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Abstract—Applications of intelligent reflecting surfaces (IRSs)
in wireless networks have attracted significant attention recently.
Most of the relevant literature is focused on the single cell
setting where a single IRS is deployed and perfect channel
state information (CSI) is assumed. In this work, we develop
a novel methodology for multi-IRS-assisted multi-cell networks
in the uplink. We consider the scenario in which (i) channels
are dynamic and (ii) only partial CSI is available at each base
station (BS); specifically, scalar effective channel powers from
only a subset of user equipments (UE). We formulate the sum-rate
maximization problem aiming to jointly optimize the IRS reflect
beamformers, BS combiners, and UE transmit powers. In casting
this as a sequential decision making problem, we propose a multi-
agent deep reinforcement learning algorithm to solve it, where
each BS acts as an independent agent in charge of tuning the local
UE transmit powers, the local IRS reflect beamformer, and its
combiners. We introduce an efficient information-sharing scheme
that requires limited information exchange among neighboring
BSs to cope with the non-stationarity caused by the coupling of
actions taken by multiple BSs. Our numerical results show that
our method obtains substantial improvement in average data rate
compared to baseline approaches, e.g., fixed UE transmit power
and maximum ratio combining.

I. INTRODUCTION

Intelligent reflecting surfaces (IRSs) are one of the inno-
vative technologies for 6G and beyond [1], [2]. An IRS is
an array of passive reflecting elements with a control unit. It
manipulates the propagation of an incident signal by providing
an abrupt phase shift, which can control the communication
channel. IRSs are utilized to provide enhanced communication
efficiency without building extra infrastructure [3]–[9]. In this
paper, we study a scenario where multiple IRSs are deployed
in a multi-cell cellular setting to provide enhanced data rates
to the users.

A. Related Work

Exploiting IRSs in cellular networks initiated with applica-
tions of this technology in the downlink (DL). Studying IRS
use cases in the uplink (UL) is thus comparably more recent.

1) Utilizing IRSs in the DL: Most of the relevant literature
has considered a single cell system with a single IRS [3], [4].
Specific investigations have included quality of service (QoS)-
constrained transmit power minimization [3] and weighted
sum-rate maximization [4] to obtain the base station (BS)
beamformer and IRS reflect beamformer/precoder in the DL.

Unlike the prior approaches, the work in [5] considers a multi-
cell scenario with a single IRS, where the BS precoders and
IRS reflect beamformer are designed to maximize sum-rate.

2) Utilizing IRSs in the UL: Most of the works in UL
design are also focused on single cell systems with a single
IRS [6]–[8]. Several of these works have studied IRS reflect
beamformer design and uplink user equipment (UE) power
control problems, where the impact of quantized IRS phase
values [6] and compressed sensing-based user detection [8]
on the uplink throughput have also been investigated. The
concept of IRS resembles analog beamforming in millimeter-
wave (mmWave)-based systems [7]. Recently, systems with
two IRSs have been considered focusing on SINR fairness [9].

Despite the potential benefit of improving multi-cell-wide
performance, multi-IRS deployment in multi-cell UL scenarios
has not been thoroughly modeled and studied due to the added
optimization complexity involved in controlling multiple IRSs.

B. Overview of Methodology and Contributions

In this work, we develop an architecture for multi-IRS-
assisted multi-cell UL networks. Our methodology explicitly
considers multi-order reflections among IRSs, which is rarely
done in existing literature. We address the scenario where (i)
channels are time-varying, and (ii) only partial/imperfect CSI
is available, in which each BS only has knowledge of scalar
effective channel powers from a subset of UEs. This is more
practical and realistic as compared to the prior approaches
[6]–[9] that assume perfect knowledge of all channel matrices.
We formulate the sum-rate maximization problem aiming to
jointly optimize UE transmit powers, IRS reflect beamformers,
and BS combiners across cells.

Given the interdependencies between the design variables
across different cells, we cast the problem as one of sequential
decision making and tailor a multi-agent deep reinforcement
learning (DRL) algorithm to solve it. We consider each BS
as an independent learning agent that controls the local UE
transmit powers, the local IRS reflect beamformer, and its
combiners via only index gradient variables. We design the
state, action, and reward function for each BS to capture the
interdependencies among the design choices made at different
BSs. We further develop an information-sharing scheme where
only limited information among neighboring BSs is exchanged
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to cope with the non-stationarity issue caused by the coupling
between the actions at other BSs. Through numerical simu-
lations, we show that our proposed scheme outperforms the
conventional baselines for data rate maximization.

II. MULTI-CELL SYSTEMS WITH MULTIPLE IRSS

In this section, we first introduce the signal model under
consideration (Sec. II-A). Then, we formulate the optimiza-
tion and discuss the challenges associated with solving it
(Sec. II-B).

A. Signal Model

We consider a multi-cell system with multiple IRSs for the
uplink (UL) as depicted in Fig. 1. The system is comprised of
a set of L cells L = {1, ..., L} and R IRSs R = {1, ..., R}.
For simplicity we assume that each cell has one IRS, i.e.,
R = L, though our method can be readily generalized to the
case where R 6= L. The IRSs are indexed such that cell `
contains IRS `.

Each cell ` ∈ L contains (i) K` UEs with single antenna,
denoted by K` = {1, ...,K`}, (ii) an IRS with N` reflecting
elements, denoted by N` = {1, ..., N`}, and (iii) a BS with
M` antennas denoted by M` = {1, ...,M`}. We let UE (i, j)
refer to UE j in cell i. The received signal vector at BS ` ∈ L
at the tth channel instance is given by

y`[t] =
∑
i∈L

∑
j∈Ki

{(
hUB

(i,j),`[t] +
∑
r∈R

GIB
r,`[t]Φr[t]h

UI
(i,j),r[t]

+
∑
r2∈R

∑
r1∈R\{r2}

GIB
r2,`[t]Φr2 [t]GII

r1,r2 [t]Φr1 [t]hUI
(i,j),r1

[t]

)
√
pi,j [t]si,j [t]

}
+ n`[t], (1)

where hUB
(i,j),`[t] ∈ CM`×1 is the direct channel from UE (i, j)

to BS `, hUI
(i,j),r[t] ∈ CNr×1 is the channel from UE (i, j) to

IRS r ∈ R, GIB
r,`[t] ∈ CM`×Nr is the channel from IRS r to

BS `, and GII
r1,r2 [t] ∈ CNr2×Nr1 is the channel from IRS r1

to IRS r2, r1 6= r2. Also, pi,j [t] ∈ R+ is the transmit power
and si,j [t] ∈ C is the transmit symbol of UE (i, j), where
E[|si,j [t]|2] = 1. The noise vector n`[t] ∈ CM`×1 at BS ` is as-
sumed to be distributed according to zero mean complex Gaus-
sian with covariance matrix σ2I, i.e., n`[t] ∼ CN (0, σ2I),
where I denotes the identity matrix and σ2 is the noise
variance. Finally, Φr[t] = diag(φr,1[t], φr,2[t], ..., φr,Nr

[t]) ∈
CNr×Nr is a diagonal matrix with its diagonal entries rep-
resenting the beamforming vector of IRS r ∈ R. φr,n[t],
n ∈ Nr, is modeled as φr,n[t] = ar,n[t]ej2πθr,n[t] ∈ C,
incurring the signal attenuation ar,n[t] ∈ [0, 1] and phase shift
θr,n[t] ∈ [0, 2π).

In (1), we consider the channels with three different paths
from UE (i, j) to BS `: (i) the direct channel, (ii) the channel
after one reflection from the IRSs (the sum over r), and (iii)
the channel after two reflections from the IRSs (the sum over
r1, r2). Higher order reflections can also be incorporated in
(1), i.e., signals reflected from more than two IRSs; we focus
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Fig. 1: Depiction of a multi-IRS-aided multi-cell system in the
UL.

on up to the second-order reflections due to a large attenuation
induced by multiple reflections between IRSs.

We assume that a linear combiner z`,k[t] ∈ CM`×1 is
employed at BS ` to restore s`,k[t] from y`[t], which yields

ŷ`,k[t] = zH`,k[t]y`[t], (2)

where superscript H denotes the conjugate transpose.

B. Problem Formulation and Challenges

We aim to maximize the sum-rate over all the UEs in the
network through design of the UE powers {p`,k[t]}`,k, BS
combiners {z`,k[t]}`,k, and IRS beamformers {φr[t]}r, where
φr[t] = [φr,1[t], φr,2[t], ..., φr,Nr

[t]]> ∈ CNr×1 is the IRS
beamforming vector on the diagonal of Φr[t], i.e., Φr[t] =
diag(φr[t]). With SINR`,k[t] as the signal-to-interference ratio
(SINR) of UE (`, k), we propose the following optimization
problem:

maximize
∑
`∈L

∑
k∈K`

log2(1 + SINR`,k[t])

subject to p`,k[t] ∈ P, z`,k[t] ∈ Z, φr[t] ∈ Q, ∀`,∀k, ∀r,
variables {p`,k[t]}`,k, {z`,k[t]}`,k, {φr[t]}r, (3)

where P is the set of power values, Z is the codebook for BS
combiners, and Q is the codebook for IRS beamformers.1

The problem in (3) is an optimization problem at time
t, where t ∈ T = {0, T, 2T, ...}, i.e., the optimization
of variables is performed once every T time instances. If
the instantaneous channels hUB

(i,j),`[t], hUI
(i,j),r[t], GIB

r,`[t] and
GII
r1,r2 [t] in (1) are all known, then conventional optimization

methods, e.g., successive convex approximation or integer
programming, could be applied, since SINR`,k[t] in (3) can
be formulated as (4) (shown at the top of the next page) with

1A codebook structure can be employed for IRS because IRS is in practice
controlled by a field-programmable gate array (FPGA) circuit where FPGA
stores a set of coding sequences [10].



SINR`,k[t] =

p`,k[t]

∣∣∣∣zH
`,k[t]

(
hUB

(`,k),`[t]+
∑

r∈R
GIB

r,`[t]Φr[t]hUI
(`,k),r[t]+

∑
r2∈R

∑
r1∈R\{r2}

GIB
r2,`[t]Φr2 [t]GII

r1,r2
[t]Φr1 [t]hUI

(`,k),r1
[t]

)∣∣∣∣2
∑

(i,j)6=(`,k)

pi,j [t]

∣∣∣∣zH
`,k[t]

(
hUB

(i,j),`
[t]+

∑
r∈R

GIB
r,`[t]Φr[t]hUI

(i,j),r
[t]+

∑
r2∈R

∑
r1∈R\{r2}

GIB
r2,`[t]Φr2

[t]GII
r1,r2

[t]Φr1
[t]hUI

(i,j),r1
[t]

)∣∣∣∣2+σ2

(4)

the known channels. However, IRS-assisted wireless networks
face the following challenges in practice:
• IRS channel acquisition: Although most of the works,

e.g., [6]–[9], assume that channels are perfectly known,
this assumption is impractical because an IRS is passive
and often does not have sensing capabilities. While special
IRS hardware with the ability to estimate the concatenated
channels does exist [11], the time overhead could easily
overwhelm the coherent channel resources especially when
there are multiple IRSs.

• Dynamic channels: Channel dynamics in wireless environ-
ments adds another degree of difficulty to channel acquisi-
tion and estimation. This makes solving the optimization in
(3) impossible with conventional model-based optimization
approaches, due to dynamic and unknown channels.

• Centralization: A centralized implementation to solve (3)
would require gathering all the information at a central point,
which is impractical in our setting. Given the interdependen-
cies among the design variables taken by different cells and
their impact on the overall objective function, distributed
optimization of the variables in (3) is challenging.
To address these challenges, we convert (3) into a sequential

decision making problem, where the variables are designed
via successive interactions with the environment through deep
reinforcement learning (DRL). While conventional DRL as-
sumes a centralized implementation, we develop a multi-agent
DRL approach, where each BS acts as an independent agent
in charge of tuning its local UEs transmit powers, local IRS
beamformer, and combiners. To cope with the non-stationarity
issue of multi-agent DRL [12], we carry out the learning
through limited information-sharing among neighbouring BSs.

III. MULTI-AGENT DRL FRAMEWORK DESIGN

In this section, we first introduce the information collection
process at the BSs and design an information-sharing scheme
(Sec. III-A). We then formulate a Markov decision process
(MDP) (Sec. III-B) and propose a dynamic control scheme
(Sec. III-C) to solve our optimization from Sec. II-B.

A. Local Observations and Information Exchange

We consider a setting where each BS only acquires scalar
effective channel powers from a subset of UEs. When UE (i, j)
transmits a pilot symbol with power pi,j [t], BS ` measures
the scalar effective channel power |ĥ(i,j),`,k[t]|2 ∈ R (after
combining with z`,k[t]), k ∈ K`, which is given by

|ĥ(i,j),`,k[t]|2 = |zH`,k[t]ĥ(i,j),`[t]|2, (5)

where ĥ(i,j),`,k[t] ∈ C is the scalar effective channel. The
vector ĥ(i,j),`[t] ∈ CM`×1 is the effective channel from UE
(i, j) to BS ` (before combining), which is expressed as
follows:

ĥ(i,j),`[t] =
√
pi,j [t]

(
hUB

(i,j),`[t]+
∑
r∈R

GIB
r,`[t]Φr[t]h

UI
(i,j),r[t]

+
∑
r2∈R

∑
r1∈R\{r2}

GIB
r2,`[t]Φr2 [t]GII

r1,r2 [t]Φr1 [t]hUI
(i,j),r1

[t]

)
.

(6)

BS ` collects the scalar effective channel powers of the
links (i) from local UEs (in cell `) to BS `, (ii) from
neighbouring UEs (not in cell `) to BS `, and (iii) from
local UEs to neighbouring BSs. BS ` measures (i) and (ii)
as local observations, but needs to receive (iii), which cannot
be measured by BS `, from neighbouring BSs. Additionally,
BS ` receives a penalty value from neighbouring BSs, where
the penalty value is used for designing the reward function
and will be formalized in Sec. III-B3. Note that concurrent
estimation of the scalar effective channel powers of multiple
UEs can be performed by UE-specific reference signals in the
Long-Term Evolution (LTE) standard [13]. Acquiring scalar
effective channel powers from only a subset of UEs lowers
the CSI acquisition overhead compared to the conventional
method of acquiring large-dimensional vector or matrix CSI
from individual UE for each IRS.

To clarify which neighbouring UEs are included in (ii)
and which neighbouring BSs are included in (iii), we define
two sets of cell indices. First, we define the set of indices
of dominantly interfering neighboring cells, B(1)

` [t]. UEs in
cell i ∈ B(1)

` [t] are dominantly interfering with the data
link of local UEs (in cell `). Formally, ∀i ∈ B(1)

` [t], ∀i′ ∈
L\B(1)

` [t]\{`}, we have∑
j∈Ki

‖ĥ(i,j),`[t]‖22 ≥
∑
j∈Ki′

‖ĥ(i′,j),`[t]‖22. (7)

The size of this set is a control variable B(1) = |B(1)
` [t]|. For

(ii), then, we include neighbouring UEs in cell i ∈ B(1)
` [t].

Second, we define the set of indices of dominantly interfered
neighboring cells, B(2)

` [t]. The data links of UEs in cell
i ∈ B(2)

` [t] are dominantly interfered by local UEs (in cell
`). Formally, ∀i ∈ B(2)

` [t], ∀i′ ∈ L\B(2)
` [t]\{`}, we have∑

k∈K`

‖ĥ(`,k),i[t]‖22 ≥
∑
k∈K`

‖ĥ(`,k),i′ [t]‖22. (8)



The size of this set is a control variable B(2) = |B(2)
` [t]|. For

(iii), then, we include neighbouring BSs of cell i ∈ B(2)
` [t].

The effective channel gain, used in defining B(1)
` [t] and

B(2)
` [t], can be acquired by the antenna circuit before digi-

tal processing (e.g., from the automatic gain control (AGC)
circuit [14]), without the explicit effective channel vector
or combiner implementation. BS ` also measures SINR`,k[t]
of all local UEs, by measuring the received signal strength
indicator (RSSI) and the reference signal received power
(RSRP), which are the conventional measures to evaluate the
signal quality in LTE standards [13]. Using the SINRs, BS
` then calculates the achievable data rate of UE (`, k) as
R`,k[t] = log2(1 + SINR`,k[t]). Here, we omit the bandwidth
parameter, assuming the same bandwidth for all the data links.

B. Markov Decision Process Model

We formulate the decision making process of each BS as
an MDP with states, actions, and rewards:

1) State: We define the state space of BS ` as

S`[t] = S`,1[t]
⋃
S`,2[t]

⋃
S`,3[t]

⋃
S`,4[t], (9)

where each constituent set is described below.
(i) Local channel information. S`,1[t] consists of the scalar

effective channel powers from local UEs observed at two
consecutive times t− T and t, given by

S`,1[t] = {|ĥ(`,j),`,k[t− T ]|2, |h̃(`,j),`,k[t]|2}j∈K`,k∈K`
.

Here, |ĥ(`,j),`,k[t − T ]|2 can be obtained from (5) at time
t − T , and |h̃(`,j),`,k[t]|2 is a version of (5) obtained at time
t using previous-time variables p`,k[t − T ], z`,k[t − T ], and
{φr[t−T ]}r∈R. Having them enables us to capture the effect
of channel variation over time.

(ii) From-neighbor channel information. S`,2[t] contains
the scalar effective channel powers from UE (i, j) in neigh-
boring cell i, and the index i, for i ∈ B(1)

` [t], j ∈ Ki. Formally,

S`,2[t] = {|ĥ(i,j),`,k[t−T ]|2}
j∈Ki,k∈K`,i∈B(1)

` [t]

⋃
{i}

i∈B(1)
` [t]

.

This set captures the interference from neighbor UEs to cell
`.

(iii) To-neighbor channel information. S`,3[t] contains the
scalar effective channel powers from local UE (`, k) to BS i,
and the index i, for i ∈ B(2)

` [t], k ∈ K`. Formally,

S`,3[t] = {|ĥ(`,k),i,j [t−T ]|2}
j∈Ki,k∈K`,i∈B(2)

` [t]

⋃
{i}

i∈B(2)
` [t]

.

This set captures the amount of interference that local UEs
in cell ` inflict on neighboring cells. This information enables
BS ` to adjust the transmit powers of local UEs to reduce
interference to the neighboring cells.

(iv) Previous local variables and local sum-rate. S`,4[t]
consists of previous local variables, i.e., {p`,k[t − T ]}k∈K`

,
{z`,k[t−T ]}k∈K`

, and φ`[t−T ], and the local sum-rate R`[t−
T ] =

∑
k∈K`

R`,k[t− T ]. Formally,

S`,4[t] = {p`,k[t−T ], z`,k[t−T ]}k∈K`

⋃
{φ`[t−T ], R`[t−T ]}.

2) Action: The action space is defined as

A`[t] = {bp`,1[t], ..., bp`,K`
[t], bz`,1[t], ..., bz`,K`

[t], bφ` [t]}, (10)

where bp`,k[t], bz`,k[t], bφ` [t] are the index gradient variables
used for updating the local UE (`, k) transmit power, combiner
k of BS `, and local IRS ` reflect beamformer. These index
gradient variables are defined over a binary {−1, 1}, or ternary
{−1, 0, 1} alphabet as we will describe in Sec. IV.

Once BS ` determines the action in (10), the BS feeds
forward bp`,k[t] to UE (`, k), which then updates its power
index as

ip`,k[t] = ip`,k[t− T ] + bp`,k[t]. (11)

The power of UE (`, k) is set to p`,k[t] = P(ip`,k[t]), k ∈ K`,
where P(i) denotes i-th element of the power set P in (3).
The BS also feeds forward bφ` [t] to IRS `, which then updates
its beamformer index as

iφ` [t] = iφ` [t− T ] + bφ` [t]. (12)

The beamformer of IRS ` is set to φ`[t] = Q(iφ` [t]) where
Q(i) is the i-th vector in the codebook Q in (3). Finally, the
combiner index is updated as

iz`,k[t] = iz`,k[t− T ] + bz`,k[t]. (13)

The combiner k of BS ` is set to z`,k[t] = Z(iz`,k[t]).

3) Reward: Aiming to only maximize the local sum-rate
at each BS could increase the interference to the neighboring
cells. To incorporate the entire system performance, we design
the reward r`[t] including penalty terms as

r`[t] =
∑
k∈K`

R`,k[t]−
∑

i∈B(2)
` [t]

P`,i[t], (14)

where the first term is the sum-rate of cell ` and the second
term is the sum of penalties. The penalty P`,i[t] is the rate loss
of the dominantly interfered cell i caused by the interference
of local UEs (in cell `), which is calculated at BS i as

P`,i[t] =
∑
j∈Ki

P`,(i,j)[t] =
∑
j∈Ki

[
−Ri,j [t]

+ log2

(
1 +

|ĥ(i,j),i,j [t]|2∑
(i′,j′)6=(i,j),i′ 6=` |ĥ(i′,j′),i,j [t]|2 + σ2

)]
, (15)

where P`,(i,j)[t] is the rate loss of UE (i, j) caused by the
interference of local UEs in cell `. A similar reward function
was found to be effective for multi-agent DRL-based beam-
forming [15]. The log(·) term in (15) denotes the data rate
of UE (i, j) without the interference of the local UEs in cell
`, while Ri,j [t] is the data rate including the interference. If
there is no interference, the two terms cancel with each other,
leading to zero penalty. Otherwise, the penalty is positive.



Algorithm 1 Dynamic control based on multi-agent DRL.
1: Establish a train DQN with random weights w`, a target DQN

with random weights w−` , an empty experience pool Y` with
|Y`| = 0, and a pool size Mpool

` . Set the discount factor γ`,
initial ε-greedy value ε`(0), mini-batch size Mbatch

` , and DQN-
aligning period Talign, ∀` ∈ L.

2: Agent ` (BS `) randomly initializes the design variables
{p`,k[0]}k∈K` , {z`,k[0]}k∈K` , and φ`[0], and informs local UEs
and local IRS of the initial variables, ∀` ∈ L.

3: Agent ` selects its action a` ∈ A randomly and executes it,
∀` ∈ L.

4: t← T . Agent ` observes the next state s′`, ∀` ∈ L.
5: repeat
6: s` ← s′`
7: Agent ` selects its action a` at time t based on ε-greedy

policy, ∀` ∈ L: With probability ε`(t), agent ` selects random
action a`, and with probability 1 − ε`(t), agent ` selects
a` = argmaxa∈AQ(s`, a,w`).

8: Agent ` executes its action, ∀` ∈ L.
9: t ← t + T . Agent ` observes the next state s′` and gets the

reward r`, ∀` ∈ L.
10: Agent ` stores the new experience < s`, a`, r`, s

′
` > in its own

experience pool Y`, ∀` ∈ L.
11: if |Y`| ≥Mbatch

` then
12: Agent ` samples a mini-batch consisting of Mbatch

` expe-
riences from its experience pool Y`, ∀` ∈ L.

13: Agent ` updates the weights w` of its train DQN using back
propagation, ∀` ∈ L.

14: Agent ` updates the weights of its target DQN w−` ← w`

every Talign, ∀` ∈ L.
15: end if
16: until Process terminates

C. Dynamic Control Scheme based on Multi-agent DRL

In the proposed MDP, the channel values used as states are
continuous variables, which makes conventional RL, i.e., Q-
learning based on Q-table, not applicable. We thus adopt deep
Q-networks (DQN) [16]. BS ` possesses its own train DQN,
Q(s, a,w`), with weights w`, and target DQN, Q(s, a,w−` ),
with weights w−` , where the state s ∈ S and action a ∈ A are
defined in Sec. III-B. The pseudocode of the proposed dynamic
control scheme based on multi-agent DRL is provided in
Algorithm 1. Our algorithm follows a decentralized training
with decentralized execution (DTDE) framework, where both
training and execution are independently carried out at each
agent. Therefore, our algorithm is independent of the UEs
in other surrounding agents (BSs). Further, our algorithm
incorporates the index gradient approach for codebook-based
BS combining and IRS beamforming, which is independent of
the number of antennas/elements and the size of the codebook.

IV. NUMERICAL EVALUATION AND DISCUSSION

In this section, we first describe the simulation setup
(Sec. IV-A) and evaluation scenarios (Sec. IV-B). Then, we
present and discuss the results (Sec. IV-C).

A. Simulation Setup

1) Parameter settings: We consider a cellular network with
L = 7 hexagonal cells, as shown in Fig. 2. We assume
K` = 3, M` = 5, and Nr = 5, ∀`, r, similar to [5]. The

Fig. 2: The cellular network with L = 7 hexagonal cells and
100 m distance between adjacent BSs used in our simulations.

BSs are located at the center of each cell with 10 m height,
and the distance between adjacent BSs is 100 m. Each IRS
is deployed nearby the BS, and UEs are randomly placed
in the cells. The set P for UE power control is given by
P = {pmin, pmine

∆p , pmine
2∆p , ..., pmax}, where pmin = 10

dBm and pmax = 30 dBm are the minimum and maximum
transmit powers, and ∆p = (log pmax − log pmin)/(|P| − 1).
For BS combiner and IRS beamformer codebooks, we use a
random vector quantization (RVQ) [17] codebook with size
|Z| = |Q| = 30. We set σ2 = −114 dBm, B(1) = B(2) = 2.

2) Channel modeling: We consider a single frequency band
with flat fading and adopt a temporally correlated block fading
channel model. Following a common cellular standard [18],
we assume coherence time T = 5 ms and center frequency
fc = 2.5 GHz. The channel vector hBS

(i,j),`[t] is modeled as

hUB
(i,j),`[t] =

√
βUB

(i,j),`u
UB
(i,j),`[t], (16)

where βUB
(i,j),` denotes the large-scale fading coefficient from

UE (i, j) to BS `, modeled as

βUB
(i,j),` = β0 − 10αUB

(i,j),` log10(dUB
(i,j),`/d0). (17)

Here, β0 is the path-loss at the reference distance d0, dUB
(i,j),`

is the distance between UE (i, j) and BS `, and αUB
(i,j),` is

the path-loss exponent between them. We set β0 = −30 dB
and d0 = 1 m. uUB

(i,j),`[t] denotes the Rayleigh fading vector,
modeled by a first-order Gauss-Markov process [19]:

uUB
(i,j),`[t] = ρUB

(i,j),`u
UB
(i,j),`[t− T ] +

√
1− (ρUB

(i,j),`)
2nUB

(i,j),`[t],

(18)
where nUB

(i,j),`[t] ∈ CM`×1, nUB
(i,j),`[t] ∼ CN (0, I), and

uUB
(i,j),`[0] ∼ CN (0, I). The time correlation coefficient obeys

the Jakes model [19], i.e., ρUB
(i,j),` = J0(2πf̃UB

(i,j)T ), where
J0(·) is the zeroth order Bessel function of the first kind,
and f̃UB

(i,j),` = vUB
(i,j),`fc/c is the maximum Doppler frequency,

with velocity vUB
(i,j),` of UE (i, j) and c = 3 × 108 m/s.

The same modeling for hUB
(i,j),`[t] is applied for the chan-

nels between the UEs and the IRSs, i.e., hUI
(i,j),r[t], ∀i, j, r,

with path-loss exponent αUI
(i,j),r. Since IRSs are placed at



the desired locations to have less variations of IRS-BS/IRS-
IRS channels as compared to UE-BS/UE-IRS channels [5],
GIB
r,`[t] and GII

r1,r2 [t] are assumed to be stationary. Each entry
for the channels is distributed according to CN (0, βIB

r,`) and
CN (0, βII

r1,r2), respectively. βIB
r,` and βII

r1,r2 denote the large-
scale fading coefficients with path loss exponents αIB

r,` and
αII
r1,r2 , respectively.
We assume αUB

(i,j),` = αUB, ∀i, j, `, αUI
(i,j),r = αUI, ∀i, j, r,

αIB
r,` = αIB, ∀r, `, and αII

r1,r2 = αII, ∀r1, r2. To model the
presence of extensive obstacles and scatterers, the path-loss
exponent between the UEs and BS is taken to be αUB = 3.75.
Because the IRS-aided link can have less path loss than that
of direct UE-BS channel by properly choosing the location of
the IRS, we set the path-loss exponents of the UE-IRS link,
of the IRS-BS link, and of the IRS-IRS link to αUI = 2.2,
αIB = 1, and αII = 2, respectively [5]. We assume ρUB

(i,j),` =

ρUI
(i,j),r = ρ, ∀i, j, `, r and adopt ρ = 0.999 (v ≈ 1 km/h),

0.99 (v ≈ 3 km/h), and 0.9 (v ≈ 9 km/h), where v is the UE
speed.

B. Evaluation Scenarios

1) Scenario 1. The effective channels from local UEs are
not known: In this scenario, each BS measures the scalar effec-
tive channel powers directly from received signals without ex-
plicitly obtaining the effective channels as a vector form in (6).
We introduce two baselines in this scenario: RRR=(random,
random, random) and MRR=(maximum, random, random).
The name of each baseline is indicating how it selects its
(UE power, IRS beamformer, BS combiner) variables as a
tuple. We propose DQN1, where the action space consists of
2K+ 1 elements for K UE powers, the IRS beamformer, and
K BS combiners. The index gradient variables are binary, i.e.,
{−1, 1}.

2) Scenario 2. The effective channels from local UEs are
known: In this scenario, each BS measures the effective
channels from local UEs as the vector form in (6). Each BS
is assumed to adopt a maximum ratio combiner (MRC) by
finding the index as

i? = arg maxi|Z(i)Hh[t]|2, (19)

where h[t] is the effective channel from local UE. We in-
troduce several baselines: MRM=(maximum, random, MRC),
FRM=(25% of maximum, random, MRC), RRM=(random,
random, MRC), and MM with no IRS=(maximum, N/A,
MRC). MM with no IRS assumes the IRSs to be turned off.
In this scenario, we propose DQN2 and DQN3. In DQN2, the
action space consists of K + 1 elements for K UE powers
and the IRS beamformer (the action space does not have the
elements bz`,k[t], ∀k in (10)). The BS combiner is designed as
MRC and the index gradient variable is binary, i.e., {−1, 1}.
The action space is DQN3 is the same as DQN2, except it
uses a tenary index gradient variable, i.e., {−1, 0, 1}.

In both scenarios, the DQNs2 are composed of an input
layer, an output layer, and two fully-connected hidden layers.
The input size is 6K2 + 2K + 6 = 66. The output size is
22K+1 = 128, 2K+1 = 16, and 3K+1 = 81 for DQN1, DQN2,
and DQN3, respectively. For DQN1, the number of neurons
in the two hidden layers is 70 and 100; for DQN2, 40 and 30;
and for DQN3, 70 and 70. The rectified linear unit (ReLU) ac-
tivation function is employed. In Algorithm 1, we adopt the ε-
greedy method with ε`(t) = max{εmin, (1−10−3.5)ε`(t−T )},
where ε`(0) = 0.6 and εmin = 0.005, ∀`. We consider
Mbatch
` = 10, Mpool

` = 300, and γ` = 0.7, ∀`. We set
Talign = 50T , i.e., the target DQN is updated with the weights
of train DQN after a time of 50T . We employ the RMSProp
optimizer for training.

C. Simulation Results and Discussion

Fig. 3 depicts the average achievable data rate over all 21
UEs with different values of time correlation coefficient ρ:
ρ = 0.999 in (a), ρ = 0.99 in (b), and ρ = 0.9 in (c). The
dotted lines show the performance of the schemes in Scenario
1. With varying channels, RRR and MRR select random or
fixed indices for variables, and therefore have low average
data rates over time. On the other hand, DQN1 learns and
adapts to the varying channels over time by exploiting the
local observations and information-sharing in our sequential
decision making.

The solid lines represent the performances of schemes in
Scenario 2. The MM with no IRS gives better performance
than the baselines using IRS, implying that random IRS
beamforming is worse than not deploying it at all. This also
reveals the vulnerability of IRS-assisted systems to adversarial
IRS utilization. Our DQN2 and DQN3 methods outperform the
baselines, which emphasizes the benefit of carefully optimiz-
ing the IRS configuration with the rest of the cellular network.
DQN2 yields slightly better performance and converges faster
than DQN3: the faster convergence is due to neural networks
training faster with a smaller number of outputs, and the better
overall performance is consistent with the observation [16] that
DQNs are more successful with smaller action spaces.

Comparing Scenario 1 with 2, i.e., the dotted lines with the
solid lines in Fig. 3, we note that the performance of DQN1,
which only uses scalar effective channel powers, is comparable
with the baselines in Scenario 2, which use vectorized local
effective channels for MRC. Also, with higher ρ values, the
DQNs experience faster convergence, which is particularly
noticeable in DQN1. The fluctuation of the DQN plots occurs
due to the ε-greedy policy, which explores random action
selection occasionally to avoid getting trapped in local optima.
Overall, in each case, we see that our MDP-based algorithms
obtain significant performance improvements, emphasizing the
benefit of our multi-agent DRL method.

2All DQNs establish the same state space and reward function given in
Sec. III-B. For the state information group (iv) in Sec. III-B1, the indices of
previous local variables are stored in the state.
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(c) ρ = 0.9

Fig. 3: Average achievable data rates over all 21 UEs obtained
by each method with different values of ρ: ρ = 0.999 in (a),
ρ = 0.99 in (b), and ρ = 0.9 in (c). The dotted-lines and
solid lines show the performance of schemes in Scenario 1
and Scenario 2, respectively. Each data point in the plots is a
moving average over the previous 1000 time slots.

V. CONCLUSION

We developed a novel methodology for uplink multi-IRS-
assisted multi-cell systems. Due to temporal channel variations
and difficulties of channel acquisition, we considered that BSs
only acquire scalar effective channel powers from a subset

of UEs. We developed an information-sharing scheme among
neighboring BSs and proposed a dynamic control scheme
based on multi-agent DRL, in which each BS acts as an
agent and adaptively designs its local UE powers, local IRS
beamformer, and its combiners. Through numerical simula-
tions, we verified that our algorithm outperforms conventional
baselines.
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