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Abstract—There exists many resource allocation problems in
the field of wireless communications which can be formulated as
the generalized assignment problems (GAP). GAP is a generic
form of linear sum assignment problem (LSAP) and is more
challenging to solve owing to the presence of both equality and
inequality constraints. We propose a novel deep unsupervised
learning (DUL) approach to solve GAP in a time-efficient manner.
More specifically, we propose a new approach that facilitates
to train a deep neural network (DNN) using a customized loss
function. This customized loss function constitutes the objective
function and penalty terms corresponding to both equality and
inequality constraints. Furthermore, we propose to employ a
Softmax activation function at the output of DNN along with
tensor splitting which simplifies the customized loss function and
guarantees to meet the equality constraint. As a case-study, we
consider a typical user-association problem in a wireless network,
formulate it as GAP, and consequently solve it using our proposed
DUL approach. Numerical results demonstrate that the proposed
DUL approach provides near-optimal results with significantly
lower time-complexity.

Index Terms—Deep neural networks (DNNs), generalized as-
signment problem (GAP), unsupervised learning (UL), user-
association and wireless networks.

I. INTRODUCTION

A variety of resource allocation problems in wireless
communications can be modeled as generalized assignment
problems (GAP), where the aim is to assign n resources to
m agents in an optimum manner. Different from the linear
sum assignment problems (LSAP) with equality constraints,
GAP problems can handle both equality and inequality con-
straints [1]. GAP is a classical NP-hard combinatorial opti-
mization problem and is widely applicable in wireless research
problems, such as computation offloading in edge computing
systems [2], user scheduling with load balancing [3], [4],
sub-channel assignment [5], [6], antenna selection [7], etc.
For instance, in [3], a user association and load balancing
problem was modeled as GAP where inequality constraints
were applied to ensure that each user can be associated to
only one base station (BS) at a time. Furthermore, [5] and [6]
applied GAP to a sub-channel assignment problem in which
the inequality constraint is used to ensure that a sub-channel
can only be assigned to a certain number of users at a time,
alongside that each user can only occupy a certain number
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of sub-channels. In [8]–[10], the authors modeled the user
association problem through GAP, where the constraints are
applied to ensure that the users served by a particular BS are
served in BS clusters of the same size, and each user must be
accepted by at most one BS, respectively.

Most of the existing algorithms applied conventional non-
data driven optimization methods to solve the aforementioned
problems. However, the computational complexity of such
solutions is generally high which hinders the practicality of
these solutions. Furthermore, in emerging 5G/6G wireless
networks, the channel coherence time is much smaller for
higher frequencies (e.g., mm-wave and THz), thus optimiza-
tion needs to be performed quite often. This implies that
a trivial exhaustive search method will be computationally
prohibitive even for moderate size networks. In the sequel,
artificial intelligent (AI)-enabled algorithms can potentially
minimize the time complexity while enhancing the scalability.

Recently, few research works have considered supervised
and reinforcement learning for solving GAP problems, such as
user association problems [3], [11]–[15], channel assignment
problems [16]–[18], etc. Nonetheless, the performance of
supervised learning (SL) rely on the quality of the labels that
are generated via computationally-intensive algorithms. On the
other hand, reinforcement learning (RL) algorithms are more
suitable for problems that are formulated as Markov Decision
Processes (MDPs) and their convergence for constrained op-
timization problems is not guaranteed.

In this paper, we propose a novel deep unsupervised learn-
ing (DUL) approach to provide near optimal results for GAP
problems. Subsequently, there is no need to solve for the
ground truth as there is no labeled data requirements. Gener-
ally, the main challenge for any DUL approach is to implement
the constraints in the DNN architecture. For instance, transmit
power constraint has been handled in [19] and [20] by using
Sigmoid activation function at the output layer. However, as
GAP involves intricate equality and inequality constraints, the
architecture adopted in [19] and [20] is not applicable.

Different from the aforementioned works and in order to
train the DNN through unsupervised learning, we made the
following main contributions in this paper: (i) we provide
a new loss function which consists of an objective func-
tion and penalty terms corresponding to both equality and
inequality constraints, (ii) we show that the loss function
can be simplified by splitting an output layer into multiple
tensors and each tensor is activated by a separate Softmax
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function. This simplified loss function makes sure that the
equality constraint is always satisfied, and (iii) as a case-
study, we consider a typical user-association problem in a
wireless network, formulate it as GAP, and consequently solve
it using our proposed DUL approach. We demonstrate that our
proposed DUL approach has much lower time complexity as
compared to the optimal solution obtained by CVX with a
very high near optimal prediction accuracy.

The remainder of this paper is organized as follows. Math-
ematical representation of GAP is presented in Section II.
Furthermore, the details of our proposed DUL approach are
provided in Section III. Section IV presents the case study of
user association in a wireless network. Numerical examples
and results of the DUL approach are also provided in this
section. Finally, the paper is concluded in Section V.

Notations: Scalars and vectors are denoted by italic and
bold-face lower-case letters, respectively. ReLU(x) , x+ ,
max(x, 0) represents a Rectified Linear Unit activation func-
tion. Moreover, RM×1 denotes the space of M -dimensional
real-valued vector.

II. MATHEMATICAL REPRESENTATION OF GAP

A classical GAP deals with optimal assignment of I items
to J knapsacks such that each item is assigned to only one
knapsack without assigning to any knapsack a weight greater
than its capacity [21]. Mathematically, GAP is formulated as
an optimization problem (P), given by

P : maximize Z ,
∑I
i=1

∑J
j=1 ui,jpi,j ,

subject to,

C1 :

J∑
j=1

ui,j = 1, ∀i ∈ I , {1, 2, ..I},

C2 :

I∑
i=1

wi,jui,j ≤ cj , ∀j ∈ J , {1, 2, ..J},

C3 : ui,j ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , (1)

where cj is the capacity of jth knapsack, pi,j and wi,j
represent profit and weight of ith item, respectively when it is
assigned to the jth knapsack. Moreover, ui,j = 1 if ith item
is assigned to jth knapsack or equal to zero otherwise. It is
evident from eq. (1) that the problem P becomes equivalent to
the LSAP (which is analyzed in [22]) only for a special case
i.e., when cj = 1, wi,j = 1 ∀i ∈ I, j ∈ J and I = J = n.
The LSAP is solved through an optimal Hungarian algorithm,
which has a computational complexity of O

(
n3
)

[21].

III. PROPOSED DEEP UNSUPERVISED LEARNING
APPROACH

Due to the fact that GAP is a generic form of LSAP,
it is more challenging to solve this problem. Moreover, the
DL approach adopted in [22] cannot be directly applied.

Considering this, contrary to [22], we propose a new DNN-
based approach in which a single DNN learns the GAP directly
without a need to generate time-consuming labels i.e., we train
a DNN through unsupervised learning using customized loss
function and tensor splitting. Further details of our approach
are given as follows:

A. Loss Function

Leveraging the analytical expressions for the objective and
constraints functions in eq. (1) and for any given arbitrary
values of cj , wi,j ∀i ∈ I, j ∈ J , we define a customized
loss function that is minimized through DNN. This customized
cost function L is given in (2), shown at the top of next
page, where f denotes a feature vector which is flattened to
contain corresponding pi,j values. It is worth pointing out
here that ui,j in (2) are the values from the output of a
DNN corresponding to θ which denotes the set of trainable
network parameters for DNN. Moreover, F represents a mini-
batch which contains certain number of examples for feature
vectors, where the number of examples is determined by its
size |F|. Furthermore, the terms (

∑I
i=1 ReLU(1−

∑J
j=1 ui,j))

and (
∑J
j=1 ReLU(cj−

∑I
i=1 wi,jui,j)) in (2) are incorporated

in order to tackle the constraints C2 and C3, respectively. In
other words, these two terms are considered as penalty terms
providing an incentive to the DNN meeting the constraints.
Furthermore, λ1 and λ2 are treated as hyper-parameters of
the DNN, which implies that large values of these λ’s can
cause a bias towards meeting the constraints (and neglecting
the objective function) while very small values tend the DNN
to ignore the constraints all together (and bias towards the ob-
jective function). The impact of these λ’s on the performance
of DNN, which will be discussed in section IV.

B. Network Architecture

A fully-connected (FC) feed-forward neural network is
considered in which the hidden layers have ReLU activation
functions, as shown in Fig. 1. The DNN was trained using
mini-batch gradient descent method in which each mini batch
F is generated from independent feature vectors. The novelty
in DNN’s architecture lies in the final layer which is split into
I tensors, each having a Softmax activation function. There
are two main advantages of this approach: (i) it guarantees to
satisfy the constraint C2 and (ii) the loss function given in (2)
is simplified and can be rewritten in (3), where for sake of
brevity, we have taken λ , λ1. To the best of our knowledge,
this ‘tensor splitting’ approach has not been used in any prior
work. The loss function of (3) along with all the ui,j’s (at the
output of each Softmax layer) are then utilized during the
training process of DNN.

C. Training Stage and Constraint Violation Probability

A feature vector, f ∈ RIJ×1 is fed to the input of the
proposed DNN. The I tensors, each having J values are used
at the output layer to minimize the loss function given in (3).
For this minimization,‘Adam’ (adaptive moment estimation)
[23] optimization algorithm is used. It is worth mentioning



L =
1

|F|
∑
f∈F

−Z (f , θ) + λ1 ·

 I∑
i=1

ReLU(1−
J∑
j=1

ui,j)

+ λ2 ·

 J∑
j=1

ReLU(cj −
I∑
i=1

wi,jui,j)

 . (2)

Lsimplified =
1

|F|
∑
f∈F

−Z (f , θ) + λ ·

 J∑
j=1

ReLU(cj −
I∑
i=1

wi,jui,j)

 . (3)
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Figure 1: Illustration of the proposed deep neural network architecture.

here that λ is one of the hyper-parameters and is chosen to
obtain the balance between the constraint violation probability
(i.e., the probability that measures a violation of constraint
C3) and the maximization of objective function of problem
P , as will be explained in section IV. Note that, first the
constraint violation probability for each knapsack is calculated
by dividing the number of examples (in the test data set)
which do not meet constraint C3 for that particular knapsack
by the total number of examples in the test data set. After
this, the constraint violation probability is averaged over all
the knapsacks. As such, it is referred to as average constraint
violation probability in the paper.

IV. CASE STUDY: USER-ASSOCIATION IN WIRELESS
NETWORKS

In this section, we first describe a typical user-association
problem in a wireless network and then show that this user-
association problem can be formulated as GAP. Therefore, our
proposed DUL based approach can readily be used to solve
user-association problem in a time-efficient manner.

A. System Setup

A two tier downlink network consisting of RF BSs and THz
BSs is considered. We assume that there exists a software-
defined network (SDN) controller that performs user associa-
tions. Furthermore, without loss of generality, the assumption
of BSs and users being uniformly distributed in a circular re-
gion is made. The set of users is denoted by I = {1, 2, · · · , I}
and J = {1, 2, ..., J} represents the set of BSs. Hence, the

roles of items and knapsacks in section II are taken by users
and BSs in this section.

1) RF Channel and SINR Model: The channel power
of the ith user from the jth RF BS communication link is
modeled as hR = γRρ

−α
i,j χi,j , where γR , c2/(4πfR)

2, fR
is the RF carrier frequency in GHz and c is the speed of
light i.e., c = 3 × 108 m/s. Moreover, α is the path-loss
exponent, χi,j and ρi,j represent the exponentially distributed
unit mean channel power and the distance between the ith
user and jth BS, respectively. The RF BSs are equipped
with omnidirectional antennas, therefore, for ith user which
is served by jth RF BS, its corresponding

(
SINRRi,j

)
is given

as:
SINRRi,j =

PRhR
N0 + IRagg

, (4)

where PR is the transmit power of all the RF BSs, N0 is the
power of the additive white Gaussian noise (AWGN) at the
user. Furthermore,

(
IRagg

)
denotes the aggregate SINR at the

ith user from the interfering RF BSs and is given as:

IRagg ,
∑

∀k ∈ I, ∀m ∈ J
{k,m} 6= {i, j}

PRγRρ
−α
k,mχk,m (5)

2) THz Channel and SINR Model: Due to high molecular
absorption and the dense deployment, the line-of-sight (LoS)
transmissions are more dominant than that of non-line-of-
sight (NLoS). Therefore, in this paper, we consider only the



LoS transmission1 between users and THz BSs. The channel
power of the ith user from the jth THz BS communication
link is modeled as hi,j = γT exp (−kari,j) /r2i,j , where
γT , c2/(4πfT )

2, fT is the operating frequency in THz, ka
is the molecular absorption coefficient and ri,j is the distance
between the ith user and jth BS. Moreover, the directional
antennas gains are modeled as [24], i.e.,

GTq (θ) =

{
G

(max)
q , | θq |≤ wq

G
(min)
q , | θq |> wq

, (6)

where q ∈ {tx, rx}, GT
tx (θ) and GT

rx (θ) represent the di-
rectional transmitter and receiver antenna gains, respectively.
Furthermore, θ ∈ [−π, π) is the angle of the boresight direc-
tion, wq is the main lobe beamwidth, G(max)

q and G(min)
q are

beamforming gains of the main and side lobes, respectively.
The typical user and its desired THz BS align such that their
main lobes coincide through beam alignment techniques [24].
With the assumption that the main lobe of ith user coincides
with jth THz BS, the corresponding SINR is given as [25]:

SINRTi,j =
PTG

(max)
tx (θ)G

(max)
rx (θ)γT

N0 + ITagg
, (7)

where PT is the transmit power of all the THz BSs. Further-
more,

(
ITagg

)
denotes the aggregate SINR at the ith user from

the interfering THz BSs and is written as

ITagg ,
∑

∀k ∈ I, ∀m ∈ J
{k,m} 6= {i, j}

PTDk,mhk,m, (8)

where Di,j represents the beam alignment between
the ith user and jth BS and can take values as
{G(max)

tx G
(max)
rx , G

(max)
tx G

(min)
rx , G

(min)
tx G

(max)
rx , G

(min)
tx G

(min)
rx }.

The corresponding probability for each case is FtxFrx,
Ftx(1 − Frx), (1 − Ftx)Frx and (1 − Ftx)(1 − Frx), where
Ftx = |θtx|

2π and Frx = |θrx|
2π , respectively.

B. Formulation as GAP

When ith user is served by jth BS, its data rate is given as
follows:

Ri,j =W log2(1 + SINRi,j) , (9)

where W denotes the available bandwidth, SINR between
ith user and jth BS is represented by SINRi,j , which is
determined using (4) and (7) for RF and THz channels,
respectively. Thus, the corresponding user-association problem
which maximizes the sum rate (R) is formulated as the
following GAP, given by

maximize R ,
∑I
i=1

∑J
j=1 ui,jRi,j ,

subject to C1, C2 and C3, (10)

where cj = N b, wi,j = 1 ∀i ∈ I, j ∈ J in (1) and N b

represents a BS quota i.e., the maximum number of users

1The consideration of NLoS with accurate reflection, scattering, and diffrac-
tion models deserves a separate study and has been left for future investigation.

which can be served by each BS. Now, subsequently, we
employ our proposed DUL based approach to solve (10)
and analyze performance of the proposed approach using
numerical examples.

C. Parameter Settings

Unless stated otherwise, the simulation parameters which
are used to generate the feature vectors (or training and
test data sets) are listed herein. Users are distributed within
a circular disc of radius 100 m. The molecular absorption
coefficient ka is set as 0.05 m−1 with 1% of water vapor
molecules. The absorption value is chosen from the realistic
database and its corresponding central frequencies is 1.0 THz
[26], [27]. Without loss of generality, we normalize the sum
rate with the transmission bandwidth. The RF transmission
frequency is set as 2.1 GHz and α = 2.5. The antenna gains
GTtx and GTrx are taken as 25 dB. The antenna gains of RF
transmitters and receivers are set as 0 dB. The transmit powers
of all BSs are taken as 1 W and N0 is -70 dBm.

Unless specified otherwise, the number of epochs, the batch
size, penalty parameter λ and learning rate for our first
scenario, 4 users and 4 BS, are taken as 50, 128, 6 and
0.0001, respectively. For our second scenario of 16 users and
4 BS the epochs and λ are increased to 100 and 10, while
the batch size and learning rate remain the same. For our
first scenario we have an input and output vector of size
16 and the number of neurons from the first hidden to the
last hidden layer are given as {64, 128, 256, 512, 1024, 2048}.
For our second scenario we have an input and output vector
of size 64 and {128, 256, 512, 1024, 2048, 2048, 4096, 4096}
neurons from the first hidden layer to the last. The remaining
hyper-parameters are given in each figure. With these hyper-
parameters, the results for a system with 4 BSs and 4 users are
demonstrated in Fig. 2 to Fig. 4. Moreover, in all the examples,
DNN is first trained for given hyper-parameters and then the
trained DNN is used to obtain the sum data rate, averaged over
1000 examples of the test data set. Overall, 10000 and 16000
independent feature vectors were generated for the training
data sets for 4 users and 16 users, respectively. In both cases,
1000 were generated for testing.

D. Optimal Solution - Benchmark

As the DNN provides a continuous user association profile
i.e., 0 ≤ ui,j ≤ 1, ∀i ∈ I, ∀j ∈ J , the performance of the pro-
posed DUL approach is compared with the benchmark scheme
in which the problem P is solved optimally using CVX by
relaxing the binary constraint. Note that this relaxation can
allow users to be associated to multiple BSs; however, this
can be interpreted as association probability or a partial time
allocation at each BS. For example, a fraction of 0.8 at one
BS depicts that user associates to it 80% of the time.

E. Proposed DUL Framework - Results

In this subsection, we first present the simulation parameters
and hyper-parameter settings of the proposed DNN, then we
describe considered benchmark algorithms, and finally we
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Figure 2: Average constraint violation probability as a function of the penalty
parameter λ with different learning rates for 4 users and 4 BSs
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Figure 3: Sum data rate as a function of λ with different learning rates for
4 users and 4 BSs
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Figure 4: Sum data rate as a function of the number of epochs with
batch size = 128, (λ = 6) for 4 users and 4 BSs
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Figure 5: Sum data rate as a function of number of epochs with batch
size = 128, (λ = 10) for 16 users and 4 BSs

Table I: Comparative analysis of the proposed DNN with the optimal solution.
Schemes 4 Users 16 Users Time Complexity (for 16 users)

Optimal using CVX 13.8625 60.5487 ∼ 250 ms
DNN (with quota constraint) 13.68 (98.68%) 60.47 (99.87%) ∼ 0.24 ms

present our main results and discussions. The DNN was trained
and tested within Python using a TensorFlow backend.

A system with 4 BSs and 4 users is first considered. Then,
we show the scalability of our proposed scheme with an
example of 4 BSs and 16 users.

In Fig. 2, first the DNN is trained for different values
of penalty parameter λ and learning rates, then the average
constraint violation probability is plotted using the trained
DNN. Similarly, sum data rate is plotted for various values of
λ in Fig. 3. The trade-off between average constraint violation
probability and sum data rate is controlled by the parameter
λ and thus choosing an optimal value has a strong impact on
the overall performance. We note that both constraint violation
probability and sum date rate decrease with increasing λ, as
expected. From these figures, an appropriate value of λ and
learning rate is chosen.

Using λ = 6, sum data rates are shown in Fig. 4 for different

values of epochs and learning rates. By observing these figures
(i.e., Fig. 2 to Fig. 4) collectively, it is evident that the suitable
values of the hyper-parameters for 4 BSs and 4 users system
are as follows: learning rate=0.0001, number of epochs=50
and batch size=128. With these hyper-parameters of the trained
DNN, the performance of the proposed DNN is compared with
the optimal CVX scheme in Table I. Table I shows that the sum
data rate of trained DNN (with λ = 6) preforms very closely to
the optimal CVX solution as the proposed DUL scheme. Our
scheme achieves a sum data rate (i.e., 13.68 bits/sec/Hz which
is 98.68% of the optimal value) with an average constraint
violation probability of only 0.094.

Table I depicts that the proposed DNN algorithm achieves
close-to-optimal performance (i.e., sum data rates) as com-
pared to the optimal CVX solution for constrained user-
association problems. In terms of time complexity, it is evident
that our unsupervised DNN approach outperforms the optimal



CVX solution by a significant margin of ∼ 250 ms on average.
This comparison clearly shows that with an increased number
of users and BSs, the DNN’s time complexity will be much
lower compared to that of the optimal CVX solution. It is
noteworthy that, in practice, where the channel coherence time
is in the order of few milliseconds, the optimal CVX solution
becomes impractical. On the other hand, our DUL framework
serves as a good solution under these circumstances.

Next, the number of users is increased to 16 in Fig. 5. In
order to train the DNN properly, the size of training set and
number of epochs are increased to 16000 feature vectors and
100, respectively. Additionally, the amount of hidden layers
are increased by 2 as mentioned in section C Parameter
Settings. With these settings, the sum data rate is given in
Fig. 5. Table I displays the results for the 16 users scenario,
we compare the performance of the trained DNN with the
benchmark schemes. By taking λ and learning rate equal to
10 and 0.0001, respectively, an average constraint violation
probability of 0.094 is achieved and sum data rate equal to
60.47 bits/sec/Hz (which is 99.87% of the optimal value).
The difference between the accuracy of 16 users and 4 users
scenarios can be explained by considering the increase in
network architecture complexity, the number of epochs, and
the number of training samples.

V. CONCLUSION

In this paper, we proposed a new DUL approach for
solving a classical GAP. In particular, we showed that a
DNN can be trained to learn any GAP with the help of
a customized loss function. With an aim to simplify a loss
function and in order to make sure that the equality constraint
is always satisfied, we proposed to use a Softmax function
along with tensor splitting at the output of DNN. On the other
hand, an inequality constraint is handled through a penalty
parameter which is treated as one of the hyper-parameters
of the DNN. This hyper-parameter is configured to achieve
a trade-off between maximizing the objective function and
meeting an inequality constraint. Additionally, we formulated
a user-association problem in the form of GAP and solved it
using our DUL approach. Furthermore, for future directions
of this research, extrapolating results for larger results will be
done. Overall, numerical results demonstrate that the proposed
approach yields close to optimal results and has approximately
1000 times lower time complexity, as compared to the optimal
solution obtained by CVX.
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