
ar
X

iv
:2

10
1.

08
72

4v
2

 [
cs

.N
I]

 2
2

Fe
b

20
21

Adversarial Machine Learning for Flooding Attacks

on 5G Radio Access Network Slicing

Yi Shi1 and Yalin E. Sagduyu2

1Virginia Tech, Blacksburg, VA 24061, USA
2Intelligent Automation, Inc., Rockville, MD 20855, USA

Abstract—Network slicing manages network resources as vir-
tual resource blocks (RBs) for the 5G Radio Access Network
(RAN). Each communication request comes with quality of
experience (QoE) requirements such as throughput and la-
tency/deadline, which can be met by assigning RBs, communica-
tion power, and processing power to the request. For a completed
request, the achieved reward is measured by the weight (priority)
of this request. Then, the reward is maximized over time by
allocating resources, e.g., with reinforcement learning (RL).
In this paper, we introduce a novel flooding attack on 5G
network slicing, where an adversary generates fake network
slicing requests to consume the 5G RAN resources that would be
otherwise available to real requests. The adversary observes the
spectrum and builds a surrogate model on the network slicing
algorithm through RL that decides on how to craft fake requests
to minimize the reward of real requests over time. We show that
the portion of the reward achieved by real requests may be much
less than the reward that would be achieved when there was no
attack. We also show that this flooding attack is more effective
than other benchmark attacks such as random fake requests and
fake requests with the minimum resource requirement (lowest
QoE requirement). Fake requests may be detected due to their
fixed weight. As an attack enhancement, we present schemes
to randomize weights of fake requests and show that it is still
possible to reduce the reward of real requests while maintaining
the balance on weight distributions.

I. INTRODUCTION

5G promises unprecedented performance improvements in

terms of rate, delay, and energy efficiency compared to 4G

systems. An important design aspect towards this goal is re-

source allocation for network slicing that aims to multiplex and

serve multiple virtualized and independent logical networks

on the same physical network infrastructure of 5G [1]–[3].

5G radio access network (RAN) employs network slicing to

manage its resources as virtual resource blocks (RBs), e.g., an

RB may correspond to a frequency band. Then, the network

resource allocation problem can be simplified by considering

how to allocate virtual RBs without the need to focus on the

physical resources to support RBs. We consider a gNodeB

that supports downlink communication requests from user

equipments (UEs). A UE may generate requests with differ-

ent Quality of Experience (QoE) requirements for different

types of network slices such as Enhanced Mobile Broadband

This effort is supported by the U.S. Army Research Office under contract
W911NF-20-C-0055. The content of the information does not necessarily
reflect the position or the policy of the U.S. Government, and no official
endorsement should be inferred.

(eMBB), Massive Machine Type Communications (mMTC),

and Ultra Reliable Low Latency Communications (URLLC).

These QoE requirements are mapped to different requirements

on RBs, as well as communication and processing powers at

the gNodeB. Each request has its own priority (measured by

a weight). If the gNodeB allocates resources to a request to

meet its requirements, the reward is the weight of this request.

If a request is not served, it is kept in a list of active requests

until its deadline. This resource allocation approach aims to

maximize the reward over time and can be used in near-real

time RAN Intelligent Controller (Near-RT RIC) to support

micro-service-based applications called xApps.

Since future requests are unknown, an online algorithm is

needed to make decisions based on current network status and

requests. Machine learning can be effectively applied to solve

complex wireless optimization problems by learning from

spectrum data [4]. In particular, deep learning was studied

for network slicing in [5] for application and device specific

identification and traffic classification, and in [6] for manage-

ment of network load efficiency and network availability. As

the training data may not be available, reinforcement learning

(RL) was used for network slicing without requiring a prior

model [7]–[12]. In our setting, the RL approach learns a model

to predict the future reward (the weight of selected requests)

for each state (available resources) and each action (admission

of requests), and determines over time the optimal action to

maximize the expected future reward.

With the success of applying machine learning (ML) to

network slicing problems, there are also security concerns,

specifically due to the attacks built upon adversarial ML.

Adversarial ML studies the learning process in the presence of

adversaries and expands the attack surface with new wireless

attacks, e.g., exploratory (inference) attacks [13], evasion

(adversarial) attacks [14]–[18], causative (poisoning) attacks

[19], membership inference attacks [20], Trojan attacks [21],

and signal spoofing attacks [22], [23]. Recently, adversarial

ML has been used to launch attacks on 5G such as attack

on 5G spectrum sharing with incumbents, attack on 5G

UE authentication [24], covert 5G communications [25], and

attack on 5G network slicing (where the adversary aims to

manipulate the underlying RL algorithm) [26]. In this paper,

we consider a flooding type of resource starvation attack that

has found applications in the networking domain, such as the

TCP SYN flood attack. For network slicing, we formulate the

http://arxiv.org/abs/2101.08724v2

flooding attack as the case that an adversary generates fake

requests to consume network resources. This attack cannot be

detected by simply monitoring the reward since the gNodeB

can still achieve large reward as in the case of no attack.

However, a great portion of this reward is associated with

fake requests and the reward by real requests is much less

than that without attack. Compared to conventional jamming

(e.g., [27]), the flooding attack is stealthier and more energy-

efficient (especially for downlink traffic), since it only requires

an adversary to send requests and ACK without a need of long

transmissions.

The design challenge of flooding attack is how to generate

fake requests for resources. If there is no limitation, the adver-

sary can generate many requests to maximize its impact, but it

can be easily detected and blocked. Thus, we assume an upper

bound on the number of fake requests. The adversary needs to

carefully design its requests for network resources and rewards

such that the impact of these requests is maximized. For that

purpose, we design an RL solution for the adversary that uses

network resources as the state, the generated fake requests

as the action, and the reward achieved by fake requests as

the reward for RL. This solution aims to maximize the total

reward for fake requests over time, which in turn minimizes the

remaining reward for real requests. We show that this flooding

attack reduces the reward for real requests significantly more

than two benchmark attacks, namely random fake requests and

fake requests with lowest QoE requirement (or minimum re-

source requirement). Although we mainly launch the flooding

attack on an RL based network slicing scheme, we show that it

can also target other network slicing schemes such as myopic,

first come first served (FCFS), or random selection.

The best strategy (in terms of minimizing the reward of

real requests) is to generate fake requests with large weights,

but they may be easily detected by checking their weights over

time. To overcome this defense, we design attack schemes with

variable weights and show that we can set a close to uniform

weight distribution on fake requests such that they cannot be

easily detected based on their weights and the reward of real

requests can still be reduced significantly.

The rest of the paper is organized as follows. Section II

describes the resource allocation schemes for network slicing.

Section III presents the flooding attack that aims to minimize

the gNodeB’s performance for real communication requests.

Section IV evaluates the attack performance under different

settings and designs. Section V concludes this paper.

II. RESOURCE ALLOCATION FOR NETWORK SLICING

Resource allocation for network slicing can be optimized

by RL. We follow the RL approach in [11] as an example.

Fig. 1 shows multiple 5G UEs sending requests over time

with different rate, processing power, latency (deadline) and

lifetime requirements and priority weights. The 5G gNodeB

selectively serves some of these requests competing for re-

sources. If a request is selected, resources are allocated to meet

the requirements. Otherwise, it will be kept in a waiting list

until its deadline expires. The 5G gNodeB selects requests to

Fig. 1: System model for the attack on 5G network slicing.

maximize the reward, i.e., the total weight of served requests

over a time period. An adversary launches the flooding attack

to generate fake requests such that the total weight of served

real requests over a time period can be minimized. Denote the

set of active requests (newly arrived requests and previously

arrived requests that stay in the waiting list) at time t as A(t)
for each time t. RBs, communication and processing powers

are allocated to meet the requirements of admitted requests in

A(t). The rate and processing power requirements of UE i for

its request j are given by

Dij ≥ dijxij(t), Pij ≥ pijxij(t), (i, j) ∈ A(t), (1)

where Dij is the achieved data rate, dij is the minimum

required rate, Pij is the assigned processing power, pij is

the minimum required processing power (measured by the

percentage of CPU usage), and xij(t) is the binary indicator on

whether UE i’s request j is satisfied at time t. At any time, the

total Pij of selected requests is no more than 1. Dij measured

in bps depends on the assigned bandwidth Fij and the modu-

lation coding scheme used for communications from gNodeB

to UE i, and is approximated as Dij = c ·Kij · (1 − BERij)
[28], where Kij is the number of allocated RBs and BERij

is the bit error rate of UE i for its request j, and constant c

is approximately 12.59 · 106 when a single-antenna UE uses

QPSK modulation, 60 kHz subcarrier spacing and 10 MHz

bandwidth. The constraints of RB assignments are

∑

i,j

Fijxij(t) ≤ F (t), (i, j) ∈ A(t), (2)

where F (t) represents the available RBs of the gNodeB at

time t (resources that are assigned previously to some requests

and not released yet become temporarily unavailable). By

considering the optimization problem for a time horizon, the

resources are updated from time t− 1 to time t as

F (t) = F (t− 1) + Fr(t− 1)− Fa(t− 1), (3)

where Fr(t − 1) and Fa(t − 1) are released and allocated

resources on frequency at time t − 1. Each request has a

lifetime lij and if it is selected at time ts (namely, the service

starts at time ts), this request will end at time ts + lij . The

released and allocated resources at time t are given by

Fr(t) =
∑

(i,j)∈R(t)

Fij , Fa(t) =
∑

i,j

Fijxij(t), (4)

respectively, where R(t) denotes the set of requests ending at

time t. Then, the optimization problem is given by

max
xij(t)

∑

t

∑

(i,j)

wijxij(t), (i, j) ∈ A(t) (5)

subject to (1)–(4), where wij is the weight for UE i’s request

j to reflect its priority. Without knowing future requests, the

model-free RL algorithm solves (5) by making decisions using

an online learned policy that determines an action for current

state for the gNodeB. In this paper, we consider Q-learning

from [11]. The reward at time t is wij if UE i’s request j

is satisfied, i.e., xij(t) = 1. Actions assign resources to each

request at time t. Multiple actions can be taken at the same

time instance if there are sufficient resources. The states at

t are the remaining RBs and communication and processing

powers. Given by (3)-(4), state transition at time t is driven by

allocating resources for requests granted at time t and releasing

resources after lifetimes of some active services expire at

time t. Note that the flooding attack can be also launched

on other network slicing schemes. We consider the following

schemes for comparison purposes. The myopic scheme aims to

maximize the reward for the current time (without considering

future rewards). The FCFS scheme aims to allocate resources

based on the arrival time of requests. The random scheme

allocates resources to some randomly selected requests.

III. REINFORCEMENT LEARNING BASED FLOODING

ATTACK FOR NETWORK SLICING

An adversary attacks the 5G RAN network slicing by gen-

erating fake requests for network slices. If these fake requests

are selected and network resources are allocated to them, fewer

resources will be left for real requests from legitimate users.

As a consequence, although a gNodeB may still achieve a

high reward for many granted requests, the actual reward

corresponding to real requests may be a smaller option of

it. We consider a practical constraint that the adversary has a

limited rate of generating fake requests to avoid being detected.

In particular, we can set the same rate of request generation

for the adversary and legitimate users. Thus, it is important for

the adversary to generate fake requests with two objectives:

• Objective 1: fake requests are satisfied (namely, resources

are allocated to them) with high probability.

• Objective 2: fake requests occupy resources so that real

requests cannot be satisfied due to no resources.

For the first objective, a fake request should ask for a smaller

portion of resources (to avoid being rejected due to insufficient

resources) and have the maximum reward (to have high

priority). For the second objective, a fake request should

consume the majority of the resources such that the remaining

resources are not sufficient for real requests. Thus, the ideal

setting on weights in fake requests is the largest weight while

the required resource should not be too large (to ensure that

a fake request can be satisfied) or too small (to ensure that a

significant portion of the total resources can be occupied by

fake requests). Therefore, the key step in the flooding attack

is determining resources to be specified by fake requests.

The resources include the number of available RBs, the

remaining processing power (memory), and the remaining

communication (transmit) power. The adversary may sense the

spectrum and aim to detect available RBs. However, it cannot

know the remaining processing and communication powers.

There is no need to consume all of these resources to prevent

serving real requests, since a request cannot be satisfied if any

of its resource requirements is not met. Thus, the adversary can

request minimum processing and communication powers such

that its requests will not be rejected due to the lack of these

resources. On the other hand, the adversary needs to determine

RB requirements in its requests. To make decisions, we design

a Q-learning algorithm for the adversary as follows.

• The state is the number of available RBs.

The action is to select how many RBs to be assigned in a

fake request (0 means no request is made). The number

of potential actions is na+1, where na is the number of

available RBs.

• The reward is the number of served fake requests (or the

total reward of served fake requests).

The Q-table maps (state, action) to reward. To initialize this

table, if a fake request is generated, the corresponding entry

is set as 1, otherwise the entry is set as 0. The adversary

applies Q-learning to update this table and take actions based

on this table. The adversary generates a fake request only if

the rate of fake requests so far is below the expected rate,

which can be set the same as the rate of real requests from

other (legitimate) users. Under the flooding attack, we measure

both the total reward (including the reward for both real and

fake requests) and the real reward (including the reward for

real requests only).

IV. PERFORMANCE EVALUATION

A. Flooding Attack Results

Suppose that the gNodeB receives requests from three UEs.

For each UE, requests arrive with rate of 0.5 per slot. The

adversary also generates fake requests at this rate. Here, a slot

corresponds to each time block which is 0.23 ms long with

60 kHz subcarrier spacing. For each request, weight, lifetime,

and deadline are randomly assigned in [1, 5], [1, 10] slots,

and [1, 20] slots, respectively. The signal-noise-ratio (SNR) is

selected randomly from [1.5, 3]. The total frequency is 10 MHz

and is split into 11 bands, i.e., there are 11 RBs. In addition

to the Q-learning-based attack, we also consider the case of

no attack and two benchmark attacks:

• Random attack: The adversary generates fake requests

with random requirements on RBs.

• Minimum resource (MinRes) attack: The adversary gen-

erates fake requests with the lowest QoE requirement,

TABLE I: Performance comparison of flooding attack using Q-learning and
other attack schemes.

Algorithm Total reward Real reward

Q-learning 2593 523

MinRes 2769 614

Random 1905 1630

No attack 1783 1783

TABLE II: Performance comparison of different network slicing schemes
under the flooding attack.

Network slicing No attack Flooding attack
scheme Total reward Real reward

Q-learning 1786 2593 523

Myopic 1422 2408 653

FCFS 1416 2369 429

random 1318 2363 483

which in turn requires the minimum number of RBs, i.e.,

always one RB is required.

We assume that the adversary launches its attack (Q-

learning, MinRes, or Random) over 10000 slots. The bench-

mark of no attack case is also run over 10000 slots. The

achieved reward is measured for the last 1000 slots. For

network slicing, we first consider the RL based scheme.

Table I shows the performance of different attacks and the

case of no attack. If there is no attack, i.e., all requests

are real, the total reward and the real portion of it are the

same. All attacks increase the total reward, since there are

some additional fake requests with high reward, but the real

portion of the reward is less than the total (all real) reward

achieved under no attack. The random attack does not work

well and only slightly reduces the real reward (from 1783 to

1630). The MinRes attack always generates fake requests with

the minimum required resource. Although this increases the

probability of being selected by the gNodeB for service, the

occupied resource is also minimized. Hence, it significantly

reduces the real reward to 614 but it is not as effective as the

Q-learning attack, which reduces the real reward to 523.

We also measure the total reward of all fake requests

generated under the Q-learning attack, which is 2440. The

total reward of served fake requests is 2593−523 = 2070, i.e.,

most of fake requests are served and occupy some resources.

Thus, the Q-learning attack is efficient in terms of the ratio

between served and generated requests. The total reward asked

for real requests is 4594, while the total reward of served real

requests is only 523 under the Q-learning attack, i.e., only a

small portion of real requests are served under the flooding

attack, showing that the flooding attack is highly successful.

This flooding attack can be launched against other network

slicing schemes including the myopic, FCFS, and random

schemes described in Section II. Table II shows that the

(reward) performance of all these schemes drop significantly

under the flooding attack. In particular, the FCFS and ran-

dom schemes have worse performance than the Q-learning

based scheme regardless there is a flooding attack, or not.

One interesting result is that the myopic scheme has worse

TABLE III: The effect of the generation rate of fake requests, rf .

rf Total reward Real reward

0 1783 1783

0.1 2077 1587

0.2 2327 1352

0.3 2512 1032

0.4 2605 700

0.5 2593 523

0.6 2620 440

≥ 0.7 2612 372

performance compared to the Q-learning based scheme when

there is no attack, but under the flooding attack, the myopic

scheme achieves better reward, namely 653, compared to the

reward 523 achieved by Q-learning based scheme. The reason

is that the Q-learning based scheme aims to maximize the

expected total reward, including both current reward and future

reward. When there are fake requests with high rewards, the

Q-learning algorithm tends not to allocate resources to real

requests if their reward is not high. On the other hand, there

is no such issue in the myopic scheme since it only considers

the current reward.

B. Impact of System Parameters

Now we check the effect of system parameters on the

flooding attack performance. Table III shows the results when

we vary the rate of fake requests, rf . The total reward increases

first with rf due to high reward of fake requests, while the

real reward decreases due to the increasing portion of fake

requests. If rf ≥ 0.7 request per slot, the total or real reward

does not change, i.e., rf = 0.7 is sufficient for the best attack.

Table IV shows the results when we vary the number of

RBs, nr. The reward when there is no attack increases first

with nr due to more RBs, and then changes within certain

range due to randomness in limited number of user requests.

The total reward under attack shows the same trend. The real

reward under attack first decreases with nr and then stays

within certain range. To understand the trend better, we assess

the ratio between real reward under attack and the reward when

there is no attack. By increasing nr, this ratio first decreases

as a fake request can attack more RBs, and then stays within

certain range since (i) the number of fake requests is limited

and (ii) there is some randomness in generated fake requests.

Table V shows the results when we vary the number of

users, nu. By increasing nu, the reward when there is no attack

increases due to more requests to be selected for service. The

total reward and the real reward under attack show the same

trend. When nu is large, the total reward under attack is less

than the reward when there is no attack. The reason is that

the adversary generates fake requests with non-minimum RBs

while with many users it is likely that there are requests with

the same reward and minimum RBs. Then, the total reward by

selecting some fake requests may be less than the case of not

selecting fake requests. The ratio of real reward over reward

under no attack increases with nu due to more real requests

competing with fake requests.

TABLE IV: The effect of the number of RBs, nr .

nr No attack Flooding attack Ratio (%)
Total reward Real reward

5 1526 2133 858 56.23

6 1605 2285 805 50.16

7 1786 2477 737 41.27

8 1730 2596 646 37.34

9 1870 2619 609 32.57

10 1902 2644 604 31.76

11 1783 2593 523 29.33

12 2018 2723 528 26.16

13 1964 2677 577 29.38

14 1987 2661 506 25.47

15 1899 2708 573 30.17

TABLE V: The effect of the number of users, nu.

User No attack Flooding attack Ratio (%)
Total reward Real reward

3 1783 2593 523 29.33

4 2239 2717 652 29.12

5 2306 2749 709 30.75

6 2681 2856 955 35.62

7 2592 2850 890 34.34

8 2865 2854 954 33.30

9 2896 2859 1029 35.53

10 3108 2918 1108 35.65

20 3540 3065 1480 41.81

50 3859 3360 2100 54.42

Table VI shows the results when we vary the SNR for users.

By increasing the SNR, all rewards (real or total) increase

with and without flooding attack. In particular, the ratio of

real reward over the reward under no attack increases due to

better channels available for users. In this case, it is easier

to serve a real request by meeting rate requirements, i.e., it

is more challenging for the attack to deny service to a real

request by consuming resources.

Finally, we evaluate the effect of the adversary’s observation

error on available RBs, in terms of false alarm (available

RBs are detected as unavailable) and misdetection (unavailable

RBs are detected as available). We find that this effect is not

significant. Even for significant errors up to 20%, the change

on real reward is at most 7.07%. Hence, the flooding attack

is not very sensitive to errors in spectrum sensing.

C. Attack Extensions with Enhanced Weight Distribution

The flooding attack that we consider so far generates

fake requests with the largest weight (LW) to maximize the

probability that they are selected by the gNodeB. A defense

scheme may detect the largest weight in requests from an

adversary and then discard these requests. Against such a

TABLE VI: The effect of the SNR for users.

SNR No attack Flooding attack Ratio (%)
Total reward Real reward

low 1557 2436 286 18.37

medium 1783 2593 523 29.33

high 1900 2695 625 32.89

TABLE VII: Distribution of weights in network slicing requests.

j \ i 1,2 3,4 5 6 7 8,9 10,11

1 0.5 0.4 0.2 0.2 0 0 0

2 0.4 0.4 0.3 0.2 0.1 0 0

3 0.1 0.2 0.4 0.2 0.4 0.2 0.1

4 0 0 0.1 0.2 0.3 0.4 0.4

5 0 0 0 0.2 0.2 0.4 0.5

TABLE VIII: Distribution for high weight.

j \ i 1 2,3 4,5 6 7,8 9,10 11

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 1 0.9 0.8 0.5 0.2 0.1 0

5 0 0.1 0.2 0.5 0.8 0.9 1

defense, we extend the flooding attack with the following

schemes to increase randomness of weights.

• Uniform weight (UW): Weights in fake requests are

uniformly randomly assigned.

• Uniform large reward (ULW): Weights in fake requests

are uniformly randomly assigned as large values 4 or 5.

• Resource dependent weight (RDW): The flooding attack

requests should be accepted when remaining resources

are large, since it is more likely that real requests can

be accepted if no attack. Thus, the adversary can gen-

erate more fake requests with large weights if remain-

ing resources are large. Otherwise, the adversary can

generate more fake requests with small weights. The

resource dependent weight distributions are selected such

that the overall weight distribution remains uniform, i.e.,
1
F

∑
i pij =

1
W

, where F is the number of total available

RBs, pij is the probability of weight is j when the number

of remaining RBs is i, and W is the number of different

weights. One such distribution is shown in Table VII.

• Resource dependent large weight (RDLW): We limit the

weights in fake requests to large values 4 or 5, and choose

weight distributions such that 1
F

∑
i pij = 0.5 for j = 4

or 5. One such distribution is shown in Table VIII.

• Adjusted weight (AW): The adversary adjusts weights

dynamically based on whether a fake request is selected

or not. If a fake request is selected, the adversary wants

to have another fake request being selected to occupy

resources, otherwise there is no such need. Thus, the

weight in requests should be increased (bounded by the

largest reward) if a fake request is selected, otherwise

the weight should be decreased (bounded by the smallest

reward). We consider three adjustment approaches.

– AW 1: increase the weight in fake requests by 1 if a

fake request is selected or decrease it by 1 otherwise,

– AW 2: increase the weight in fake requests to the

largest value if a fake request is selected or decrease

it by 1 otherwise, or

– AW 3: increase the weight in fake requests to the

largest value if a fake request is selected or decrease

it by 1 with a probability otherwise.

TABLE IX: Attack extensions with different weights in fake requests.

Algorithm Total reward Real reward

LW 2593 523

UW 2328 1161

ULW 2621 828

RDW 2597 1008

RDLW 2689 677

AW 1 1798 1417

AW 2 2389 1008

AW 3 2245 1146

Table IX shows results for these attack extensions. First of

all, since the adversary aims to sustain uniform distribution

among different weights in its requests, the probability of

selecting a fake request is reduced and thus the real reward

under all these attacks is larger than the LW attack case where

we set the weight in fake requests as the largest value. Under

the flooding attack with UW, the real reward is 1161 while

the real reward under the flooding attack with ULW is 828.

The real reward achieved under the flooding attack with RDW

is 1008, which is still much higher than the real reward 523
when we fix the reward as its largest value. The real reward

under the flooding attack with RDLW is 677, which is close to

523 when we fix reward as 5. For the flooding attack with AW,

AW 1 yields a real reward 1417, which is high, as it turns out

that most weights for fake requests are selected as 1. When

AW 2 is used, the real reward becomes 1008 and we find that

the distribution of weights is almost a uniform distribution.

When we use AW 3 with the probability set as 0.4, which

also yields an approximately uniform distribution for reward

in fake requests, the achieved real reward is 1146. Overall, the

flooding attack can reduce the real reward significantly while

keeping close to uniform weight distribution such that it is

difficult to detect fake requests by checking their weights.

V. CONCLUSION

We presented a flooding attack on 5G RAN slicing, where

an adversary generates fake network slicing requests to con-

sume available resources and minimize the reward for real

requests. We developed an RL based attack to generate fake

requests and showed that it is more effective than gen-

erating fake requests randomly or with minimum resource

requirement. Although we focused on attacking an RL based

network slicing, we showed that the flooding attack is effective

against other network slicing schemes. We designed weight

distribution schemes for fake requests such that they cannot be

detected by their weights, and showed that the flooding attack

using a close to uniform weight distribution is still effective.

Our results indicate that 5G RAN slicing is highly vulnerable

to flooding attacks that can significantly reduce the reward of

real requests by starving resources with fake requests.

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Communications Magazine,
2017.

[2] A. Kaloxylos, “A survey and an analysis of network slicing in 5G
networks,” IEEE Communications Standards Magazine, 2018.

[3] S. D’Oro, F. Restuccia, A. Talamonti, and T. Melodia, “The slice
is served: Enforcing radio access network slicing in virtualized 5G
systems,” IEEE INFOCOM, 2019.

[4] T. Erpek, T. O’Shea, Y. E. Sagduyu, Y. Shi, and T. C. Clancy, “Deep
learning for wireless communications,” Development and Analysis of

Deep Learning Architectures, Springer, 2019.
[5] A. Nakao, and P. Du, “Toward in-network deep machine learning

for identifying mobile applications and enabling application specific
network slicing,” IEICE Transactions on Communications, 2018.

[6] A. Thantharate, R. Paropkari, V. Walunj, C. Beard, “DeepSlice: A deep
learning approach towards an efficient and reliable network slicing in
5G networks,” IEEE UEMCON, 2019.

[7] R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, 2018.

[8] J. Koo, M. R. Rahman, V. B. Mendiratta, and A. Walid, “Deep
reinforcement learning for network slicing with heterogeneous re-
source requirements and time varying traffic dynamics,” arXiv prePrint,
arXiv:1908.03242, 2019.

[9] H. Wang, Y. Wu, G. Mina, J. Xu, and P. Tang, “Data-driven dynamic
resource scheduling for network slicing: A deep reinforcement learning
approach,” Information Sciences, 2019.

[10] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, “A deep
reinforcement learning based framework for power-efficient resource
allocation in cloud RANs,” IEEE ICC, 2017.

[11] Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement learning for
dynamic resource optimization in 5G radio access network slicing,”
IEEE CAMAD, 2020.

[12] A. Nassar and Y. Yilmaz, “Deep reinforcement learning for adaptive
network slicing in 5G for intelligent vehicular systems and smart cities,”
arXiv prePrint, arXiv:2010.09916, 2020.

[13] T. Erpek, Y. E. Sagduyu, and Y. Shi, “Deep learning for launching and
mitigating wireless jamming attacks, IEEE Transactions on Cognitive

Communications and Networking, 2019.
[14] M. Sadeghi and E. Larsson, “Adversarial attacks on deep-learning based

radio signal classification,” IEEE Communications Letters, Feb. 2019.
[15] M. Z. Hameed, A. Gyorgy, and D. Gunduz, “The best defense is a

good offense: Adversarial attacks to avoid modulation detection,” IEEE

Transactions on Information Forensics and Security, Sept. 2020.
[16] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus, “Over-

the-air adversarial attacks on deep learning based modulation classifier
over wireless channels,” IEEE CISS, 2020.

[17] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus,
“Channel-aware adversarial attacks against deep learning-based wireless
signal classifiers,” arXiv prePrint, arXiv:2005.05321, 2020.

[18] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus,
“Adversarial attacks with multiple antennas against deep learning-based
modulation classifiers,” IEEE GLOBECOM, 2020.

[19] Y. E. Sagduyu, T. Erpek, and Y. Shi, “Adversarial deep learning for
over-the-air spectrum poisoning attacks,” IEEE Transactions on Mobile

Computing, Feb. 2021.
[20] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Over-the-air membership

inference attacks as privacy threats for deep learning-based wireless
signal classifiers,” ACM WiseML, 2020.

[21] K. Davaslioglu and Y. E. Sagduyu, “Trojan attacks on wireless signal
classification with adversarial machine learning,” IEEE DySPAN, 2019.

[22] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative Adversarial
Network in the Air: Deep Adversarial Learning for Wireless Signal
Spoofing,” IEEE Transactions on Cognitive Communications and Net-

working, 2020.
[23] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative Adversarial

Network for Wireless Signal Spoofing,” ACM WiseML, 2019.
[24] Y. E. Sagduyu, T. Erpek, and Y. Shi, “Adversarial machine learning for

5G communications security,” arXiv preprint arXiv:2101.02656, 2021.
[25] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus, “How

to make 5G communications “invisible”: adversarial machine learning
for wireless privacy,” Asilomar Conf. Sig., Sys. and Comp., 2020.

[26] Y. Shi, Y. E. Sagduyu, T. Erpek, and M. C. Gursoy, “How to attack and
defend 5G radio access network slicing with reinforcement learning,”
arXiv preprint arXiv:2101.05768, 2021.

[27] Y. E. Sagduyu, R. Berry and A. Ephremides, “Wireless jamming attacks
under dynamic traffic uncertainty,” IEEE WiOpt, 2010.

[28] 3GPP TS 38.306: “NR; User Equipment (UE) radio access capabilities”.

http://arxiv.org/abs/1908.03242
http://arxiv.org/abs/2010.09916
http://arxiv.org/abs/2005.05321
http://arxiv.org/abs/2101.02656
http://arxiv.org/abs/2101.05768

	I Introduction
	II Resource Allocation for Network Slicing
	III Reinforcement Learning based Flooding Attack for Network Slicing
	IV Performance Evaluation
	IV-A Flooding Attack Results
	IV-B Impact of System Parameters
	IV-C Attack Extensions with Enhanced Weight Distribution

	V Conclusion
	References

