I) and quadrature (Q) components

of a signal, representing orthogonal dimensions. Utilizing the

relationship between the real and imaginary parts of a signal,

not simply the structure within the real and imaginary channels

individually, is critical for properly executing convolutions.

Within the fields of signal processing and machine learning,

deep learning has gained a great deal of popularity in recent

years due to remarkable performance on traditional machine

learning tasks [1]–[3]. Deep learning is also being used to

tackle problems in biology [4], [5], transportation [6], [7], and

finance [8], [9]. Deep learning scripting frameworks have been

developed such as TensorFlow [10] and Keras [11] in order

to lower the level of programming expertise needed to deploy

such models. However, the deep learning architectures these

scripting languages create are optimized for real-valued inputs

and cannot execute convolutions for complex-valued data.

Real-valued optimization presents challenges when looking to

apply these deep learning techniques to datasets comprised of

real and imaginary components, such as I/Q modulated data

from a communication system.

In this work we present a methodology for handling com-

plex data as two-columned real arrays combined with real-

valued 2D convolution followed by a linear combination kernel

that enables neural networks to compute complex convolutions

within real-valued deep learning paradigms. Easy to imple-

ment, we show this modification can improve performance

over traditional approaches to complex-valued data by learning

features that account for the relationship between the real

and imaginary components in addition to structure within the

respective channels.

II. CURRENT METHODS FOR HANDLING COMPLEX

NUMBERS IN DEEP LEARNING

There are a few different approaches for performing compu-

tations in the complex domain. Simple ways to handle complex

data streams include keeping only the real values or taking

the magnitudes of the complex numbers. Although simplifying

the dataset, these approaches are detrimental as they discard

important information and structure comprised in the dataset.

In deep learning, specifically Convolutional Neural Networks

(CNN’s) [12], there are a few common approaches to learn

features on multi-channeled data (complex-valued data, RGB

images, etc.)

1. Reduce the input dimension down to one channel via a

1 x 1 convolution, then learn features [13]

2. Learn a set of features per channel

3. Learn one set of features for all channels (i.e. both the I

and Q components as demonstrated in [14])

However, these approaches do not account for relationships

between the channels of the data.

Recent work aiming to allow complex numbers in neural

networks includes [15] where the authors explored the use

of complex values to parameterize real-valued orthogonal

matrices in order to stabilize the training of Recurrent Neural

Networks. They introduce an extension of the ReLU activation

which only effects the absolute value of a complex number

called modReLU. Further, [16] developed another complex-

valued activation function that preserves the phase of a signal

while taking the sigmoid of the magnitude called the com-

plex cardiod. Trabelsi et al. [17] developed Complex Neural

Networks which were comprised of various components to

handle complex values in deep learning paradigms such as
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convolutions, batch normalizations, and activation functions.

The convolutions presented aimed to create complex-valued

representations or weights for a neural network but did not

enable a network to seamlessly compute complex convolutions

on complex-valued data. Additionally, [18], developed Fourier

Convolutional Neural Networks which leverage converting the

inputs into the Fourier domain in order to speed up computa-

tion by using the Hadamard product in place of computing

a convolution. The reduction in computational complexity

enabled larger images to be input into the network as well as

being able learn features over larger kernel sizes, but does not

address the inability to compute a convolution with complex-

valued inputs.

III. DEEP LEARNING FOR MODULATION CLASSIFICATION

Before 2016, works such as [19] and [20] were the latest

developments in the field of modulation classification, before

[14] began to use deep learning for this problem space.

Since [14], [21] performed a thorough exercise varying

methods for radio signal classification. The results show deep

learning architectures such as ResNets [22] significantly out-

perform advanced statistical machine learning methods such as

gradient boosted trees with hand crafted high-order statistical

features. In [23], researchers furthered this work by trying

many different deep learning approaches to classify modu-

lated radio signals and investigated how to best reduce the

training time of the approaches. Deep learning architectures

investigated include their own CNN, DenseNet [24], and Con-

volutional Long Short-term Deep Neural Network (CLDNN)

[25] architectures, as well as hyperparameter tuned versions of

the ResNet and LSTM architectures. Their results indicated

tuned versions of the ResNet and LSTM performed better

at different SNRs. Others [26] tested modern convolutional

arhitectures such as AlexNet [1] and GoogleNet [13] on the

classification of signal constellation plots. Their results show

these deep learning approaches perform significantly better

than traditional cumulant and statistical machine learning

methods.

However, [23] concluded that the use of more sophisticated

architectures compared to that of [14] results in better per-

formance as these approaches use far more parameters and

introduce new non-linear relationships in the learned mapping.

However, it is not clear if their superior performance was

due solely to the increase in parameterization, or because

the approach was able to learn feature representations that

leveraged inherent structure in the data.

The focus of this work is to use simpler convolutional

models, like those in [14], to enhance performance by enabling

the architecture to directly compute complex convolutions.

Future work will investigate more complicated architectures,

alternative activation functions, batch-normalizations, etc.

IV. COMPLEX CONVOLUTION USING 2D REAL

CONVOLUTION

In this section, we detail how to compute a complex convo-

lution within real-valued deep learning frameworks. Consider

a two dimensional I/Q data stream (Zn)
N
n=1. The elements of

Zn are defined by

Zn = In + jQn, In, Qn ∈ R

where In and Qn represent the nth in-phase and quadrature

components of Z and j is the imaginary unit with value equal

to
√−1. I and Q are defined to contain all N elements in the

respective channels.

We introduce another I/Q data stream, h, that contains M
complex filter coefficients,

hm = h′
m + jh′′

m

where h′
m and h′′

m are the mth in-phase and quadrature

components of h. The sequence of coefficients h can also

be called taps (from signal processing parlance), or weights

(from deep learning parlance).

The two dimensional (N × 2) depiction of Z and h are

shown below.

Z =
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...
...

IN QN
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Convolving the signals Z and h in accordance with Deep

Learning convolutions, as a naı̈ve sliding window, yields XDL

which contains three columns as shown in Equations 1 and 2.

XDL =

I1 Q1

I2 Q2
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...
...
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�
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1
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(1)

XDL =
↑ ↑ ↑

I � h′ I � h′′ +Q� h′ Q� h′′

↓ ↓ ↓
(2)

However, the one dimensional complex-valued convolution

between sequences Z and h is Equation 3.

X = (I+jQ)�(h′+jh′′) = (I�h′−Q�h′′)+j(I�h′′+Q�h′)
(3)

This is rewritten into the real/imaginary two column and

shown in 4

X =
↑ ↑

I � h′ −Q� h′′ I � h′′ +Q� h′

↓ ↓
(4)

Comparing Equation 2 with Equation 4, it can be readily seen

that X is the result of a linear combination of the columns of

XDL, shown below.

X = XDL

⎡
⎣

1 0
0 1
−1 0

⎤
⎦



Therefore the operation of the deep learning 2D real-valued

convolution followed by a multiplication with a constant

matrix implements a 1D complex convolution, where the

weights, inputs, and outputs are all in two-column complex

number format.

For higher dimensional inputs, say (ZD
n )Nn=1, where Z ∈

C
D, this linear combination extends to a 3× 2×D matrix.

V. INTEGRATING INTO EXISTING DEEP LEARNING

ARCHITECTURES

Since our proposed modification is a linear combination

operation it does not necessitate extensive changes to existing

convolutional architectures, it simply needs to be placed after

a traditional convolutional layer. For example Fig. 1a is a

Convolutional Neural Network that has been used to classify

modulated I/Q data. Details for this CNN, originally named

’CNN2’ [14], can be seen in Table I.

In Fig. 1b we show the CNN with the addition of the linear

transformation, which we name the ’Complex’ network, with

architecture details in Table II. After zero-padding the input

and performing a standard convolution without an activation

function, the linear transformation changes the tensor with a

dimension size of three, via linear combination, producing an

output such that the I and Q structure is preserved. We under-

stand this may not be the most efficient way to implement this

architectural change, see Table III, but this is due to legacy

code developed in Theano [27]. The linear transformation

increases the strength of the representation learned as it allows

the original I/Q structure to be passed along in the network,

allows for increased filter size to better address the I and Q

components, and learn the relationship between the real and

imaginary components which is not done in [14].

As one would imagine, with larger kernel sizes there are

more parameters to optimize and in turn boost the Complex

network to outperform the CNN2 architecture. In fact, the

Complex architecture has 1.54% more parameters. To address

this difference, we created a modified CNN2 network with

a dense layer having 260 nodes instead of 256, which we

will refer to as CNN2-260. The Complex network has 0.003%

more parameters than the CNN2-260 architecture, which we

deem as equivalent to demonstrate the difference between

simply adding more parameters and being able to compute

a complex convolution. Further details about the architectures

is shown in Table III.

VI. IQ MODULATION CLASSIFICATION TASK

These architectures were trained and tested on the RadioML

2016.10A open source dataset used in [14]. The dataset

consists of 11 modulations (8 digital and 3 analog) at SNR

levels from -20 to 20 dB with 2 dB steps while including

variation in other properties such as center frequency, sample

clock rate, sample clock offset, and initial phase, amongst

other properties [14]. The models were trained to classify

modulation for a given input signal. With a total of 220,000

data samples, the data shuffled, across modulation type and

SNR, and was split into even 50/50 training/testing sets.

VII. RESULTS

The addition of the linear combination increased accuracy at

all SNR levels, Fig. 2(a). Figure 2(b) quantifies the improved

classification accuracy at each SNR.

The greatest performance increases were at SNR levels

lower than -5 dB, with improvements exceeding 30% relative

to the CNN2 and CNN2-260 networks. The overall, average

across all SNR’s, confusion matrices and classification accu-

racies can be found in Fig. 3, the -20 dB SNR confusion

matrices and classification accuracies can be found in Fig.

4, and the 20 dB SNR confusion matrices and classification

accuracies can be found in Fig. 5. Figure 4(c) shows the

complex convolution enables features to be learned that can

classify with an accuracy over 30% greater than random

chance (11.95% versus 9.09%) at -20 dB. In Fig.5 we see

the complex convolutions allowed for improved classification

at high SNR cases as well. When comparing the Complex

network and the CNN2-260 performance in 5 (b) and (c),

we see the Complex network having less off-diagonal noise,

indicating better performance. However, the Complex network

has more errors with differentiating between QAM16 and

QAM64 modulations which is not surprising because these

two modulations have very similar structure.

In Table III we compare the accuracy and the time required

for training. We observe the complex convolutions require

more than four times more computation time compared to

CNN2 methods. As mentioned earlier, our current implemen-

tation, relies on legacy code, which was written in Theano,

and there are likely computational differences to be found.

The training and validation curves are shown in Fig. 6.

The overall accuracy achieved by the Complex network

is much greater than that of the CNN2 and the CNN2-260

networks. This validates the Complex did not perform well

simply because of having more parameters, rather leveraging

the complex structure of the data and learning features that

correlate the real and complex channels. Overall accuracy and

the number parameters for each of the three architectures are

presented in Table III.

VIII. OPEN SOURCE CODE

The GitHub repository where code and in-

formation about the dataset can be found is

github.com/JakobKrzyston/Complex Convolutions/.

CONCLUSION

By implementing a linear combination we enable neural

networks to compute complex convolutions and extract fea-

tures over the real and complex components with respect to

the structure of the data. When implemented into an existing

architecture, overall accuracy increases, especially in low SNR

conditions. Our method outperformed a very similar architec-

ture with nearly the same number of parameters. With this

modification, all operations are done on real-valued arrays, but

are interpreted as complex numbers. The proposed approach

ensures that this complex interpretation is enforced throughout



(a) (b)

Fig. 1. (a) Schematic of the CNN architecture, CNN2 used to classify modulated I/Q signals in [14]. Please see Table I for the architecture details. (b)
Schematic of the Complex architecture, which is CNN2 with modification to compute complex convolutions. For architecture details, see the Table II.

TABLE I
ARCHITECTURE DETAILS OF CNN ARCHITECTURE, USED IN [14], CNN2∗

Layer Type Input Size Output Size Details
Input 1 x 2 x 128 - -
Zero-Padding 1 x 2 x 128 1 x 2 x 130 Padding: 0, 0, 2
Convolution 1 x 2 x 130 256 x 2 x 130 Activation: ReLU, Kernel: 1 x 3, Dropout: 0.5
Convolution 256 x 2 x 130 80 x 1 x 130 Activation: ReLU, Kernel: 2 x 1, Dropout: 0.5
Flatten 80 x 1 x 130 10400 -
Dense 10400 256 ReLU
∗This Architecture has 2,707,547 parameters.

TABLE II
ARCHITECTURE DETAILS OF THE COMPLEX ARCHITECTURE∗

Layer Type Input Size Output Size Details
Input 1 x 2 x 128 - -
Zero-Padding 1 x 2 x 128 1 x 4 x 132 Padding: 0, 2, 4
Convolution 1 x 4 x 132 256 x 3 x 130 Activation: None, Kernel: 2 x 3
Permute 256 x 3 x 130 256 x 130 x 3 -
Linear Transformation 256 x 130 x 3 256 x 130 x 2 -
Permute 256 x 130 x 2 256 x 2 x 130 -
Activation 256 x 2 x 130 256 x 2 x 130 Activation: ReLU
Dropout 256 x 2 x 130 256 x 2 x 130 Dropout = 0.5
Convolution 256 x 2 x 130 80 x 1 x 128 Activation: ReLU, Kernel: 2 x 3, Dropout = 0.5
Flatten 80 x 1 x 128 10240 -
Dense 10240 256 ReLU
Dense 256 11 ReLU
Softmax 11 11 One-Hot Output
∗This Architecture has 2,749,275 parameters.

the processing chain of neural network layers, enabling greater

performance from the network.
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